1
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
2
|
Du L, Ding L, Huang X, Tang D, Chen B, Tian H, Kang Z, Mao H. Natural variation in a K + -preferring HKT transporter contributes to wheat shoot K + accumulation and salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:540-556. [PMID: 37876337 DOI: 10.1111/pce.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Soil salinity can adversely affect crop growth and yield, and an improved understanding of the genetic factors that confer salt tolerance could inform breeding strategies to engineer salt-tolerant crops and improve productivity. Here, a group of K+ -preferring HKT transporters, TaHKT8, TaHKT9 and TaHKT10, were identified and negatively regulate the wheat shoot K+ accumulation and salt tolerance. A genome-wide association study (GWAS) and candidate gene association analysis further revealed that TaHKT9-B substantially underlies the natural variation of wheat shoot K+ accumulation under saline soil conditions. Specifically, an auxin responsive element (ARE) within an 8-bp insertion in the promoter of TaHKT9-B is strongly associated with shoot K+ content among wheat accessions. This ARE can be directly bound by TaARF4 for transcriptional activation of TaHKT9-B, which subsequently attenuates shoot K+ accumulation and salt tolerance. Moreover, the tae-miR390/TaTAS3/TaARF4 pathway was identified to regulate the salt-induced root development and salt tolerance in wheat. Taken together, our study describes the genetic basis and accompanying mechanism driving phenotypic variation in wheat shoot K+ accumulation and salt tolerance. The identified tae-miR390/TaTAS3/TaARF4/TaHKT9-B module is an important regulator in wheat subjected to salt stress, which provides the potentially important genetic resources for breeders to improve wheat salt tolerance.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongling Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Yangling Seed Industry Innovation Center, Yangling, Shaanxi, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Cancé C, Martin-Arevalillo R, Boubekeur K, Dumas R. Auxin response factors are keys to the many auxin doors. THE NEW PHYTOLOGIST 2022; 235:402-419. [PMID: 35434800 DOI: 10.1111/nph.18159] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In plants, most developmental programs depend on the action of auxin. The best described model of the auxin signaling pathway, which explains most, but not all, of the auxin transcriptional responses, relies on a de-repression mechanism. The auxin/indole-3-acetic acid repressors (Aux/IAAs) interact with the auxin response factors (ARFs), the transcription factors of the auxin signaling pathway, leading to repression of the ARF-controlled genes. Auxin induces Aux/IAA degradation, releases ARFs and activates transcription. However, this elegant model is not suitable for all ARFs. Indeed, in Arabidopsis, which has 22 ARFs, only five of them fit into the model since they are the ones able to interact with Aux/IAAs. The remaining 17 have a limited capacity to interact with the repressors, and their mechanisms of action are still unclear. The differential interactions between ARF and Aux/IAA proteins constitute one of many examples of the biochemical and structural diversification of ARFs that affect their action and therefore affect auxin transcriptional responses. A deeper understanding of the structural properties of ARFs is fundamental to obtaining a better explanation of the action of auxin in plants.
Collapse
Affiliation(s)
- Coralie Cancé
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| | - Raquel Martin-Arevalillo
- Laboratoire de Reproduction et Développement des Plantes, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Univ. Lyon, Lyon, France
| | - Kenza Boubekeur
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| |
Collapse
|
4
|
Determinants of PB1 Domain Interactions in Auxin Response Factor ARF5 and Repressor IAA17. J Mol Biol 2020; 432:4010-4022. [PMID: 32305460 DOI: 10.1016/j.jmb.2020.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Auxin is a plant hormone that is central to plant growth and development from embryogenesis to senescence. Auxin signaling is mediated by auxin response transcription factors (ARFs) and Aux/IAA repressors that regulate the expression of a multitude of auxin response genes. ARF and Aux/IAA proteins assemble into homomeric and heteromeric complexes via their conserved PB1 domains. Here we report the first crystal structure of the PB1 complex between ARF5 and IAA17 of Arabidopsis thaliana, which represents the transcriptionally repressed state at low auxin levels. The PB1 domains assemble in a head-to-tail manner with a backbone arrangement similar to that of the ARF5:ARF5 PB1 complex. The ARF5:IAA17 complex, however, reveals distinct points of contact that promote the ARF5:IAA17 interaction over the ARF5:ARF5 interaction. Specifically, surface charges at the interface form salt-bridges that distinguish the homomeric and heteromeric complexes, revealing common and specific interfaces between transcriptionally repressed and derepressed states. Further, the salt-bridges can be reconfigured to switch the affinity between homomeric and heteromeric complexes in an incremental manner. The complex structure combined with quantitative binding analyses would be essential for deciphering the PB1 interaction code underlying the transcriptional regulation of auxin signaling.
Collapse
|
5
|
Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, Raneshan Z, Novák O, Păcurar DI, Perrone I, Jobert F, Gutierrez L, Bakò L, Bellini C. A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:1499-1514. [PMID: 31520787 DOI: 10.1016/j.molp.2019.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 05/13/2023]
Abstract
In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Salma Chaabouni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Emilie Cavel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Alok Ranjan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Zahra Raneshan
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden; Department of Biology, Faculty of Science, Shahid Bahonar University, Kerman, Iran
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371 Olomouc, Czech Republic; Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agriculture University, 90183 Umeå, Sweden
| | - Daniel I Păcurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Irene Perrone
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - François Jobert
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Laurent Gutierrez
- Centre de Ressources Régionales en Biologie Moléculaire (CRRBM), Université de Picardie Jules Verne, 80039 Amiens, France
| | - Laszlo Bakò
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90736 Umeå, Sweden; Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
6
|
Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 2019; 15:e1008400. [PMID: 31553720 PMCID: PMC6797205 DOI: 10.1371/journal.pgen.1008400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/17/2019] [Accepted: 09/04/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin is a major developmental regulator in plants and the acquisition of a transcriptional response to auxin likely contributed to developmental innovations at the time of water-to-land transition. Auxin Response Factors (ARFs) Transcription Factors (TFs) that mediate auxin-dependent transcriptional changes are divided into A, B and C evolutive classes in land plants. The origin and nature of the first ARF proteins in algae is still debated. Here, we identify the most ‘ancient’ ARF homologue to date in the early divergent charophyte algae Chlorokybus atmophyticus, CaARF. Structural modelling combined with biochemical studies showed that CaARF already shares many features with modern ARFs: it is capable of oligomerization, interacts with the TOPLESS co-repressor and specifically binds Auxin Response Elements as dimer. In addition, CaARF possesses a DNA-binding specificity that differs from class A and B ARFs and that was maintained in class C ARF along plants evolution. Phylogenetic evidence together with CaARF biochemical properties indicate that the different classes of ARFs likely arose from an ancestral proto-ARF protein with class C-like features. The foundation of auxin signalling would have thus happened from a pre-existing hormone-independent transcriptional regulation together with the emergence of a functional hormone perception complex. Plants transition from water to land was determining for the history of our planet, since it led to atmospheric and soil condition changes that promoted the appearance of other life forms. This transition initiated around 1 billion years ago from a Charophyte algae lineage that acquired features allowing it to adapt to the very different terrestrial conditions. Land plants coordinate their development with external stimuli through signalling mechanisms triggered by plant hormones. Therefore, evolution of these molecules and their signalling pathways likely played an important role in the aquatic to terrestrial move. In this manuscript we study the origin of auxin signalling, a plant hormone implicated in all plant developmental steps. Our studies suggest that out of the three families of proteins originally proposed to trigger auxin signalling in land plants, only one existed in Charophyte ancestors as a likely transcriptional repressor independent of auxin. We show that despite millions of years of evolution, this family of proteins has conserved its biochemical and structural properties that are found today in land plants. The results presented here provide an insight on how hormone signalling pathways could have evolved by co-opting a pre-existing hormone-independent transcriptional regulatory mechanism.
Collapse
|
7
|
Stigliani A, Martin-Arevalillo R, Lucas J, Bessy A, Vinos-Poyo T, Mironova V, Vernoux T, Dumas R, Parcy F. Capturing Auxin Response Factors Syntax Using DNA Binding Models. MOLECULAR PLANT 2019; 12:822-832. [PMID: 30336329 DOI: 10.1016/j.molp.2018.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormone performing a wealth of functions throughout the life cycle of plants. It acts largely by regulating genes at the transcriptional level through a family of transcription factors called auxin response factors (ARFs). Even though all ARF monomers analyzed so far bind a similar DNA sequence, there is evidence that ARFs differ in their target genomic regions and regulated genes. Here, we report the use of position weight matrices (PWMs) to model ARF DNA binding specificity based on published DNA affinity purification sequencing (DAP-seq) data. We found that the genome binding of two ARFs (ARF2 and ARF5/Monopteros [MP]) differ largely because these two factors have different preferred ARF binding site (ARFbs) arrangements (orientation and spacing). We illustrated why PWMs are more versatile to reliably identify ARFbs than the widely used consensus sequences and demonstrated their power with biochemical experiments in the identification of the regulatory regions of IAA19, an well-characterized auxin-responsive gene. Finally, we combined gene regulation by auxin with ARF-bound regions and identified specific ARFbs configurations that are over-represented in auxin-upregulated genes, thus deciphering the ARFbs syntax functional for regulation. Our study provides a general method to exploit the potential of genome-wide DNA binding assays and to decode gene regulation.
Collapse
Affiliation(s)
- Arnaud Stigliani
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Raquel Martin-Arevalillo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France; Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Jérémy Lucas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Adrien Bessy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Thomas Vinos-Poyo
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Victoria Mironova
- Novosibirsk State University, Pirogova Street 2, Novosibirsk, Russia; Institute of Cytology and Genetics SB RAS, Lavrentyeva Avenue 10, Novosibirsk, Russia
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, 46 allée d'Italie, 69364, Lyon, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|
8
|
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC PLANT BIOLOGY 2019; 19:111. [PMID: 30898085 PMCID: PMC6429806 DOI: 10.1186/s12870-019-1719-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.
Collapse
Affiliation(s)
- Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528 Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001 Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
9
|
Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser JL, Schmitz RJ, Gallavotti A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun 2018; 9:4526. [PMID: 30375394 PMCID: PMC6207667 DOI: 10.1038/s41467-018-06977-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023] Open
Abstract
AUXIN RESPONSE FACTORS (ARFs) are plant-specific transcription factors (TFs) that couple perception of the hormone auxin to gene expression programs essential to all land plants. As with many large TF families, a key question is whether individual members determine developmental specificity by binding distinct target genes. We use DAP-seq to generate genome-wide in vitro TF:DNA interaction maps for fourteen maize ARFs from the evolutionarily conserved A and B clades. Comparative analysis reveal a high degree of binding site overlap for ARFs of the same clade, but largely distinct clade A and B binding. Many sites are however co-occupied by ARFs from both clades, suggesting transcriptional coordination for many genes. Among these, we investigate known QTLs and use machine learning to predict the impact of cis-regulatory variation. Overall, large-scale comparative analysis of ARF binding suggests that auxin response specificity may be determined by factors other than individual ARF binding site selection.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Arjun Khakhar
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Zefu Lu
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.,Department of Health Management and Informatics and Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert J Schmitz
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA. .,Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Pandey SK, Lee HW, Kim MJ, Cho C, Oh E, Kim J. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:233-251. [PMID: 29681137 DOI: 10.1111/tpj.13945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| |
Collapse
|
11
|
Luo J, Zhou JJ, Zhang JZ. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int J Mol Sci 2018; 19:ijms19010259. [PMID: 29337875 PMCID: PMC5796205 DOI: 10.3390/ijms19010259] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Han S, Hwang I. Integration of multiple signaling pathways shapes the auxin response. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:189-200. [PMID: 28992118 DOI: 10.1093/jxb/erx232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is a pivotal signaling molecule that functions throughout the plant lifecycle. Proper regulation of the auxin response is critical for optimizing plant growth under ever-changing environmental conditions. Recent studies have demonstrated that the signaling components that modulate auxin sensitivity and responses are functionally and mechanically diverse. In addition to auxin itself, various environmental and hormonal signals are integrated to modulate the auxin response through directly controlling auxin signaling components. This review explores the non-canonical mechanisms that modulate auxin signaling components, including transcriptional, translational, and post-translational regulation. All of these contribute to the wide range in sensitivity and complexity in auxin responses to various signaling cues.
Collapse
Affiliation(s)
- Soeun Han
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Republic of Korea
| |
Collapse
|
13
|
Abstract
The luxurious vegetation at Sanya, the most southern location in China on the island of Hainan, provided a perfect environment for the 'Auxin 2016' meeting in October. As we review here, participants from all around the world discussed the latest advances in auxin transport, metabolism and signaling pathways, highlighting how auxin acts during plant development and in response to the environment in combination with other hormones. The meeting also provided a rich perspective on the evolution of the role of auxin, from algae to higher plants.
Collapse
Affiliation(s)
- Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphanie Robert
- Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå 90183, Sweden
| |
Collapse
|