1
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Cheng L, Tu G, Ma H, Zhang K, Wang X, Zhou H, Gao J, Zhou J, Yu Y, Xu Q. Alternative splicing of CsbHLH133 regulates geraniol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:598-614. [PMID: 39207906 DOI: 10.1111/tpj.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Geraniol is one of the most abundant aromatic compounds in fresh tea leaves and contributes to the pleasant odor of tea products. Additionally, it functions as an airborne signal that interacts with other members of the ecosystem. To date, the regulation of the geraniol biosynthesis in tea plants remains to be investigated. In this study, a correlation test of the content of geraniol and its glycosides with gene expression data revealed that nudix hydrolase, CsNudix26, and its transcription factor, CsbHLH133 are involved in geraniol biosynthesis. In vitro enzyme assays and metabolic analyses of genetically modified tea plants confirmed that CsNudix26 is responsible for the formation of geraniol. Yeast one-hybrid, dual-luciferase reporter, and EMSA assays were used to verify the binding of CsbHLH133 to the CsNudix26 promoter. Overexpression of CsbHLH133 in tea leaves enhanced CsNudix26 expression and geraniol accumulation, whereas CsbHLH133 silencing reduced CsNudix26 transcript levels and geraniol content. Interestingly, CsbHLH133-AS, produced by alternative splicing, was discovered and proved to be the primary transcript expressed in response to various environmental stresses. Furthermore, geraniol release was found to be affected by various factors that alter the expression patterns of CsbHLH133 and CsbHLH133-AS. Our findings indicate that distinct transcript splicing patterns of CsbHLH133 regulate geraniol biosynthesis in tea plants in response to different regulatory factors.
Collapse
Affiliation(s)
- Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gefei Tu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huicong Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Keyi Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haozhe Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingwen Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Lu S, Xiao F. Small Peptides: Orchestrators of Plant Growth and Developmental Processes. Int J Mol Sci 2024; 25:7627. [PMID: 39062870 PMCID: PMC11276966 DOI: 10.3390/ijms25147627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Small peptides (SPs), ranging from 5 to 100 amino acids, play integral roles in plants due to their diverse functions. Despite their low abundance and small molecular weight, SPs intricately regulate critical aspects of plant life, including cell division, growth, differentiation, flowering, fruiting, maturation, and stress responses. As vital mediators of intercellular signaling, SPs have garnered significant attention in plant biology research. This comprehensive review delves into SPs' structure, classification, and identification, providing a detailed understanding of their significance. Additionally, we summarize recent findings on the biological functions and signaling pathways of prominent SPs that regulate plant growth and development. This review also offers a perspective on future research directions in peptide signaling pathways.
Collapse
Affiliation(s)
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| |
Collapse
|
4
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
5
|
Tanaka M, Yokoyama T, Saito H, Nishimoto M, Tsuda K, Sotta N, Shigematsu H, Shirouzu M, Iwasaki S, Ito T, Fujiwara T. Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1. Nat Chem Biol 2024; 20:605-614. [PMID: 38267667 DOI: 10.1038/s41589-023-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.
Collapse
Affiliation(s)
- Mayuki Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Yokoyama
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hironori Saito
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Madoka Nishimoto
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kengo Tsuda
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Shintaro Iwasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan.
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Zhang Q, Liu L. Novel insights into small open reading frame-encoded micropeptides in hepatocellular carcinoma: A potential breakthrough. Cancer Lett 2024; 587:216691. [PMID: 38360139 DOI: 10.1016/j.canlet.2024.216691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Qiangnu Zhang
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
| | - Liping Liu
- Division of Hepatobiliary and Pancreas Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China.
| |
Collapse
|
7
|
Kim JM, Lee JH, Park SR, Kwon JK, Ro NY, Kang BC. Molecular mapping of the broad bean wilt virus 2 resistance locus bwvr in Capsicum annuum using BSR-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:97. [PMID: 38589740 PMCID: PMC11001752 DOI: 10.1007/s00122-024-04603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
KEY MESSAGE Bulked segregant RNA seq of pools of pepper accessions that are susceptible or resistant to Broad bean wilt virus 2 identifies a gene that might confer resistance to this devastating pathogen. The single-stranded positive-sense RNA virus Broad bean wilt virus 2 (BBWV2) causes substantial damage to pepper (Capsicum annuum) cultivation. Here, we describe mapping the BBWV2 resistance locus bwvr using a F7:8 recombinant inbred line (RIL) population constructed by crossing the BBWV2-resistant pepper accession 'SNU-C' with the susceptible pepper accession 'ECW30R.' All F1 plants infected with the BBWV2 strain PAP1 were susceptible to the virus, and the RIL population showed a 1:1 ratio of resistance to susceptibility, indicating that this trait is controlled by a single recessive gene. To map bwvr, we performed bulked segregant RNA-seq (BSR-seq). We sequenced pools of resistant and susceptible lines from the RILs and aligned the reads to the high-quality 'Dempsey' reference genome to identify variants between the pools. This analysis identified 519,887 variants and selected the region from 245.9-250.8 Mb of the Dempsey reference genome as the quantitative trait locus region for bwvr. To finely map bwvr, we used newly designed high-resolution melting (HRM) and Kompetitive allele specific PCR (KASP) markers based on variants obtained from the BSR-seq reads and the PepperSNP16K array. Comparative analysis identified 11 SNU-C-specific SNPs within the bwvr locus. Using markers derived from these variants, we mapped the candidate bwvr locus to the region from 246.833-246.949 kb. SNU-C-specific variants clustered near DEM.v1.00035533 within the bwvr locus. DEM.v1.00035533 encodes the nitrate transporter NPF1.2 and contains a SNP within its 5' untranslated region. The bwvr locus, which contains four genes including DEM.v1.00035533, could represent a valuable resource for global pepper breeding programs.
Collapse
Affiliation(s)
- Jung-Min Kim
- Interdisciplinary Program in Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joung-Ho Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Se-Ran Park
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Kyoung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Na-Young Ro
- Rural Development Administration, National Academy of Agricultural Science, Jeonju, Republic of Korea.
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Kam A, Loo S, Qiu Y, Liu CF, Tam JP. Ultrafast Biomimetic Oxidative Folding of Cysteine-rich Peptides and Microproteins in Organic Solvents. Angew Chem Int Ed Engl 2024; 63:e202317789. [PMID: 38342764 DOI: 10.1002/anie.202317789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Disulfides in peptides and proteins are essential for maintaining a properly folded structure. Their oxidative folding is invariably performed in an aqueous-buffered solution. However, this process is often slow and can lead to misfolded products. Here, we report a novel concept and strategy that is bio-inspired to mimic protein disulfide isomerase (PDI) by accelerating disulfide exchange rates many thousand-fold. The proposed strategy termed organic oxidative folding is performed under organic solvents to yield correctly folded cysteine-rich microproteins instantaneously without observable misfolded or dead-end products. Compared to conventional aqueous oxidative folding strategies, enormously large rate accelerations up to 113,200-fold were observed. The feasibility and generality of the organic oxidative folding strategy was successfully demonstrated on 15 cysteine-rich microproteins of different hydrophobicity, lengths (14 to 58 residues), and numbers of disulfides (2 to 5 disulfides), producing the native products in a second and in high yield.
Collapse
Affiliation(s)
- Antony Kam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Wuzhong No.111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Shining Loo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Wisedom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Wuzhong No. 111, Renai Road, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Yibo Qiu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
9
|
Datta T, Kumar RS, Sinha H, Trivedi PK. Small but mighty: Peptides regulating abiotic stress responses in plants. PLANT, CELL & ENVIRONMENT 2024; 47:1207-1223. [PMID: 38164016 DOI: 10.1111/pce.14792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Throughout evolution, plants have developed strategies to confront and alleviate the detrimental impacts of abiotic stresses on their growth and development. The combat strategies involve intricate molecular networks and a spectrum of early and late stress-responsive pathways. Plant peptides, consisting of fewer than 100 amino acid residues, are at the forefront of these responses, serving as pivotal signalling molecules. These peptides, with roles similar to phytohormones, intricately regulate plant growth, development and facilitate essential cell-to-cell communications. Numerous studies underscore the significant role of these small peptides in coordinating diverse signalling events triggered by environmental challenges. Originating from the proteolytic processing of larger protein precursors or directly translated from small open reading frames, including microRNA (miRNA) encoded peptides from primary miRNA, these peptides exert their biological functions through binding with membrane-embedded receptor-like kinases. This interaction initiates downstream cellular signalling cascades, often involving major phytohormones or reactive oxygen species-mediated mechanisms. Despite these advances, the precise modes of action for numerous other small peptides remain to be fully elucidated. In this review, we delve into the dynamics of stress physiology, mainly focusing on the roles of major small signalling peptides, shedding light on their significance in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Tapasya Datta
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Ravi S Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hiteshwari Sinha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh K Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Wu TY, Li YR, Chang KJ, Fang JC, Urano D, Liu MJ. Modeling alternative translation initiation sites in plants reveals evolutionarily conserved cis-regulatory codes in eukaryotes. Genome Res 2024; 34:272-285. [PMID: 38479836 PMCID: PMC10984385 DOI: 10.1101/gr.278100.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation relies on identifying translation initiation sites (TISs) in mRNAs. Alternative TISs are prevalent across plant transcriptomes, but the mechanisms for their recognition are unclear. Using ribosome profiling and machine learning, we developed models for predicting alternative TISs in the tomato (Solanum lycopersicum). Distinct feature sets were predictive of AUG and nonAUG TISs in 5' untranslated regions and coding sequences, including a novel CU-rich sequence that promoted plant TIS activity, a translational enhancer found across dicots and monocots, and humans and viruses. Our results elucidate the mechanistic and evolutionary basis of TIS recognition, whereby cis-regulatory RNA signatures affect start site selection. The TIS prediction model provides global estimates of TISs to discover neglected protein-coding genes across plant genomes. The prevalence of cis-regulatory signatures across plant species, humans, and viruses suggests their broad and critical roles in reprogramming the translational landscape.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Kai-Jyun Chang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhen-Cheng Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
11
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
13
|
Feng YZ, Zhu QF, Xue J, Chen P, Yu Y. Shining in the dark: the big world of small peptides in plants. ABIOTECH 2023; 4:238-256. [PMID: 37970469 PMCID: PMC10638237 DOI: 10.1007/s42994-023-00100-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 11/17/2023]
Abstract
Small peptides represent a subset of dark matter in plant proteomes. Through differential expression patterns and modes of action, small peptides act as important regulators of plant growth and development. Over the past 20 years, many small peptides have been identified due to technical advances in genome sequencing, bioinformatics, and chemical biology. In this article, we summarize the classification of plant small peptides and experimental strategies used to identify them as well as their potential use in agronomic breeding. We review the biological functions and molecular mechanisms of small peptides in plants, discuss current problems in small peptide research and highlight future research directions in this field. Our review provides crucial insight into small peptides in plants and will contribute to a better understanding of their potential roles in biotechnology and agriculture.
Collapse
Affiliation(s)
- Yan-Zhao Feng
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qing-Feng Zhu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Jiao Xue
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Pei Chen
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yang Yu
- Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
14
|
Erokhina TN, Ryazantsev DY, Zavriev SK, Morozov SY. Regulatory miPEP Open Reading Frames Contained in the Primary Transcripts of microRNAs. Int J Mol Sci 2023; 24:ijms24032114. [PMID: 36768436 PMCID: PMC9917039 DOI: 10.3390/ijms24032114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
This review aims to consider retrospectively the available data on the coding properties of pri-microRNAs and the regulatory functions of their open reading frames (ORFs) and the encoded peptides (miPEPs). Studies identifying miPEPs and analyzing the fine molecular mechanisms of their functional activities are reviewed together with a brief description of the methods to identify pri-miRNA ORFs and the encoded protein products. Generally, miPEPs have been identified in many plant species of several families and in a few animal species. Importantly, molecular mechanisms of the miPEP action are often quite different between flowering plants and metazoan species. Requirement for the additional studies in these directions is highlighted by alternative findings concerning negative or positive regulation of pri-miRNA/miRNA expression by miPEPs in plants and animals. Additionally, the question of how miPEPs are distributed in non-flowering plant taxa is very important for understanding the evolutionary origin of such micropeptides. Evidently, further extensive studies are needed to explore the functions of miPEPs and the corresponding ORFs and to understand the full set of their roles in eukaryotic organisms. Thus, we address the most recent integrative views of different genomic, physiological, and molecular aspects concerning the expression of miPEPs and their possible fine functions.
Collapse
Affiliation(s)
- Tatiana N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitriy Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey Y. Morozov
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
15
|
Kobayashi H, Murakami K, Sugano SS, Tamura K, Oka Y, Matsushita T, Shimada T. Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha. FRONTIERS IN PLANT SCIENCE 2023; 13:1051017. [PMID: 36756228 PMCID: PMC9901580 DOI: 10.3389/fpls.2022.1051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In the past two decades, many plant peptides have been found to play crucial roles in various biological events by mediating cell-to-cell communications. However, a large number of small open reading frames (sORFs) or short genes capable of encoding peptides remain uncharacterized. In this study, we examined several candidate genes for peptides conserved between two model plants: Arabidopsis thaliana and Marchantia polymorpha. We examined their expression pattern in M. polymorpha and subcellular localization using a transient assay with Nicotiana benthamiana. We found that one candidate, MpSGF10B, was expressed in meristems, gemma cups, and male reproductive organs called antheridiophores. MpSGF10B has an N-terminal signal peptide followed by two leucine-rich repeat (LRR) domains and was secreted to the extracellular region in N. benthamiana and M. polymorpha. Compared with the wild type, two independent Mpsgf10b mutants had a slightly increased number of antheridiophores. It was revealed in gene ontology enrichment analysis that MpSGF10B was significantly co-expressed with genes related to cell cycle and development. These results suggest that MpSGF10B may be involved in the reproductive development of M. polymorpha. Our research should shed light on the unknown role of LRR-only proteins in land plants.
Collapse
Affiliation(s)
| | | | - Shigeo S. Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Yoshito Oka
- Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
The Essentials on microRNA-Encoded Peptides from Plants to Animals. Biomolecules 2023; 13:biom13020206. [PMID: 36830576 PMCID: PMC9953219 DOI: 10.3390/biom13020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/22/2023] Open
Abstract
Primary transcripts of microRNAs (pri-miRNAs) were initially defined as long non-coding RNAs that host miRNAs further processed by the microRNA processor complex. A few years ago, however, it was discovered in plants that pri-miRNAs actually contain functional open reading frames (sORFs) that translate into small peptides called miPEPs, for microRNA-encoded peptides. Initially detected in Arabidopsis thaliana and Medicago truncatula, recent studies have revealed the presence of miPEPs in other pri-miRNAs as well as in other species ranging from various plant species to animals. This suggests that miPEP numbers remain largely underestimated and that they could be a common signature of pri-miRNAs. Here we present the most recent advances in miPEPs research and discuss how their discovery has broadened our vision of the regulation of gene expression by miRNAs, and how miPEPs could be interesting tools in sustainable agriculture or the treatment of certain human diseases.
Collapse
|
17
|
Álvarez-Urdiola R, Borràs E, Valverde F, Matus JT, Sabidó E, Riechmann JL. Peptidomics Methods Applied to the Study of Flower Development. Methods Mol Biol 2023; 2686:509-536. [PMID: 37540375 DOI: 10.1007/978-1-0716-3299-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis CSIC - University of Seville, Seville, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
18
|
Ventroux M, Noirot-Gros MF. Prophage-encoded small protein YqaH counteracts the activities of the replication initiator DnaA in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748575 DOI: 10.1099/mic.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacterial genomes harbour cryptic prophages that are mostly transcriptionally silent with many unannotated genes. Still, cryptic prophages may contribute to their host fitness and phenotypes. In Bacillus subtilis, the yqaF-yqaN operon belongs to the prophage element skin, and is tightly repressed by the Xre-like repressor SknR. This operon contains several small ORFs (smORFs) potentially encoding small-sized proteins. The smORF-encoded peptide YqaH was previously reported to bind to the replication initiator DnaA. Here, using a yeast two-hybrid assay, we found that YqaH binds to the DNA binding domain IV of DnaA and interacts with Spo0A, a master regulator of sporulation. We isolated single amino acid substitutions in YqaH that abolished the interaction with DnaA but not with Spo0A. Then, using a plasmid-based inducible system to overexpress yqaH WT and mutant derivatives, we studied in B. subtilis the phenotypes associated with the specific loss-of-interaction with DnaA (DnaA_LOI). We found that expression of yqaH carrying DnaA_LOI mutations abolished the deleterious effects of yqaH WT expression on chromosome segregation, replication initiation and DnaA-regulated transcription. When YqaH was induced after vegetative growth, DnaA_LOI mutations abolished the drastic effects of YqaH WT on sporulation and biofilm formation. Thus, YqaH inhibits replication, sporulation and biofilm formation mainly by antagonizing DnaA in a manner that is independent of the cell cycle checkpoint Sda.
Collapse
Affiliation(s)
- Magali Ventroux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
19
|
Sruthi KB, Menon A, P A, Vasudevan Soniya E. Pervasive translation of small open reading frames in plant long non-coding RNAs. FRONTIERS IN PLANT SCIENCE 2022; 13:975938. [PMID: 36352887 PMCID: PMC9638090 DOI: 10.3389/fpls.2022.975938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) are primarily recognized as non-coding transcripts longer than 200 nucleotides with low coding potential and are present in both eukaryotes and prokaryotes. Recent findings reveal that lncRNAs can code for micropeptides in various species. Micropeptides are generated from small open reading frames (smORFs) and have been discovered frequently in short mRNAs and non-coding RNAs, such as lncRNAs, circular RNAs, and pri-miRNAs. The most accepted definition of a smORF is an ORF containing fewer than 100 codons, and ribosome profiling and mass spectrometry are the most prevalent experimental techniques used to identify them. Although the majority of micropeptides perform critical roles throughout plant developmental processes and stress conditions, only a handful of their functions have been verified to date. Even though more research is being directed toward identifying micropeptides, there is still a dearth of information regarding these peptides in plants. This review outlines the lncRNA-encoded peptides, the evolutionary roles of such peptides in plants, and the techniques used to identify them. It also describes the functions of the pri-miRNA and circRNA-encoded peptides that have been identified in plants.
Collapse
|
20
|
Roy S, Müller LM. A rulebook for peptide control of legume-microbe endosymbioses. TRENDS IN PLANT SCIENCE 2022; 27:870-889. [PMID: 35246381 DOI: 10.1016/j.tplants.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
21
|
Zhu H, Jiang S, Zhou W, Chi H, Sun J, Shi J, Zhang Z, Chang L, Yu L, Zhang L, Lyu Z, Xu P, Zhang Y. Ac-LysargiNase efficiently helps genome reannotation of Mycolicibacterium smegmatis MC2 155. J Proteomics 2022; 264:104622. [DOI: 10.1016/j.jprot.2022.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
22
|
Chiu CW, Li YR, Lin CY, Yeh HH, Liu MJ. Translation initiation landscape profiling reveals hidden open-reading frames required for the pathogenesis of tomato yellow leaf curl Thailand virus. THE PLANT CELL 2022; 34:1804-1821. [PMID: 35080617 PMCID: PMC9048955 DOI: 10.1093/plcell/koac019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Plant viruses with densely packed genomes employ noncanonical translational strategies to increase the coding capacity for viral function. However, the diverse translational strategies used make it challenging to define the full set of viral genes. Here, using tomato yellow leaf curl Thailand virus (TYLCTHV, genus Begomovirus) as a model system, we identified genes beyond the annotated gene sets by experimentally profiling in vivo translation initiation sites (TISs). We found that unanticipated AUG TISs were prevalent and determined that their usage involves alternative transcriptional and/or translational start sites and is associated with flanking mRNA sequences. Specifically, two downstream in-frame TISs were identified in the viral gene AV2. These TISs were conserved in the begomovirus lineage and led to the translation of different protein isoforms localized to cytoplasmic puncta and at the cell periphery, respectively. In addition, we found translational evidence of an unexplored gene, BV2. BV2 is conserved among TYLCTHV isolates and localizes to the endoplasmic reticulum and plasmodesmata. Mutations of AV2 isoforms and BV2 significantly attenuated disease symptoms in tomato (Solanum lycopersicum). In conclusion, our study pinpointing in vivo TISs untangles the coding complexity of a plant viral genome and, more importantly, illustrates the biological significance of the hidden open-reading frames encoding viral factors for pathogenicity.
Collapse
Affiliation(s)
- Ching-Wen Chiu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Cheng-Yuan Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
23
|
Computational tools and resources for CRISPR/Cas genome editing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00027-4. [PMID: 35341983 PMCID: PMC10372911 DOI: 10.1016/j.gpb.2022.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genomic editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduced the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focused on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights on the limitations of available computational tools that surely help researchers of this field for further optimization. Lastly, we suggested a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.
Collapse
|
24
|
Leong AZX, Lee PY, Mohtar MA, Syafruddin SE, Pung YF, Low TY. Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. J Biomed Sci 2022; 29:19. [PMID: 35300685 PMCID: PMC8928697 DOI: 10.1186/s12929-022-00802-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
A short open reading frame (sORFs) constitutes ≤ 300 bases, encoding a microprotein or sORF-encoded protein (SEP) which comprises ≤ 100 amino acids. Traditionally dismissed by genome annotation pipelines as meaningless noise, sORFs were found to possess coding potential with ribosome profiling (RIBO-Seq), which unveiled sORF-based transcripts at various genome locations. Nonetheless, the existence of corresponding microproteins that are stable and functional was little substantiated by experimental evidence initially. With recent advancements in multi-omics, the identification, validation, and functional characterisation of sORFs and microproteins have become feasible. In this review, we discuss the history and development of an emerging research field of sORFs and microproteins. In particular, we focus on an array of bioinformatics and OMICS approaches used for predicting, sequencing, validating, and characterizing these recently discovered entities. These strategies include RIBO-Seq which detects sORF transcripts via ribosome footprints, and mass spectrometry (MS)-based proteomics for sequencing the resultant microproteins. Subsequently, our discussion extends to the functional characterisation of microproteins by incorporating CRISPR/Cas9 screen and protein–protein interaction (PPI) studies. Our review discusses not only detection methodologies, but we also highlight on the challenges and potential solutions in identifying and validating sORFs and their microproteins. The novelty of this review lies within its validation for the functional role of microproteins, which could contribute towards the future landscape of microproteomics.
Collapse
Affiliation(s)
- Alyssa Zi-Xin Leong
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500, Selangor, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
26
|
Katsarou K, Adkar-Purushothama CR, Tassios E, Samiotaki M, Andronis C, Lisón P, Nikolaou C, Perreault JP, Kalantidis K. Revisiting the Non-Coding Nature of Pospiviroids. Cells 2022; 11:265. [PMID: 35053381 PMCID: PMC8773695 DOI: 10.3390/cells11020265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Emilios Tassios
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain;
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| |
Collapse
|
27
|
Deep N-terminomics of Mycobacterium tuberculosis H37Rv extensively correct annotated encoding genes. Genomics 2021; 114:292-304. [PMID: 34915127 DOI: 10.1016/j.ygeno.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Mycobacterium tuberculosis (MTB) is a severe causing agent of tuberculosis (TB). Although H37Rv, the type strain of M. tuberculosis was sequenced in 1998, annotation errors of encoding genes have been frequently reported in hundreds of papers. This phenomenon is particularly severe at the 5' end of the genes. Here, we applied a TMPP [(N-Succinimidyloxycarbonylmethyl) tris (2,4,6-trimethoxyphenyl) phosphonium bromide] labeling combined with StageTip separating strategy on M. tuberculosis H37Rv to characterize the N-terminal start sites of its annotated encoding genes. Totally, 1047 proteins were identified with 2058 TMPP labeled N-terminal peptides from all the 2625 mass spectrometer (MS) sequenced proteins. Comparative genomics analysis allowed the re-annotation of 43 proteins' N-termini in H37Rv and 762 proteins in Mycobacteriaceae. All revised N-termini start sites were distributed in 5'-UTR of annotated genes due to over-annotation of previous N-terminal initiation codon, especially the ATG. In addition, we identified and verified a novel gene Rv1078A in +3 frame different from the annotated gene Rv1078 in +2 frame. Altogether, our findings contribute to the better understanding of N-terminal of H37Rv and other species from Mycobacteriaceae that can assist future studies on biological study.
Collapse
|
28
|
Marquez-Molins J, Navarro JA, Seco LC, Pallas V, Gomez G. Might exogenous circular RNAs act as protein-coding transcripts in plants? RNA Biol 2021; 18:98-107. [PMID: 34392787 PMCID: PMC8677015 DOI: 10.1080/15476286.2021.1962670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as experimental tools to explore the coding potential of plant-circRNAs. Our work supports that the analysed viroids contain putative ORFs able to encode peptides carrying subcellular localization signals coincident with the corresponding replication-specific organelle. Bioassays in well-established hosts revealed that mutations in these ORFs diminish their biological efficiency. Interestingly, circular forms of HSVd and ELVd were found to co-sediment with polysomes, revealing their physical interaction with the translational machinery of the plant cell. Based on this evidence we hypothesize about the possibility that plant circRNAs in general, and viroids in particular, can act, under certain cellular conditions, as non-canonical translatable transcripts.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Luis Cervera Seco
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| |
Collapse
|
29
|
Brunet MA, Lekehal AM, Roucou X. How to Illuminate the Dark Proteome Using the Multi-omic OpenProt Resource. ACTA ACUST UNITED AC 2021; 71:e103. [PMID: 32780568 DOI: 10.1002/cpbi.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ten of thousands of open reading frames (ORFs) are hidden within genomes. These alternative ORFs, or small ORFs, have eluded annotations because they are either small or within unsuspected locations. They are found in untranslated regions or overlap a known coding sequence in messenger RNA and anywhere in a "non-coding" RNA. Serendipitous discoveries have highlighted these ORFs' importance in biological functions and pathways. With their discovery came the need for deeper ORF annotation and large-scale mining of public repositories to gather supporting experimental evidence. OpenProt, accessible at https://openprot.org/, is the first proteogenomic resource enforcing a polycistronic model of annotation across an exhaustive transcriptome for 10 species. Moreover, OpenProt reports experimental evidence cumulated across a re-analysis of 114 mass spectrometry and 87 ribosome profiling datasets. The multi-omics OpenProt resource also includes the identification of predicted functional domains and evaluation of conservation for all predicted ORFs. The OpenProt web server provides two query interfaces and one genome browser. The query interfaces allow for exploration of the coding potential of genes or transcripts of interest as well as custom downloads of all information contained in OpenProt. © 2020 The Authors. Basic Protocol 1: Using the Search interface Basic Protocol 2: Using the Downloads interface.
Collapse
Affiliation(s)
- Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Québec, Canada
| | - Amina M Lekehal
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Québec, Canada
| |
Collapse
|
30
|
Erokhina TN, Ryazantsev DY, Samokhvalova LV, Mozhaev AA, Orsa AN, Zavriev SK, Morozov SY. Activity of Chemically Synthesized Peptide Encoded by the miR156A Precursor and Conserved in the Brassicaceae Family Plants. BIOCHEMISTRY (MOSCOW) 2021; 86:551-562. [PMID: 33993858 DOI: 10.1134/s0006297921050047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It was recently found that the primary transcripts of some microRNA genes (pri-miRNAs) are able to express peptides with 12 to 40 residues in length. These peptides, called miPEPs, participate in the transcriptional regulation of their own pri-miRNAs. In our previous studies, we used bioinformatic approach for comparative analysis of pri-miRNA sequences in plant genomes to identify a new group of miPEPs (miPEP-156a peptides) encoded by pri-miR156a in several dozen species of the Brassicaceae family. Exogenous miPEP-156a peptides could efficiently penetrate into the plant seedlings through the root system and spread systemically to the leaves. The peptides produced moderate morphological effect accelerating primary root growth. In parallel, the miPEP-156a peptides upregulated expression of their own pri-miR156a. Importantly, the observed effects at both morphological and molecular levels correlated with the peptide ability to quickly translocate into the cell nucleus and to bind chromatin. In this work, we established secondary structure of the miPEP-156a and demonstrated its changes induced by formation of the peptide complex with DNA.
Collapse
Affiliation(s)
- Tatiana N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitry Yu Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Larisa V Samokhvalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey A Mozhaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander N Orsa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey Yu Morozov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
31
|
Hu XL, Lu H, Hassan MM, Zhang J, Yuan G, Abraham PE, Shrestha HK, Villalobos Solis MI, Chen JG, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Cheng ZMM, Yang X. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. HORTICULTURE RESEARCH 2021; 8:130. [PMID: 34059650 PMCID: PMC8167165 DOI: 10.1038/s41438-021-00570-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 05/02/2023]
Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zong-Ming Max Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
32
|
Wang B, Wang Z, Pan N, Huang J, Wan C. Improved Identification of Small Open Reading Frames Encoded Peptides by Top-Down Proteomic Approaches and De Novo Sequencing. Int J Mol Sci 2021; 22:ijms22115476. [PMID: 34067398 PMCID: PMC8197016 DOI: 10.3390/ijms22115476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Small open reading frames (sORFs) have translational potential to produce peptides that play essential roles in various biological processes. Nevertheless, many sORF-encoded peptides (SEPs) are still on the prediction level. Here, we construct a strategy to analyze SEPs by combining top-down and de novo sequencing to improve SEP identification and sequence coverage. With de novo sequencing, we identified 1682 peptides mapping to 2544 human sORFs, which were all first characterized in this work. Two-thirds of these new sORFs have reading frame shifts and use a non-ATG start codon. The top-down approach identified 241 human SEPs, with high sequence coverage. The average length of the peptides from the bottom-up database search was 19 amino acids (AA); from de novo sequencing, it was 9 AA; and from the top-down approach, it was 25 AA. The longer peptide positively boosts the sequence coverage, more efficiently distinguishing SEPs from the known gene coding sequence. Top-down has the advantage of identifying peptides with sequential K/R or high K/R content, which is unfavorable in the bottom-up approach. Our method can explore new coding sORFs and obtain highly accurate sequences of their SEPs, which can also benefit future function research.
Collapse
|
33
|
Lim CS, Weinstein BN, Roy SW, Brown CM. Analysis of fungal genomes reveals commonalities of intron gain or loss and functions in intron-poor species. Mol Biol Evol 2021; 38:4166-4186. [PMID: 33772558 PMCID: PMC8476143 DOI: 10.1093/molbev/msab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Brooke N Weinstein
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Scott W Roy
- Quantitative & Systems Biology, School of Natural Sciences, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
Wang N, Yin Z, Duan W, Zhang X, Pi L, Zhang Y, Dou D. sORF-Encoded Polypeptide SEP1 Is a Novel Virulence Factor of Phytophthora Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:157-167. [PMID: 33103962 DOI: 10.1094/mpmi-06-20-0160-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diseases caused by the notorious Phytophthora spp. result in enormous economic losses to crops and forests. Increasing evidence suggests that small open reading frame-encoded polypeptides (SEPs) participate in environmental responses of animals, plants, and fungi. However, it remains largely unknown whether Phytophthora pathogens produce SEPs. Here, we systematically predicted and identified 96 SEP candidates in P. capsici. Among them, three may induce stable cell death in Nicotiana benthamiana. Phytophthora-specific and conserved SEP1 facilitated P. capsici infection. PcSEP1-induced cell death is BAK1 and SOBIR1 independent and is correlated with its virulence function. Finally, PcSEP1 may be targeted to the apoplast for carrying out its functions, for which the C terminus is indispensable. Together, our results demonstrated that SEP1 is a new virulence factor, and previously unknown SEPs may act as effector proteins in Phytophthora pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiong Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yifan Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Neville MDC, Kohze R, Erady C, Meena N, Hayden M, Cooper DN, Mort M, Prabakaran S. A platform for curated products from novel open reading frames prompts reinterpretation of disease variants. Genome Res 2021; 31:327-336. [PMID: 33468550 PMCID: PMC7849405 DOI: 10.1101/gr.263202.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
Recent evidence from proteomics and deep massively parallel sequencing studies have revealed that eukaryotic genomes contain substantial numbers of as-yet-uncharacterized open reading frames (ORFs). We define these uncharacterized ORFs as novel ORFs (nORFs). nORFs in humans are mostly under 100 codons and are found in diverse regions of the genome, including in long noncoding RNAs, pseudogenes, 3' UTRs, 5' UTRs, and alternative reading frames of canonical protein coding exons. There is therefore a pressing need to evaluate the potential functional importance of these unannotated transcripts and proteins in biological pathways and human disease on a larger scale, rather than one at a time. In this study, we outline the creation of a valuable nORFs data set with experimental evidence of translation for the community, use measures of heritability and selection that reveal signals for functional importance, and show the potential implications for functional interpretation of genetic variants in nORFs. Our results indicate that some variants that were previously classified as being benign or of uncertain significance may have to be reinterpreted.
Collapse
Affiliation(s)
- Matthew D C Neville
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Robin Kohze
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Chaitanya Erady
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Narendra Meena
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Matthew Hayden
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Sudhakaran Prabakaran
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
- St Edmund's College, University of Cambridge, Cambridge CB3 0BN, United Kingdom
| |
Collapse
|
36
|
Gagnon M, Savard M, Jacques JF, Bkaily G, Geha S, Roucou X, Gobeil F. Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. J Biol Chem 2021; 296:100329. [PMID: 33497625 PMCID: PMC7949122 DOI: 10.1016/j.jbc.2021.100329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and β-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Collapse
Affiliation(s)
- Maxime Gagnon
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ghassan Bkaily
- Department of Immunology & Cellular Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Fernand Gobeil
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
37
|
Brunet MA, Lucier JF, Levesque M, Leblanc S, Jacques JF, Al-Saedi HRH, Guilloy N, Grenier F, Avino M, Fournier I, Salzet M, Ouangraoua A, Scott M, Boisvert FM, Roucou X. OpenProt 2021: deeper functional annotation of the coding potential of eukaryotic genomes. Nucleic Acids Res 2021; 49:D380-D388. [PMID: 33179748 PMCID: PMC7779043 DOI: 10.1093/nar/gkaa1036] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
OpenProt (www.openprot.org) is the first proteogenomic resource supporting a polycistronic annotation model for eukaryotic genomes. It provides a deeper annotation of open reading frames (ORFs) while mining experimental data for supporting evidence using cutting-edge algorithms. This update presents the major improvements since the initial release of OpenProt. All species support recent NCBI RefSeq and Ensembl annotations, with changes in annotations being reported in OpenProt. Using the 131 ribosome profiling datasets re-analysed by OpenProt to date, non-AUG initiation starts are reported alongside a confidence score of the initiating codon. From the 177 mass spectrometry datasets re-analysed by OpenProt to date, the unicity of the detected peptides is controlled at each implementation. Furthermore, to guide the users, detectability statistics and protein relationships (isoforms) are now reported for each protein. Finally, to foster access to deeper ORF annotation independently of one's bioinformatics skills or computational resources, OpenProt now offers a data analysis platform. Users can submit their dataset for analysis and receive the results from the analysis by OpenProt. All data on OpenProt are freely available and downloadable for each species, the release-based format ensuring a continuous access to the data. Thus, OpenProt enables a more comprehensive annotation of eukaryotic genomes and fosters functional proteomic discoveries.
Collapse
Affiliation(s)
- Marie A Brunet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada
| | - Jean-François Lucier
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Biology Department, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Maxime Levesque
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Biology Department, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sébastien Leblanc
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada
| | - Jean-Francois Jacques
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada
| | - Hassan R H Al-Saedi
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Noé Guilloy
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada
| | - Frederic Grenier
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Biology Department, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Isabelle Fournier
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Michel Salzet
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Aïda Ouangraoua
- Informatics Department, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cellular Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université Laval, Quebec City, QC G1V0A6, Canada
| |
Collapse
|
38
|
Casimiro-Soriguer CS, Rigual MM, Brokate-Llanos AM, Muñoz MJ, Garzón A, Pérez-Pulido AJ, Jimenez J. Using AnABlast for intergenic sORF prediction in the Caenorhabditis elegans genome. Bioinformatics 2020; 36:4827-4832. [PMID: 32614398 PMCID: PMC7723330 DOI: 10.1093/bioinformatics/btaa608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Motivation Short bioactive peptides encoded by small open reading frames (sORFs) play important roles in eukaryotes. Bioinformatics prediction of ORFs is an early step in a genome sequence analysis, but sORFs encoding short peptides, often using non-AUG initiation codons, are not easily discriminated from false ORFs occurring by chance. Results AnABlast is a computational tool designed to highlight putative protein-coding regions in genomic DNA sequences. This protein-coding finder is independent of ORF length and reading frame shifts, thus making of AnABlast a potentially useful tool to predict sORFs. Using this algorithm, here, we report the identification of 82 putative new intergenic sORFs in the Caenorhabditis elegans genome. Sequence similarity, motif presence, expression data and RNA interference experiments support that the underlined sORFs likely encode functional peptides, encouraging the use of AnABlast as a new approach for the accurate prediction of intergenic sORFs in annotated eukaryotic genomes. Availability and implementation AnABlast is freely available at http://www.bioinfocabd.upo.es/ab/. The C.elegans genome browser with AnABlast results, annotated genes and all data used in this study is available at http://www.bioinfocabd.upo.es/celegans. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- C S Casimiro-Soriguer
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M M Rigual
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A M Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M J Muñoz
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A Garzón
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - J Jimenez
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
39
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
40
|
Xing S, Chen K, Zhu H, Zhang R, Zhang H, Li B, Gao C. Fine-tuning sugar content in strawberry. Genome Biol 2020; 21:230. [PMID: 32883370 PMCID: PMC7470447 DOI: 10.1186/s13059-020-02146-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023] Open
Abstract
Fine-tuning quantitative traits for continuous subtle phenotypes is highly advantageous. We engineer the highly conserved upstream open reading frame (uORF) of FvebZIPs1.1 in strawberry (Fragaria vesca), using base editor A3A-PBE. Seven novel alleles are generated. Sugar content of the homozygous T1 mutant lines is 33.9-83.6% higher than that of the wild-type. We also recover a series of transgene-free mutants with 35 novel genotypes containing a continuum of sugar content. All the novel genotypes could be immediately fixed in subsequent generations by asexual reproduction. Genome editing coupled with asexual reproduction offers tremendous opportunities for quantitative trait improvement.
Collapse
Affiliation(s)
- Sinian Xing
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Haocheng Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Wang B, Hao J, Pan N, Wang Z, Chen Y, Wan C. Identification and analysis of small proteins and short open reading frame encoded peptides in Hep3B cell. J Proteomics 2020; 230:103965. [PMID: 32891891 DOI: 10.1016/j.jprot.2020.103965] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023]
Abstract
The small proteins and short open reading frames encoded peptides (SEPs) are of fundamental importance because of their essential roles in biological processes. However, the annotation or identification of them is challenging, in part owing to the limitation of the traditional genome annotation pipeline and their inherent characteristics of low abundance and low molecular weight. To discover and characterize SEPs in Hep3B cell line, we developed an optimized peptidomic assay by combining different peptide extraction and separation methods. The organic solvent precipitation method in peptidomic showed promotion in the enrichment of low molecular proteins or peptides, and the data clearly showed a beneficial effect from the reduction of sample complexity, resulting in high-quality MS/MS spectra. Furthermore, different strategies exhibited good complementarity in improving the total amount of small proteins and their sequence coverage. In total, 1192 proteins within less than 100 amino acids were identified, including 271 newly discovered SEPs that been annotated in the OpenProt database and 147 SEPs of them encoded from ncRNA or lincRNA. Results in this work provide robust evidence to date that the human proteome is more complicated than previously appreciated, and this will be a benefit to discoveries of proteins without function annotation. SIGNIFICANCE: In this work, methods were optimized to identify SEPs in Hep3B. The organic solvent precipitation presents promotion in enrichment of low molecular proteins or peptides, and the data clearly showed a beneficial effect from the reduction of sample complexity, resulting in high quality MS/MS spectra. Different strategies exhibited good complementarity in improving total amount of small proteins and their sequence coverage. In total, 1192 proteins within less than 100 amino acids were identified, including 271 newly discovered SEPs that been annotated in the OpenProt database and 147 SEPs of them encoded from ncRNA or lincRNA. Furthermore, 22 SEPs generated from the uORF may has potential effect in translation control, and 149 newly identified SEPs have known functional domains or cross-species conservation. Results in this work present robust evidence for the coding potential of the ignored region of human genomes and may provide additional insights into tumor biology.
Collapse
Affiliation(s)
- Bing Wang
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China
| | - Junhui Hao
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China
| | - Ni Pan
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China
| | - Zhiwei Wang
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China
| | - Yinxuan Chen
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China
| | - Cuihong Wan
- Hubei Key Lab of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, PR China.
| |
Collapse
|
42
|
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X, Jia X, Zheng X, Wu S, Chen Y, Yan J, Wu L. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. MOLECULAR PLANT 2020; 13:1078-1093. [PMID: 32445888 DOI: 10.1016/j.molp.2020.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Non-conventional peptides (NCPs), which include small open reading frame-encoded peptides, play critical roles in fundamental biological processes. In this study, we developed an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a customized six-frame translation database and applied it to large-scale identification of NCPs in plants.A total of 1993 and 1860 NCPs were unambiguously identified in maize and Arabidopsis, respectively. These NCPs showed distinct characteristics compared with conventional peptides and were derived from introns, 3' UTRs, 5' UTRs, junctions, and intergenic regions. Furthermore, our results showed that translation events in unannotated transcripts occur more broadly than previously thought. In addition, we found that dozens of maize NCPs are enriched within regions associated with phenotypic variations and domestication selection, indicating that they potentially are involved in genetic regulation of complex traits and domestication in maize. Taken together, our study developed an integrated peptidogenomic pipeline for large-scale identification of NCPs in plants, which would facilitate global characterization of NCPs from other plants. The identification of large-scale NCPs in both monocot (maize) and dicot (Arabidopsis) plants indicates that a large portion of plant genome can be translated into biologically functional molecules, which has important implications for functional genomic studies.
Collapse
Affiliation(s)
- Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shubiao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
43
|
Brunet MA, Brunelle M, Lucier JF, Delcourt V, Levesque M, Grenier F, Samandi S, Leblanc S, Aguilar JD, Dufour P, Jacques JF, Fournier I, Ouangraoua A, Scott MS, Boisvert FM, Roucou X. OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes. Nucleic Acids Res 2020; 47:D403-D410. [PMID: 30299502 PMCID: PMC6323990 DOI: 10.1093/nar/gky936] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/04/2018] [Indexed: 01/06/2023] Open
Abstract
Advances in proteomics and sequencing have highlighted many non-annotated open reading frames (ORFs) in eukaryotic genomes. Genome annotations, cornerstones of today's research, mostly rely on protein prior knowledge and on ab initio prediction algorithms. Such algorithms notably enforce an arbitrary criterion of one coding sequence (CDS) per transcript, leading to a substantial underestimation of the coding potential of eukaryotes. Here, we present OpenProt, the first database fully endorsing a polycistronic model of eukaryotic genomes to date. OpenProt contains all possible ORFs longer than 30 codons across 10 species, and cumulates supporting evidence such as protein conservation, translation and expression. OpenProt annotates all known proteins (RefProts), novel predicted isoforms (Isoforms) and novel predicted proteins from alternative ORFs (AltProts). It incorporates cutting-edge algorithms to evaluate protein orthology and re-interrogate publicly available ribosome profiling and mass spectrometry datasets, supporting the annotation of thousands of predicted ORFs. The constantly growing database currently cumulates evidence from 87 ribosome profiling and 114 mass spectrometry studies from several species, tissues and cell lines. All data is freely available and downloadable from a web platform (www.openprot.org) supporting a genome browser and advanced queries for each species. Thus, OpenProt enables a more comprehensive landscape of eukaryotic genomes’ coding potential.
Collapse
Affiliation(s)
- Marie A Brunet
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France
| | - Mylène Brunelle
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France
| | - Jean-François Lucier
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Biology Department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vivian Delcourt
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France.,INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Maxime Levesque
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Biology Department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédéric Grenier
- Center for Computational Science, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Biology Department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sondos Samandi
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France
| | - Sébastien Leblanc
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-David Aguilar
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pascal Dufour
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Francois Jacques
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France
| | - Isabelle Fournier
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, F-59000 Lille, France
| | - Aida Ouangraoua
- Informatics Department, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michelle S Scott
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Université de Lille, F-59000 Lille, France
| |
Collapse
|
44
|
Manipulating gene translation in plants by CRISPR-Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 2020; 15:338-363. [PMID: 31915386 DOI: 10.1038/s41596-019-0238-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Gene expression is regulated by multiple processes, and the translation of mRNAs into proteins is an especially critical step. Upstream open reading frames (uORFs) are widespread cis-elements in eukaryotic genes that usually suppress the translation of downstream primary ORFs (pORFs). Here, we describe a protocol for fine-tuning gene translation in plants by editing endogenous uORFs with the CRISPR-Cas9 system. The method we present readily yields transgene-free uorf mutant offspring. We provide detailed protocols for predicting uORFs and testing their effects on downstream pORFs using a dual-luciferase reporter system, designing and constructing single guide RNA (sgRNA)-Cas9 vectors, identifying transgene-free uorf mutants, and finally comparing the mRNA, protein and phenotypic levels of target genes in uorf mutants and controls. Predicting uORFs and confirming their effects in protoplasts takes only 2-3 weeks, and transgene-free mutants with edited target uORFs controlling different levels of pORF translation can be obtained within 4 months. Unlike previous methods, our strategy achieves fine-tuning of gene translation in transgene-free derivatives, which accelerates the analysis of gene function and the improvement of crop traits.
Collapse
|
45
|
Yang X, Cui J, Song B, Yu Y, Mo B, Liu L. Construction of High-Quality Rice Ribosome Footprint Library. FRONTIERS IN PLANT SCIENCE 2020; 11:572237. [PMID: 33013996 PMCID: PMC7500414 DOI: 10.3389/fpls.2020.572237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/20/2020] [Indexed: 05/20/2023]
Abstract
High-throughput sequencing of ribosome footprints precisely maps and quantifies in vivo mRNA translation. The ribosome footprint sequencing has undergone continuing development since its original report. Here we provide a detailed protocol for construction of high-quality ribosome footprint library of rice. Rice total polysomes are isolated with a modified low ionic polysome extraction buffer. After nuclease digestion, rice ribosome footprints are extracted using SDS method followed by column purification. High-quality rice ribosome footprint library with peak reads of approximately 28-nucleotide (nt) length and strong 3-nt periodicity is constructed via key steps including rRNA depletion, end repair, 3' adapter ligation, reverse transcription, circularization, PCR enrichment and several rounds of purification. Biological significance of rice ribosome footprint library is further revealed by the comparison of transcriptomic and translatomic responses to salt stress and the utilization for novel open reading frame (ORF) identification. This improved protocol for rice ribosome footprint library construction will facilitate the global comprehension and quantitative measurement of dynamic translation in rice.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Bo Song
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, China
- *Correspondence: Lin Liu,
| |
Collapse
|
46
|
Broad RC, Bonneau JP, Beasley JT, Roden S, Philips JG, Baumann U, Hellens RP, Johnson AAT. Genome-wide identification and characterization of the GDP-L-galactose phosphorylase gene family in bread wheat. BMC PLANT BIOLOGY 2019; 19:515. [PMID: 31771507 PMCID: PMC6878703 DOI: 10.1186/s12870-019-2123-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/07/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Ascorbate is a powerful antioxidant in plants and an essential micronutrient for humans. The GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting enzyme of the L-galactose pathway-the dominant ascorbate biosynthetic pathway in plants-and is a promising gene candidate for increasing ascorbate in crops. In addition to transcriptional regulation, GGP production is regulated at the translational level through an upstream open reading frame (uORF) in the long 5'-untranslated region (5'UTR). The GGP genes have yet to be identified in bread wheat (Triticum aestivum L.), one of the most important food grain sources for humans. RESULTS Bread wheat chromosomal groups 4 and 5 were found to each contain three homoeologous TaGGP genes on the A, B, and D subgenomes (TaGGP2-A/B/D and TaGGP1-A/B/D, respectively) and a highly conserved uORF was present in the long 5'UTR of all six genes. Phylogenetic analyses demonstrated that the TaGGP genes separate into two distinct groups and identified a duplication event of the GGP gene in the ancestor of the Brachypodium/Triticeae lineage. A microsynteny analysis revealed that the TaGGP1 and TaGGP2 subchromosomal regions have no shared synteny suggesting that TaGGP2 may have been duplicated via a transposable element. The two groups of TaGGP genes have distinct expression patterns with the TaGGP1 homoeologs broadly expressed across different tissues and developmental stages and the TaGGP2 homoeologs highly expressed in anthers. Transient transformation of the TaGGP coding sequences in Nicotiana benthamiana leaf tissue increased ascorbate concentrations more than five-fold, confirming their functional role in ascorbate biosynthesis in planta. CONCLUSIONS We have identified six TaGGP genes in the bread wheat genome, each with a highly conserved uORF. Phylogenetic and microsynteny analyses highlight that a transposable element may have been responsible for the duplication and specialized expression of GGP2 in anthers in the Brachypodium/Triticeae lineage. Transient transformation of the TaGGP coding sequences in N. benthamiana demonstrated their activity in planta. The six TaGGP genes and uORFs identified in this study provide a valuable genetic resource for increasing ascorbate concentrations in bread wheat.
Collapse
Affiliation(s)
- Ronan C Broad
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jesse T Beasley
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sally Roden
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Joshua G Philips
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Ute Baumann
- School of Agriculture, The University of Adelaide, Adelaide, South Australia, 5064, Australia
| | - Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Alexander A T Johnson
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
47
|
Takahashi F, Hanada K, Kondo T, Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:88-95. [PMID: 31265991 DOI: 10.1016/j.pbi.2019.05.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
Recent works have shed light on the long-distance interorgan signaling by which hormone-like peptides precisely regulate physiological effects in a manner similar to phytohormones. Many such peptides have already been identified in the primary model plant, Arabidopsis thaliana. In addition, Arabidopsis genome reanalysis revealed over 7000 novel candidate small coding genes, some of which are likely to be associated with hormone-like peptides. Hormone-like peptides have also been reported to play critical roles in interorgan communications during morphogenesis and stress responses. In this review, we focus on the functional roles of hormone-like peptides and small coding genes in cell-to-cell and/or long-distance communications during plant stress signaling and development and discuss the evolutionary conservation of these peptides among plants.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | - Takayuki Kondo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
48
|
Kubatova N, Jonker HRA, Saxena K, Richter C, Vogel V, Schreiber S, Marchfelder A, Schwalbe H. Solution Structure and Dynamics of the Small Protein HVO_2922 from
Haloferax volcanii. Chembiochem 2019; 21:149-156. [DOI: 10.1002/cbic.201900085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Nina Kubatova
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Hendrik R. A. Jonker
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Krishna Saxena
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | - Christian Richter
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| | | | | | | | - Harald Schwalbe
- Organic Chemistry and Chemical BiologyGoethe University Frankfurt Max von Laue Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
49
|
Weisser M, Ban N. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Cold Spring Harb Perspect Biol 2019; 11:11/9/a032367. [PMID: 31481454 DOI: 10.1101/cshperspect.a032367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the basic aspects of protein synthesis are preserved in all kingdoms of life, there are many important structural and functional differences between bacterial and the more complex eukaryotic ribosomes. High-resolution cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of eukaryotic ribosomes have revealed the complex architectures of eukaryotic ribosomes and species-specific variations in protein and ribosomal RNA (rRNA) extensions. They also enabled structural studies of a range of eukaryotic ribosomal complexes involved in translation initiation, elongation, and termination, revealing unique mechanistic features of the eukaryotic translation process, especially with respect to the identification and recognition of translation start and stop codons on messenger RNAs (mRNAs). Most recently, structural biology has provided insights into the eukaryotic ribosomal biogenesis pathway by visualizing several of its complex intermediates. This review highlights the past decade's structural work on eukaryotic ribosomes and its implications on our understanding of eukaryotic translation.
Collapse
Affiliation(s)
- Melanie Weisser
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, Kharlampieva D, Grafskaia E, Zgoda V, Butenko I, Arapidi G, Mamaeva A, Ivanov V, Govorun V. Distinct types of short open reading frames are translated in plant cells. Genome Res 2019; 29:1464-1477. [PMID: 31387879 PMCID: PMC6724668 DOI: 10.1101/gr.253302.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant Physcomitrella patens (moss). Several distinct classes of sORFs that differ in terms of their position on transcripts and the level of evolutionary conservation are present in the moss genome. Over 5000 sORFs were conserved in at least one of 10 plant species examined. Mass spectrometry analysis of proteomic and peptidomic data sets suggested that tens of sORFs located on distinct parts of mRNAs and long noncoding RNAs (lncRNAs) are translated, including conserved sORFs. Translational analysis of the sORFs and main ORFs at a single locus suggested the existence of genes that code for multiple proteins and peptides with tissue-specific expression. Functional analysis of four lncRNA-encoded peptides showed that sORFs-encoded peptides are involved in regulation of growth and differentiation in moss. Knocking out lncRNA-encoded peptides resulted in a decrease of moss growth. In contrast, the overexpression of these peptides resulted in a diverse range of phenotypic effects. Our results thus open new avenues for discovering novel, biologically active peptides in the plant kingdom.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Ilya Kirov
- Laboratory of marker-assisted and genomic selection of plants, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russian Federation
| | - Andrey Kniazev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Regina Khazigaleeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Daria Kharlampieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Viktor Zgoda
- Laboratory of System Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russian Federation
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Georgy Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| |
Collapse
|