1
|
Lu S, Li M, Cheng Y, Gou H, Che L, Liang G, Mao J. Genome-wide identification of Aux/IAA gene family members in grape and functional analysis of VaIAA3 in response to cold stress. PLANT CELL REPORTS 2024; 43:265. [PMID: 39417869 DOI: 10.1007/s00299-024-03353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
KEY MESSAGE Twenty-five VvIAA genes and eighteen VaIAA genes were identified from Pinot Noir and Shanputao, respectively. The overexpression of VaIAA3 in transgenic Arabidopsis increased cold tolerance by regulating auxin, ABA and ethylene signaling. Aux/IAA genes are key genes involved in regulating auxin signal transduction in plants. Although IAA genes have been characterized in various plant species, the role of IAA genes in grape cold resistance is unclear. To further explore the members of the Aux/IAA gene family in grape and their functions, in this study, using genomic data for Pinot Noir (Vitis vinifera cv. 'Pinot Noir') and Shanputao (Vitis amurensis), 25 VvIAA genes and 18 VaIAA genes were identified. The VaIAA genes presented different expression patterns at five different temperatures (28 ± 1 °C, 5 ± 1 °C, 0 ± 1 °C, -5 ± 1 °C, and -10 ± 1 °C) according to qRT‑PCR results. VaIAA3 was selected as a candidate gene for further functional analysis because of its high expression level under low-temperature stress. Subcellular localization experiments revealed that VaIAA3 was localized in the nucleus. Additionally, under 4 °C treatment for 24 h, relative expression level of VaIAA3, antioxidant enzyme activity, survival rate, and cold-responsive gene expression in three transgenic lines (OE-1, OE-2, OE-3) were greater, whereas relative electrolytic conductivity (REC), malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were lower than those of the wild type (WT). Transcriptome sequencing analysis revealed that VaIAA3 regulated cold stress resistance in Arabidopsis thaliana (Arabidopsis) through pathways involving auxin, ABA, JA, or ethylene. Importantly, heterologous overexpression of VaIAA3 increased the resistance of Arabidopsis to cold stress, which provides a theoretical basis for the further use of VaIAA3 to improve cold resistance in grape.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Che
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Yong CSY, Atheeqah-Hamzah N. Transcriptome-wide Identification of Nine Tandem Repeat Protein Families in Roselle ( Hibiscus sabdariffa L.). Trop Life Sci Res 2024; 35:121-148. [PMID: 39464663 PMCID: PMC11507979 DOI: 10.21315/tlsr2024.35.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/20/2024] [Indexed: 10/29/2024] Open
Abstract
Plants are rich in tandem repeats-containing proteins. It is postulated that the occurrence of tandem repeat gene families facilitates the adaptation and survival of plants in adverse environmental conditions. This study intended to identify the tandem repeats in the transcriptome of a high potential tropical horticultural plant, roselle (Hibiscus sabdariffa L.). A total of 92,974 annotated de novo assembled transcripts were analysed using in silico approach, and 6,541 transcripts that encoded proteins containing tandem repeats with length of 20-60 amino acid residues were identified. Domain analysis revealed a total of nine tandem repeat protein families in the transcriptome of roselle, which are the Ankyrin repeats (ANK), Armadillo repeats (ARM), elongation factor-hand domain repeats (EF-hand), Huntingtin, elongation factor 3, protein phosphatase 2A, yeast kinase TOR1 repeats (HEAT), Kelch repeats (Kelch), leucine rich repeats (LRR), pentatricopeptide repeats (PPR), tetratricopeptide repeats (TPR) and WD40 repeats (WD40). Functional annotation analysis further matched 6,236 transcripts to 1,045 known proteins that contained tandem repeats including proteins implicated in plant development, protein-protein interaction, immunity and abiotic stress responses. The findings provide new insights into the occurrence of tandem repeats in the transcriptome and lay the foundation to elucidate the functional associations between tandem peptide repeats (TRs) and proteins in roselle and facilitate the identification of novel biotic and abiotic response related tandem repeats genes that may be useful in breeding improved varieties.
Collapse
Affiliation(s)
- Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| | - Nur Atheeqah-Hamzah
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Jalan UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Zhang S, Wang B, Li Q, Hui W, Yang L, Wang Z, Zhang W, Yue F, Liu N, Li H, Lu F, Zhang K, Zeng Q, Wu AM. CRISPR/Cas9 mutated p-coumaroyl shikimate 3'-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. Int J Biol Macromol 2023; 253:126762. [PMID: 37683750 DOI: 10.1016/j.ijbiomac.2023.126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.
Collapse
Affiliation(s)
- Sufang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Hui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Linjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhihua Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nian Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Biochemistry and Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Kewei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qingyin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Pramanik D, Becker A, Roessner C, Rupp O, Bogarín D, Pérez-Escobar OA, Dirks-Mulder A, Droppert K, Kocyan A, Smets E, Gravendeel B. Evolution and development of fruits of Erycina pusilla and other orchid species. PLoS One 2023; 18:e0286846. [PMID: 37815982 PMCID: PMC10564159 DOI: 10.1371/journal.pone.0286846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/24/2023] [Indexed: 10/12/2023] Open
Abstract
Fruits play a crucial role in seed dispersal. They open along dehiscence zones. Fruit dehiscence zone formation has been intensively studied in Arabidopsis thaliana. However, little is known about the mechanisms and genes involved in the formation of fruit dehiscence zones in species outside the Brassicaceae. The dehiscence zone of A. thaliana contains a lignified layer, while dehiscence zone tissues of the emerging orchid model Erycina pusilla include a lipid layer. Here we present an analysis of evolution and development of fruit dehiscence zones in orchids. We performed ancestral state reconstructions across the five orchid subfamilies to study the evolution of selected fruit traits and explored dehiscence zone developmental genes using RNA-seq and qPCR. We found that erect dehiscent fruits with non-lignified dehiscence zones and a short ripening period are ancestral characters in orchids. Lignified dehiscence zones in orchid fruits evolved multiple times from non-lignified zones. Furthermore, we carried out gene expression analysis of tissues from different developmental stages of E. pusilla fruits. We found that fruit dehiscence genes from the MADS-box gene family and other important regulators in E. pusilla differed in their expression pattern from their homologs in A. thaliana. This suggests that the current A. thaliana fruit dehiscence model requires adjustment for orchids. Additionally, we discovered that homologs of A. thaliana genes involved in the development of carpel, gynoecium and ovules, and genes involved in lipid biosynthesis were expressed in the fruit valves of E. pusilla, implying that these genes may play a novel role in formation of dehiscence zone tissues in orchids. Future functional analysis of developmental regulators, lipid identification and quantification can shed more light on lipid-layer based dehiscence of orchid fruits.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- National Research and Innovation Agency Republic of Indonesia (BRIN), Central Jakarta, Indonesia
| | - Annette Becker
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Roessner
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Oliver Rupp
- Department of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Diego Bogarín
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | - Anita Dirks-Mulder
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Kevin Droppert
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Alexander Kocyan
- Botanical Museum, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Erik Smets
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Heverlee, Belgium
| | - Barbara Gravendeel
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Lomin SN, Kolachevskaya OO, Arkhipov DV, Romanov GA. Canonical and Alternative Auxin Signaling Systems in Mono-, Di-, and Tetraploid Potatoes. Int J Mol Sci 2023; 24:11408. [PMID: 37511169 PMCID: PMC10380454 DOI: 10.3390/ijms241411408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato (Solanum tuberosum L.). The corresponding genes were retrieved from sequenced genomes of the doubled monoploid S. tuberosum DM1-3-516-R44 (DM) of the Phureja group, the heterozygous diploid line RH89-039-16 (RH), and the autotetraploid cultivar Otava. Both canonical and noncanonical auxin signaling pathways were considered. Phylogenetic and domain analyses of deduced proteins were supplemented by expression profiling and 3D molecular modeling. The canonical and ABP1-mediated pathways of auxin signaling appeared to be well conserved. The total number of potato genes/proteins presumably involved in canonical auxin signaling is 46 and 108 in monoploid DM and tetraploid Otava, respectively. Among the studied potatoes, spectra of expressed genes obviously associated with auxin signaling were partly cultivar-specific and quite different from analogous spectrum in Arabidopsis. Most of the noncanonical pathways found in Arabidopsis appeared to have low probability in potato. This was equally true for all cultivars used irrespective of their ploidy. Thus, some important features of the (noncanonical) auxin signaling pathways may be variable and species-specific.
Collapse
Affiliation(s)
- Sergey N Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Oksana O Kolachevskaya
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Dmitry V Arkhipov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | - Georgy A Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| |
Collapse
|
6
|
Nguyen UT, Pandey SK, Kim J. LBD18 and IAA14 antagonistically interact with ARF7 via the invariant Lys and acidic residues of the OPCA motif in the PB1 domain. PLANTA 2023; 258:26. [PMID: 37354348 DOI: 10.1007/s00425-023-04183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
MAIN CONCLUSION LBD18 and IAA14 antagonistically interact with ARF7 through the electrostatic faces in the ARF7PB1 domain, modulating ARF7 transcriptional activity. Auxin Response Factor 7 (ARF7)/ARF19 control lateral root development by directly activating Lateral Organ Boundaries Domain 16 (LBD16)/LBD18 genes in Arabidopsis. LBD18 upregulates ARF19 expression by binding to the ARF19 promoter. It also interacts with ARF7 through the Phox and Bem1 (PB1) domain to enhance the ARF7 transcriptional activity, forming a dual mode of positive feedback loop. LBD18 competes with the repressor indole-3-acetic acid 14 (IAA14) for ARF7 binding through the PB1 domain. In this study, we examined the molecular determinant of the ARF7 PB1 domain for interacting with LBD18 and showed that the electronic faces in the ARF7 PB1 domain are critical for interacting with LBD18 and IAA14/17. We used a luminescence complementation imaging assay to determine protein-protein interactions. The results showed that mutation of the invariant lysine residue and the OPCA motif in the PB1 domain in ARF7 significantly reduces the protein interaction between ARF7 and LBD18. Transient gene expression assays with Arabidopsis protoplasts showed that IAA14 suppressed transcription-enhancing activity of LBD18 on the LUC reporter gene fused to the ARF19 promoter harboring an auxin response element, but mutation of the invariant lysine residue and OPCA motif in the PB1 domain of IAA14 reduced the repression capability of IAA14 for transcription-enhancing activity of LBD18. We further showed that the same mutation in the PB1 domain of IAA14 reduces its repression capability, thereby increasing the LUC activity induced by both ARF7 and LBD18 compared with IAA14. These results suggest that LBD18 competes with IAA14 for ARF7 binding via the electrostatic faces of the ARF7 PB1 domain to modulate ARF7 transcriptional activity.
Collapse
Affiliation(s)
- Uyen Thu Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 61186, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Buk-Gu, Gwangju, 61186, South Korea
| | - Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 61186, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 61186, South Korea.
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Buk-Gu, Gwangju, 61186, South Korea.
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, South Korea.
| |
Collapse
|
7
|
Du W, Ding J, Li J, Li H, Ruan C. Co-regulatory effects of hormone and mRNA-miRNA module on flower bud formation of Camellia oleifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1109603. [PMID: 37008468 PMCID: PMC10064061 DOI: 10.3389/fpls.2023.1109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Few flower buds in a high-yield year are the main factors restricting the yield of Camellia oleifera in the next year. However, there are no relevant reports on the regulation mechanism of flower bud formation. In this study, hormones, mRNAs, and miRNAs were tested during flower bud formation in MY3 ("Min Yu 3," with stable yield in different years) and QY2 ("Qian Yu 2," with less flower bud formation in a high-yield year) cultivars. The results showed that except for IAA, the hormone contents of GA3, ABA, tZ, JA, and SA in the buds were higher than those in the fruit, and the contents of all hormones in the buds were higher than those in the adjacent tissues. This excluded the effect of hormones produced from the fruit on flower bud formation. The difference in hormones showed that 21-30 April was the critical period for flower bud formation in C. oleifera; the JA content in MY3 was higher than that in QY2, but a lower concentration of GA3 contributed to the formation of the C. oleifera flower bud. JA and GA3 might have different effects on flower bud formation. Comprehensive analysis of the RNA-seq data showed that differentially expressed genes were notably enriched in hormone signal transduction and the circadian system. Flower bud formation in MY3 was induced through the plant hormone receptor TIR1 (transport inhibitor response 1) of the IAA signaling pathway, the miR535-GID1c module of the GA signaling pathway, and the miR395-JAZ module of the JA signaling pathway. In addition, the expression of core clock components GI (GIGANTEA) and CO (CONSTANS) in MY3 increased 2.3-fold and 1.8-fold over that in QY2, respectively, indicating that the circadian system also played a role in promoting flower bud formation in MY3. Finally, the hormone signaling pathway and circadian system transmitted flowering signals to the floral meristem characteristic genes LFY (LEAFY) and AP1 (APETALA 1) via FT (FLOWERING LOCUS T) and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO 1) to regulate flower bud formation. These data will provide the basis for understanding the mechanism of flower bud alternate formation and formulating high yield regulation measures for C. oleifera.
Collapse
|
8
|
Cong L, Ling H, Liu S, Wang A, Zhai R, Yang C, Wang Z, Xu L. 'Yunnan' quince rootstock promoted flower bud formation of 'Abbé Fetel' pear by altering hormone levels and PbAGL9 expression. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153924. [PMID: 36805518 DOI: 10.1016/j.jplph.2023.153924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Flower busd formation is an important plant growth process. It has been reported that dwarfing rootstocks can significantly affect the flower bud formation of scions. In this study, we found the dwarfing rootstock 'Yunnan' quince could significantly increase the flowering rate of 'Abbé Fetel' pear scions. The RNA-sequencing data revealed significant changes in the expression of genes related to hormone pathways. Furthermore, hormone analyses indicated that 'Yunnan' quince significantly decreased the GA3 content and increased the cytokinin/auxin ratio in 'Abbé Fetel' pear apical buds. The hormone contents were consistent with the RNA-sequencing data. Moreover, we found the flower development-related genes PbAGL9 and PbCAL-A1 were significantly upregulated and PbTFL1 was significantly downregulated in 'Abbé Fetel'/'Yunnan' quince apical buds. To further clarify the relationship between hormones and flowering-related genes, a hormone response assay was carried out. We found the expression levels of PbCAl-A1, PbTFL1 and PbAGL9 were regulated by hormones including GA3, CPPU and NAA. Y1H and dual-luciferase assays indicated that PbAGL9 significantly decreased the promoter activity of PbTFL1. In summary, 'Yunnan' quince upregulated PbCAL-A1 and PbAGL9, and downregulated PbTFL1 expression by decreasing the GA3 content and increasing the cytokinin/auxin ratio in 'Abbé Fetel' pear apical buds. Additionally, 'Yunnan' quince down-regulate PbTFL1 by upregulating the expression of PbAGL9, and eventually promoted floral induction in 'Abbé Fetel' pear.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Hutian Ling
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Shanshan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Azheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
9
|
Laha NP, Giehl RFH, Riemer E, Qiu D, Pullagurla NJ, Schneider R, Dhir YW, Yadav R, Mihiret YE, Gaugler P, Gaugler V, Mao H, Zheng N, von Wirén N, Saiardi A, Bhattacharjee S, Jessen HJ, Laha D, Schaaf G. INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-dependent inositol polyphosphates regulate auxin responses in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2722-2738. [PMID: 36124979 PMCID: PMC9706486 DOI: 10.1093/plphys/kiac425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOG 1 (ASK1), and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.
Collapse
Affiliation(s)
- Nargis Parvin Laha
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Esther Riemer
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Danye Qiu
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Naga Jyothi Pullagurla
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Robin Schneider
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Yashika Walia Dhir
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Yeshambel Emewodih Mihiret
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Philipp Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Verena Gaugler
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Haibin Mao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Ning Zheng
- Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Nicolaus von Wirén
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London WC1E 6BT, UK
| | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and Plant Resistance, Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Henning J Jessen
- Department of Chemistry and Pharmacy & CIBSS–The Center for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
10
|
Figueiredo MRAD, Strader LC. Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics. Trends Biochem Sci 2022; 47:865-874. [PMID: 35817652 PMCID: PMC9464691 DOI: 10.1016/j.tibs.2022.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023]
Abstract
The plant hormone auxin acts through regulated degradation of Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins to regulate transcriptional events. In this review, we examine the composition and function of each Aux/IAA structural motif. We then focus on recent characterization of Aux/IAA N-terminal disordered regions, formation of secondary structure within these disordered regions, and post-translational modifications (PTMs) that affect Aux/IAA function and stability. We propose how structural variations between Aux/IAA family members may be tuned for differential transcriptional repression and degradation dynamics.
Collapse
|
11
|
Hu J, Su H, Cao H, Wei H, Fu X, Jiang X, Song Q, He X, Xu C, Luo K. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. THE PLANT CELL 2022; 34:2688-2707. [PMID: 35435234 PMCID: PMC9252472 DOI: 10.1093/plcell/koac107] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 05/20/2023]
Abstract
Cambial development in the stems of perennial woody species is rigorously regulated by phytohormones. Auxin and gibberellin (GA) play crucial roles in stimulating cambial activity in poplar (Populus spp.). In this study, we show that the DELLA protein REPRESSOR of ga1-3 Like 1 (RGL1), AUXIN RESPONSE FACTOR 7 (ARF7), and Aux/INDOLE-3-ACETIC ACID 9 (IAA9) form a ternary complex that mediates crosstalk between the auxin and GA signaling pathways in poplar stems during cambial development. Biochemical analysis revealed that ARF7 physically interacts with RGL1 and IAA9 through distinct domains. The arf7 loss-of-function mutant showed markedly attenuated responses to auxin and GA, whereas transgenic poplar plants overexpressing ARF7 displayed strongly improved cambial activity. ARF7 directly binds to the promoter region of the cambial stem cell regulator WOX4 to modulate its expression, thus integrating auxin and GA signaling to regulate cambial activity. Furthermore, the direct activation of PIN-FORMED 1 expression by ARF7 in the RGL1-ARF7-IAA9 module increased GA-dependent cambial activity via polar auxin transport. Collectively, these findings reveal that the crosstalk between auxin and GA signaling mediated by the RGL1-ARF7-IAA9 module is crucial for the precise regulation of cambial development in poplar.
Collapse
Affiliation(s)
- Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Huili Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hui Cao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongbin Wei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Jiang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xinhua He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, California 95616, USA
| | | | - Keming Luo
- Authors for correspondence: (K.L); (C.X.)
| |
Collapse
|
12
|
Jia Y, Chen C, Gong F, Jin W, Zhang H, Qu S, Ma N, Jiang Y, Gao J, Sun X. An Aux/IAA Family Member, RhIAA14, Involved in Ethylene-Inhibited Petal Expansion in Rose ( Rosa hybrida). Genes (Basel) 2022; 13:1041. [PMID: 35741802 PMCID: PMC9222917 DOI: 10.3390/genes13061041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Flower size, a primary agronomic trait in breeding of ornamental plants, is largely determined by petal expansion. Generally, ethylene acts as an inhibitor of petal expansion, but its effect is restricted by unknown developmental cues. In this study, we found that the critical node of ethylene-inhibited petal expansion is between stages 1 and 2 of rose flower opening. To uncover the underlying regulatory mechanism, we carried out a comparative RNA-seq analysis. Differentially expressed genes (DEGs) involved in auxin-signaling pathways were enriched. Therefore, we identified an auxin/indole-3-acetic acid (Aux/IAA) family gene, RhIAA14, whose expression was development-specifically repressed by ethylene. The silencing of RhIAA14 reduced cell expansion, resulting in diminished petal expansion and flower size. In addition, the expressions of cell-expansion-related genes, including RhXTH6, RhCesA2, RhPIP2;1, and RhEXPA8, were significantly downregulated following RhIAA14 silencing. Our results reveal an Aux/IAA that serves as a key player in orchestrating petal expansion and ultimately contributes to flower size, which provides new insights into ethylene-modulated flower opening and the function of the Aux/IAA transcription regulator.
Collapse
Affiliation(s)
- Yangchao Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Hao Zhang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.Z.); (S.Q.)
| | - Suping Qu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.Z.); (S.Q.)
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| |
Collapse
|
13
|
Shimotohno A. Illuminating the molecular mechanisms underlying shoot apical meristem homeostasis in plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:19-28. [PMID: 35800970 PMCID: PMC9200092 DOI: 10.5511/plantbiotechnology.22.0213a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/13/2022] [Indexed: 05/15/2023]
Abstract
Unlike animals, terrestrial plants are sessile and able to give rise to new organs throughout their lifetime. In the most extreme cases, they can survive for over a thousand years. With such protracted life cycles, plants have evolved sophisticated strategies to adapt to variable environments by coordinating their morphology as well as their growth, and have consequently acquired a high degree of developmental plasticity, which is supported by small groups of long-lived stem cells found in proliferative centers called meristems. Shoot apical meristems (SAMs) contain multipotent stem cells and provide a microenvironment that ensures both a self-renewable reservoir, to produce primordia and sustain growth, and a differentiating population that develops into all of the above-ground organs of land plants. The homeodomain transcription factor WUSCHEL (WUS) is expressed in the organizing center and acts as a master regulator to govern shoot stem cell homeostasis. In this review, I highlight recent advances in our understanding of the molecular mechanisms and signaling networks that underlie SAM maintenance, and discuss how plants utilize WUS to integrate intrinsic and extrinsic cues.
Collapse
Affiliation(s)
- Akie Shimotohno
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- E-mail: Tel: +81-52-789-2841 Fax: +81-52-789-3240
| |
Collapse
|
14
|
An in-frame deletion mutation in the degron tail of auxin coreceptor IAA2 confers resistance to the herbicide 2,4-D in Sisymbrium orientale. Proc Natl Acad Sci U S A 2022; 119:2105819119. [PMID: 35217601 PMCID: PMC8892348 DOI: 10.1073/pnas.2105819119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Synthetic auxin herbicides intersect basic plant developmental biology and applied weed management. We investigated resistance to 2,4-D in the Australian weed Sisymbrium orientale (Indian hedge mustard). We identified a mechanism involving an in-frame 27-bp deletion in the degron tail of auxin coreceptor IAA2, one member of the gene family of Aux/IAA auxin co-receptors. We show that this deletion in IAA2 is a gain-of-function mutation that confers synthetic auxin resistance. This field-evolved mechanism of resistance to synthetic auxin herbicides confirms previous biochemical studies showing the role of the Aux/IAA degron tail in regulating Aux/IAA protein degradation upon auxin perception. The deletion mutation could be generated in crops using gene-editing approaches for cross-resistance to multiple synthetic auxin herbicides. The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.
Collapse
|
15
|
Liu H, Jia Y, Chai Y, Wang S, Chen H, Zhou X, Huang C, Guo S, Chen D. Whole-transcriptome analysis of differentially expressed genes between ray and disc florets and identification of flowering regulatory genes in Chrysanthemum morifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:947331. [PMID: 35991433 PMCID: PMC9388166 DOI: 10.3389/fpls.2022.947331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 05/13/2023]
Abstract
Chrysanthemum morifolium has ornamental and economic values. However, there has been minimal research on the morphology of the chrysanthemum florets and related genes. In this study, we used the leaves as a control to screen for differentially expressed genes between ray and disc florets in chrysanthemum flowers. A total of 8,359 genes were differentially expressed between the ray and disc florets, of which 3,005 were upregulated and 5,354 were downregulated in the disc florets. Important regulatory genes that control flower development and flowering determination were identified. Among them, we identified a TM6 gene (CmTM6-mu) that belongs to the Class B floral homeotic MADS-box transcription factor family, which was specifically expressed in disc florets. We isolated this gene and found it was highly similar to other typical TM6 lineage genes, but a single-base deletion at the 3' end of the open reading frame caused a frame shift that generated a protein in which the TM6-specific paleoAP3 motif was missing at the C terminus. The CmTM6-mu gene was ectopically expressed in Arabidopsis thaliana. Petal and stamen developmental processes were unaffected in transgenic A. thaliana lines; however, the flowering time was earlier than in the wild-type control. Thus, the C-terminal of paleoAP3 appears to be necessary for the functional performance in regulating the development of petals or stamens and CmTM6-mu may be involved in the regulation of flowering time in chrysanthemum. The results of this study will be useful for future research on flowering molecular mechanisms and for the breeding of novel flower types.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Chai
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Sen Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haixia Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiumei Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Conglin Huang,
| | - Shuang Guo
- Chengdu Park City Construction Development Research Institute, Chengdu, China
- *Correspondence: Conglin Huang,
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Conglin Huang,
| |
Collapse
|
16
|
Riemer E, Pullagurla NJ, Yadav R, Rana P, Jessen HJ, Kamleitner M, Schaaf G, Laha D. Regulation of plant biotic interactions and abiotic stress responses by inositol polyphosphates. FRONTIERS IN PLANT SCIENCE 2022; 13:944515. [PMID: 36035672 PMCID: PMC9403785 DOI: 10.3389/fpls.2022.944515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/20/2022] [Indexed: 05/14/2023]
Abstract
Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP6) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP6 kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Collapse
Affiliation(s)
- Esther Riemer
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- *Correspondence: Esther Riemer,
| | | | - Ranjana Yadav
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanshi Rana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Henning J. Jessen
- Department of Chemistry and Pharmacy & CIBSS – The Center of Biological Signaling Studies, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Marília Kamleitner
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Gabriel Schaaf
- Departmentof Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Debabrata Laha,
| |
Collapse
|
17
|
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic Regulation of Auxin-Induced Somatic Embryogenesis in Plants. Int J Mol Sci 2020; 21:ijms21072307. [PMID: 32225116 PMCID: PMC7177879 DOI: 10.3390/ijms21072307] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Somatic embryogenesis (SE) that is induced in plant explants in response to auxin treatment is closely associated with an extensive genetic reprogramming of the cell transcriptome. The significant modulation of the gene transcription profiles during SE induction results from the epigenetic factors that fine-tune the gene expression towards embryogenic development. Among these factors, microRNA molecules (miRNAs) contribute to the post-transcriptional regulation of gene expression. In the past few years, several miRNAs that regulate the SE-involved transcription factors (TFs) have been identified, and most of them were involved in the auxin-related processes, including auxin metabolism and signaling. In addition to miRNAs, chemical modifications of DNA and chromatin, in particular the methylation of DNA and histones and histone acetylation, have been shown to shape the SE transcriptomes. In response to auxin, these epigenetic modifications regulate the chromatin structure, and hence essentially contribute to the control of gene expression during SE induction. In this paper, we describe the current state of knowledge with regard to the SE epigenome. The complex interactions within and between the epigenetic factors, the key SE TFs that have been revealed, and the relationships between the SE epigenome and auxin-related processes such as auxin perception, metabolism, and signaling are highlighted.
Collapse
|
18
|
Auxin perception in Agave is dependent on the species' Auxin Response Factors. Sci Rep 2020; 10:3860. [PMID: 32123284 PMCID: PMC7052169 DOI: 10.1038/s41598-020-60865-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Auxins are one of the most important and studied phytohormones in nature. Auxin signaling and perception take place in the cytosol, where the auxin is sensed. Then, in the nucleus, the auxin response factors (ARF) promote the expression of early-response genes. It is well known that not all plants respond to the same amount and type of auxins and that the response can be very different even among plants of the same species, as we present here. Here we investigate the behavior of ARF in response to various auxins in Agave angustifolia Haw., A. fourcroydes Lem. and A. tequilana Weber var. Azul. By screening the available database of A. tequilana genes, we have identified 32 ARF genes with high sequence identity in the conserved domains, grouped into three main clades. A phylogenetic tree was inferred from alignments of the 32 Agave ARF protein sequences and the evolutionary relationship with other species was analyzed. AteqARF 4, 15, 21, and 29 were selected as a representative diverse sample coming from each of the different subclades that comprise the two main clades of the inferred phylogenetic reconstruction. These ARFs showed differential species-specific expression patterns in the presence of indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Interestingly, A. angustifolia showed different phenotypes in the presence and absence of auxins. In the absence of auxin, A. angustifolia produces roots, while shoots are developed in the presence of IAA. However, in the presence of 2,4-D, the plant meristem converts into callus. According to our results, it is likely that AteqARF15 participates in this outcome.
Collapse
|
19
|
Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 2019; 15:e1008400. [PMID: 31553720 PMCID: PMC6797205 DOI: 10.1371/journal.pgen.1008400] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin is a major developmental regulator in plants and the acquisition of a transcriptional response to auxin likely contributed to developmental innovations at the time of water-to-land transition. Auxin Response Factors (ARFs) Transcription Factors (TFs) that mediate auxin-dependent transcriptional changes are divided into A, B and C evolutive classes in land plants. The origin and nature of the first ARF proteins in algae is still debated. Here, we identify the most ‘ancient’ ARF homologue to date in the early divergent charophyte algae Chlorokybus atmophyticus, CaARF. Structural modelling combined with biochemical studies showed that CaARF already shares many features with modern ARFs: it is capable of oligomerization, interacts with the TOPLESS co-repressor and specifically binds Auxin Response Elements as dimer. In addition, CaARF possesses a DNA-binding specificity that differs from class A and B ARFs and that was maintained in class C ARF along plants evolution. Phylogenetic evidence together with CaARF biochemical properties indicate that the different classes of ARFs likely arose from an ancestral proto-ARF protein with class C-like features. The foundation of auxin signalling would have thus happened from a pre-existing hormone-independent transcriptional regulation together with the emergence of a functional hormone perception complex. Plants transition from water to land was determining for the history of our planet, since it led to atmospheric and soil condition changes that promoted the appearance of other life forms. This transition initiated around 1 billion years ago from a Charophyte algae lineage that acquired features allowing it to adapt to the very different terrestrial conditions. Land plants coordinate their development with external stimuli through signalling mechanisms triggered by plant hormones. Therefore, evolution of these molecules and their signalling pathways likely played an important role in the aquatic to terrestrial move. In this manuscript we study the origin of auxin signalling, a plant hormone implicated in all plant developmental steps. Our studies suggest that out of the three families of proteins originally proposed to trigger auxin signalling in land plants, only one existed in Charophyte ancestors as a likely transcriptional repressor independent of auxin. We show that despite millions of years of evolution, this family of proteins has conserved its biochemical and structural properties that are found today in land plants. The results presented here provide an insight on how hormone signalling pathways could have evolved by co-opting a pre-existing hormone-independent transcriptional regulatory mechanism.
Collapse
|
20
|
Stigliani A, Martin-Arevalillo R, Lucas J, Bessy A, Vinos-Poyo T, Mironova V, Vernoux T, Dumas R, Parcy F. Capturing Auxin Response Factors Syntax Using DNA Binding Models. MOLECULAR PLANT 2019; 12:822-832. [PMID: 30336329 DOI: 10.1016/j.molp.2018.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormone performing a wealth of functions throughout the life cycle of plants. It acts largely by regulating genes at the transcriptional level through a family of transcription factors called auxin response factors (ARFs). Even though all ARF monomers analyzed so far bind a similar DNA sequence, there is evidence that ARFs differ in their target genomic regions and regulated genes. Here, we report the use of position weight matrices (PWMs) to model ARF DNA binding specificity based on published DNA affinity purification sequencing (DAP-seq) data. We found that the genome binding of two ARFs (ARF2 and ARF5/Monopteros [MP]) differ largely because these two factors have different preferred ARF binding site (ARFbs) arrangements (orientation and spacing). We illustrated why PWMs are more versatile to reliably identify ARFbs than the widely used consensus sequences and demonstrated their power with biochemical experiments in the identification of the regulatory regions of IAA19, an well-characterized auxin-responsive gene. Finally, we combined gene regulation by auxin with ARF-bound regions and identified specific ARFbs configurations that are over-represented in auxin-upregulated genes, thus deciphering the ARFbs syntax functional for regulation. Our study provides a general method to exploit the potential of genome-wide DNA binding assays and to decode gene regulation.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Raquel Martin-Arevalillo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France; Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Jérémy Lucas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Adrien Bessy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Thomas Vinos-Poyo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Victoria Mironova
- Novosibirsk State University, Pirogova Street 2, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Lavrentyeva Avenue 10, Novosibirsk, Russia
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|
21
|
Zhao B, Wang B, Li Z, Guo T, Zhao J, Guan Z, Liu K. Identification and characterization of a new dwarf locus DS-4 encoding an Aux/IAA7 protein in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1435-1449. [PMID: 30688990 DOI: 10.1007/s00122-019-03290-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/12/2019] [Indexed: 05/20/2023]
Abstract
A dominant dwarfing gene, ds - 4 , encodes an Aux/IAA protein that negatively regulates plant stature through an auxin signaling pathway. Dwarfism is an important agronomic trait affecting yield in many crop species. The molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus) are poorly understood, restricting the progress of breeding dwarf varieties in this species. Here, we identified and characterized a new dwarf locus, DS-4, in B. napus. Next-generation sequencing-assisted genetic mapping and candidate gene analysis found that DS-4 encodes a nucleus-targeted auxin/indole-3-acetic acid (Aux/IAA) protein. A substitution (P87L) was found in the highly conserved degron motif of the Aux/IAA7 protein in the ds-4 mutant. This mutation co-segregated with the phenotype of individuals in the BC1F2 population. The P87L substitution was confirmed as the cause of the extreme dwarf phenotype by ectopic expression of the mutant allele BnaC05.iaa7 (equivalent to ds-4) in Arabidopsis. The P87L substitution blocked the interaction of BnaC05.iaa7 with TRANSPORT INHIBITOR RESPONSE 1 in the presence of auxin. The BnaC05.IAA7 gene is highly expressed in the cotyledons, hypocotyls, stems and leaves, but weakly in the roots and seeds of B. napus. Our findings provide new insights into the molecular mechanisms underlying dominant (gain-of-function) dwarfism in B. napus. Our identification of a distinct gene locus controlling plant height may help to improve lodging resistance in oilseed rape.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
22
|
Goggin DE, Kaur P, Owen MJ, Powles SB. 2,4-D and dicamba resistance mechanisms in wild radish: subtle, complex and population specific? ANNALS OF BOTANY 2018; 122:627-640. [PMID: 29893784 PMCID: PMC6153477 DOI: 10.1093/aob/mcy097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Resistance to synthetic auxin herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) is increasing in weed populations worldwide, which is of concern given the recent introduction of synthetic auxin-resistant transgenic crops. Due to the complex mode of action of the auxinic herbicides, the mechanisms of evolved resistance remain largely uncharacterized. The aims of this study were to assess the level of diversity in resistance mechanisms in 11 populations of the problem weed Raphanus raphanistrum, and to use a high-throughput, whole-genome transcriptomic analysis on one resistant and one susceptible population to identify important changes in gene expression in response to 2,4-D. METHODS Levels of 2,4-D and dicamba (3,6-dichloro-2-methoxybenzoic acid) resistance were quantified in a dose-response study and the populations were further screened for auxin selectivity, 2,4-D translocation and metabolism, expression of key 2,4-D-responsive genes and activation of the mitogen-activated proein kinase (MAPK) pathway. Potential links between resistance levels and mechanisms were assessed using correlation analysis. KEY RESULTS The transcriptomic study revealed early deployment of the plant defence response in the 2,4-D-treated resistant population, and there was a corresponding positive relationship between auxinic herbicide resistance and constitutive MAPK phosphorylation across all populations. Populations with shoot-wide translocation of 2,4-D had similar resistance levels to those with restricted translocation, suggesting that reduced translocation may not be as strong a resistance mechanism as originally thought. Differences in auxin selectivity between populations point to the likelihood of different resistance-conferring alterations in auxin signalling and/or perception in the different populations. CONCLUSIONS 2,4-D resistance in wild radish appears to result from subtly different auxin signalling alterations in different populations, supplemented by an enhanced defence response and, in some cases, reduced 2,4-D translocation. This study highlights the dangers of applying knowledge generated from a few populations of a weed species to the species as a whole.
Collapse
Affiliation(s)
- Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- For correspondence. E-mail
| | - Parwinder Kaur
- Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Australia
- Telethon Kids Institute, Subiaco, Australia
| | - Mechelle J Owen
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
| |
Collapse
|
23
|
Pandey SK, Lee HW, Kim MJ, Cho C, Oh E, Kim J. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:233-251. [PMID: 29681137 DOI: 10.1111/tpj.13945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| |
Collapse
|
24
|
Sasnauskas G, Kauneckaitė K, Siksnys V. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1. Nucleic Acids Res 2018; 46:4316-4324. [PMID: 29660015 PMCID: PMC5934628 DOI: 10.1093/nar/gky256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 11/14/2022] Open
Abstract
Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5'-CATGCA-3'/5'-TGCATG-3'. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5'-TGCATG-3' sequence. The VAL1-B3-DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Kotryna Kauneckaitė
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
25
|
Acevedo LA, Nicholson LK. 1H, 13C and 15N NMR assignments of cyclophilin LRT2 (OsCYP2) from rice. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:171-174. [PMID: 29353448 PMCID: PMC5944331 DOI: 10.1007/s12104-018-9803-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/10/2018] [Indexed: 05/06/2023]
Abstract
Cyclophilins are enzymes that catalyze the isomerization of a prolyl-peptide bond and are found in both prokaryotes and eukaryotes. LRT2 (also known as OsCYP2) is a cyclophilin in rice (Oryza sativa), that has importance in lateral root development and stress tolerance. LRT2 is 172 amino acids long and has a molecular weight of 18.3 kDa. Here, we report the backbone and sidechain resonance assignments of 1H, 13C, 15N in the LRT2 protein using several 2D and 3D heteronuclear NMR experiments at pH 6.7 and 298 K. Our chemical shift data analysis predicts a secondary structure like the cytosolic wheat cyclophilin TaCypA-1 with 87.7% sequence identity. These assignments will be useful for further analysis in the NMR studies for function and structure of this enzyme.
Collapse
Affiliation(s)
- Lucila Andrea Acevedo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Linda K Nicholson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Blanc C, Coluccia F, L'Haridon F, Torres M, Ortiz-Berrocal M, Stahl E, Reymond P, Schreiber L, Nawrath C, Métraux JP, Serrano M. The Cuticle Mutant eca2 Modifies Plant Defense Responses to Biotrophic and Necrotrophic Pathogens and Herbivory Insects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:344-355. [PMID: 29130376 DOI: 10.1094/mpmi-07-17-0181-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We isolated previously several Arabidopsis thaliana mutants with constitutive expression of the early microbe-associated molecular pattern-induced gene ATL2, named eca (expresión constitutiva de ATL2). Here, we further explored the interaction of eca mutants with pest and pathogens. Of all eca mutants, eca2 was more resistant to a fungal pathogen (Botrytis cinerea) and a bacterial pathogen (Pseudomonas syringae) as well as to a generalist herbivorous insect (Spodoptera littoralis). Permeability of the cuticle is increased in eca2; chemical characterization shows that eca2 has a significant reduction of both cuticular wax and cutin. Additionally, we determined that eca2 did not display a similar compensatory transcriptional response, compared with a previously characterized cuticular mutant, and that resistance to B. cinerea is mediated by the priming of the early and late induced defense responses, including salicylic acid- and jasmonic acid-induced genes. These results suggest that ECA2-dependent responses are involved in the nonhost defense mechanism against biotrophic and necrotrophic pathogens and against a generalist insect by modulation and priming of innate immunity and late defense responses. Making eca2 an interesting model to characterize the molecular basis for plant defenses against different biotic interactions and to study the initial events that take place in the cuticle surface of the aerial organs.
Collapse
Affiliation(s)
- Catherine Blanc
- 1 Department of Biology, University of Fribourg. Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Fania Coluccia
- 1 Department of Biology, University of Fribourg. Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Floriane L'Haridon
- 1 Department of Biology, University of Fribourg. Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Martha Torres
- 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, México
| | - Marlene Ortiz-Berrocal
- 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, México
- 3 Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Elia Stahl
- 3 Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Reymond
- 3 Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Lukas Schreiber
- 4 Institute of Cellular and Molecular Botany, Department of Ecophysiology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Christiane Nawrath
- 3 Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jean-Pierre Métraux
- 1 Department of Biology, University of Fribourg. Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mario Serrano
- 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, México
| |
Collapse
|
27
|
Luo J, Zhou JJ, Zhang JZ. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int J Mol Sci 2018; 19:ijms19010259. [PMID: 29337875 PMCID: PMC5796205 DOI: 10.3390/ijms19010259] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
29
|
Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci U S A 2017; 114:8107-8112. [PMID: 28698367 DOI: 10.1073/pnas.1703054114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such as Arabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of the Arabidopsis TPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions.
Collapse
|
30
|
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:16-27. [PMID: 28419906 DOI: 10.1016/j.jplph.2017.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering.
Collapse
Affiliation(s)
| | | | | | - Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Fátima Duarte-Aké
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| |
Collapse
|
31
|
Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov SL, Wilde V, Majovsky P, Trujillo M, Zurbriggen MD, Hoehenwarter W, Quint M, Calderón Villalobos LIA. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nat Commun 2017; 8:15706. [PMID: 28589936 PMCID: PMC5467235 DOI: 10.1038/ncomms15706] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Collapse
Affiliation(s)
- Martin Winkler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Michael Niemeyer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Antje Hellmuth
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Gideon Christ
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Sophia L. Samodelov
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf D-40225, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg D-79104, Germany
| | - Verona Wilde
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Petra Majovsky
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | | |
Collapse
|
32
|
Functional analysis of molecular interactions in synthetic auxin response circuits. Proc Natl Acad Sci U S A 2016; 113:11354-11359. [PMID: 27647902 DOI: 10.1073/pnas.1604379113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Auxin-regulated transcription pivots on the interaction between the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressor proteins and the AUXIN RESPONSE FACTOR (ARF) transcription factors. Recent structural analyses of ARFs and Aux/IAAs have raised questions about the functional complexes driving auxin transcriptional responses. To parse the nature and significance of ARF-DNA and ARF-Aux/IAA interactions, we analyzed structure-guided variants of synthetic auxin response circuits in the budding yeast Saccharomyces cerevisiae Our analysis revealed that promoter architecture could specify ARF activity and that ARF19 required dimerization at two distinct domains for full transcriptional activation. In addition, monomeric Aux/IAAs were able to repress ARF activity in both yeast and plants. This systematic, quantitative structure-function analysis identified a minimal complex-comprising a single Aux/IAA repressing a pair of dimerized ARFs-sufficient for auxin-induced transcription.
Collapse
|
33
|
Parcy F, Vernoux T, Dumas R. A Glimpse beyond Structures in Auxin-Dependent Transcription. TRENDS IN PLANT SCIENCE 2016; 21:574-583. [PMID: 26994657 DOI: 10.1016/j.tplants.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 05/28/2023]
Abstract
Auxin response factors (ARFs), transcription factors (TFs), and their Aux/IAA (IAA) repressors are central components of the auxin signalling pathway. They interact as homo- and heteromultimers. The structure of their interacting domains revealed a PB1 fold mediating electrostatic interactions through positive and negative faces. Detailed structural analysis revealed additional hydrophobic and polar determinants and started unveiling an ARF/IAA interaction code. Structural progress also shed new light on the DNA binding mode of ARFs showing how they dimerize to bind repeated DNA elements. Here, we discuss the in vitro and in vivo significance of these structural properties for the ARF family of TFs and identify some critical missing information on how specificity might be achieved in the auxin signalling pathway.
Collapse
Affiliation(s)
- François Parcy
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS UMR5168, CEA/DRF/BIG, INRA UMR 1417, Grenoble, France.
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS de Lyon, UCBL, Université de Lyon, 46 Allée d'Italie, F-69342 Lyon, France.
| | - Renaud Dumas
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS UMR5168, CEA/DRF/BIG, INRA UMR 1417, Grenoble, France
| |
Collapse
|
34
|
Abstract
As a prominent regulator of plant growth and development, the hormone auxin plays an essential role in controlling cell division and expansion. Auxin-responsive gene transcription is mediated through the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) pathway. Roles for TIR1/AFB pathway components in auxin response are understood best, but additional factors implicated in auxin responses require more study. The function of these factors, including S-Phase Kinase-Associated Protein 2A (SKP2A), SMALL AUXIN UP RNAs (SAURs), INDOLE 3-BUTYRIC ACID RESPONSE5 (IBR5), and AUXIN BINDING PROTEIN1 (ABP1), has remained largely obscure. Recent advances have begun to clarify roles for these factors in auxin response while also raising additional questions to be answered.
Collapse
Affiliation(s)
- Samantha K Powers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| | - Lucia C Strader
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899, USA
| |
Collapse
|