1
|
Oldham KEA, Mabbitt PD. Ubiquitin E3 ligases in the plant Arg/N-degron pathway. Biochem J 2024; 481:1949-1965. [PMID: 39670824 DOI: 10.1042/bcj20240132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Regulation of protein longevity via the ubiquitin (Ub) - proteasome pathway is fundamental to eukaryotic biology. Ubiquitin E3 ligases (E3s) interact with substrate proteins and provide specificity to the pathway. A small subset of E3s bind to specific exposed N-termini (N-degrons) and promote the ubiquitination of the bound protein. Collectively these E3s, and other N-degron binding proteins, are known as N-recognins. There is considerable functional divergence between fungi, animal, and plant N-recognins. In plants, at least three proteins (PRT1, PRT6, and BIG) participate in the Arg/N-degron pathway. PRT1 has demonstrated E3 ligase activity, whereas PRT6 and BIG are candidate E3s. The Arg/N-degron pathway plays a central role in plant development, germination, and submersion tolerance. The pathway has been manipulated both to improve crop performance and for conditional protein degradation. A more detailed structural and biochemical understanding of the Arg/N-recognins and their substrates is required to fully realise the biotechnological potential of the pathway. This perspective focuses on the structural and molecular details of substrate recognition and ubiquitination in the plant Arg/N-degron pathway. While PRT1 appears to be plant specific, the PRT6 and BIG proteins are similar to UBR1 and UBR4, respectively. Analysis of the cryo-EM structures of Saccharomyces UBR1 suggests that the mode of ubiquitin conjugating enzyme (E2) and substrate recruitment is conserved in PRT6, but regulation of the two N-recognins may be significantly different. The structurally characterised domains from human UBR4 are also likely to be conserved in BIG, however, there are sizeable gaps in our understanding of both proteins.
Collapse
Affiliation(s)
- Keely E A Oldham
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Peter D Mabbitt
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
2
|
van Wijk KJ, Leppert T, Sun Z, Guzchenko I, Debley E, Sauermann G, Routray P, Mendoza L, Sun Q, Deutsch EW. The Zea mays PeptideAtlas: A New Maize Community Resource. J Proteome Res 2024; 23:3984-4004. [PMID: 39101213 DOI: 10.1021/acs.jproteome.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
This study presents the Maize PeptideAtlas resource (www.peptideatlas.org/builds/maize) to help solve questions about the maize proteome. Publicly available raw tandem mass spectrometry (MS/MS) data for maize collected from ProteomeXchange were reanalyzed through a uniform processing and metadata annotation pipeline. These data are from a wide range of genetic backgrounds and many sample types and experimental conditions. The protein search space included different maize genome annotations for the B73 inbred line from MaizeGDB, UniProtKB, NCBI RefSeq, and for the W22 inbred line. 445 million MS/MS spectra were searched, of which 120 million were matched to 0.37 million distinct peptides. Peptides were matched to 66.2% of proteins in the most recent B73 nuclear genome annotation. Furthermore, most conserved plastid- and mitochondrial-encoded proteins (NCBI RefSeq annotations) were identified. Peptides and proteins identified in the other B73 genome annotations will improve maize genome annotation. We also illustrate the high-confidence detection of unique W22 proteins. N-terminal acetylation, phosphorylation, ubiquitination, and three lysine acylations (K-acetyl, K-malonyl, and K-hydroxyisobutyryl) were identified and can be inspected through a PTM viewer in PeptideAtlas. All matched MS/MS-derived peptide data are linked to spectral, technical, and biological metadata. This new PeptideAtlas is integrated in MaizeGDB with a peptide track in JBrowse.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Isabell Guzchenko
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Erica Debley
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Georgia Sauermann
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Pratyush Routray
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, United States
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, United States
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, United States
| |
Collapse
|
3
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
4
|
van Wijk KJ. Intra-chloroplast proteases: A holistic network view of chloroplast proteolysis. THE PLANT CELL 2024; 36:3116-3130. [PMID: 38884601 PMCID: PMC11371162 DOI: 10.1093/plcell/koae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Different proteases and peptidases are present within chloroplasts and nonphotosynthetic plastids to process precursor proteins and to degrade cleaved chloroplast transit peptides and damaged, misfolded, or otherwise unwanted proteins. Collectively, these proteases and peptidases form a proteolysis network, with complementary activities and hierarchies, and build-in redundancies. Furthermore, this network is distributed across the different intra-chloroplast compartments (lumen, thylakoid, stroma, envelope). The challenge is to determine the contributions of each peptidase (system) to this network in chloroplasts and nonphotosynthetic plastids. This will require an understanding of substrate recognition mechanisms, degrons, substrate, and product size limitations, as well as the capacity and degradation kinetics of each protease. Multiple extra-plastidial degradation pathways complement these intra-chloroplast proteases. This review summarizes our current understanding of these intra-chloroplast proteases in Arabidopsis and crop plants with an emphasis on considerations for building a qualitative and quantitative network view.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
6
|
López B, Izquierdo Y, Cascón T, Zamarreño ÁM, García-Mina JM, Pulido P, Castresana C. Mutant noxy8 exposes functional specificities between the chloroplast chaperones CLPC1 and CLPC2 in the response to organelle stress and plant defence. PLANT, CELL & ENVIRONMENT 2024; 47:2336-2350. [PMID: 38500380 DOI: 10.1111/pce.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Chloroplast function is essential for growth, development, and plant adaptation to stress. Organelle stress and plant defence responses were examined here using noxy8 (nonresponding to oxylipins 8) from a series of Arabidopsis mutants. The noxy8 mutation was located at the CLPC2 gene, encoding a chloroplast chaperone of the protease complex CLP. Although its CLPC1 paralogue is considered to generate redundancy, our data reveal significant differences distinguishing CLPC2 and CLPC1 functions. As such, clpc1 mutants displayed a major defect in housekeeping chloroplast proteostasis, leading to a pronounced reduction in growth and pigment levels, enhanced accumulation of chloroplast and cytosol chaperones, and resistance to fosmidomycin. Conversely, clpc2 mutants showed severe susceptibility to lincomycin inhibition of chloroplast translation and resistance to Antimycin A inhibition of mitochondrial respiration. In the response to Pseudomonas syringae pv. tomato, clpc2 but not clpc1 mutants were resistant to bacterial infection, showing higher salicylic acid levels, defence gene expression and 9-LOX pathway activation. Our findings suggest CLPC2 and CLPC1 functional specificity, with a preferential involvement of CLPC1 in housekeeping processes and of CLPC2 in stress responses.
Collapse
Affiliation(s)
- Bran López
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Yovanny Izquierdo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Tomás Cascón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra, Spain
| | - José M García-Mina
- Department of Environmental Biology, Bioma Institute, University of Navarra, Navarra, Spain
| | - Pablo Pulido
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| | - Carmen Castresana
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, Spain
| |
Collapse
|
7
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
8
|
LaManna L, Chou CH, Lei H, Barton ER, Maliga P. Chloroplast transformation for bioencapsulation and oral delivery using the immunoglobulin G fragment crystallizable (Fc) domain. Sci Rep 2023; 13:18916. [PMID: 37919321 PMCID: PMC10622566 DOI: 10.1038/s41598-023-45698-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Proinsulin Like Growth Factor I (prolGF-I) and myostatin (Mstn) regulate muscle regeneration and mass when intravenously delivered. We tested if chloroplast bioencapsulated forms of these proteins may serve as a non-invasive means of drug delivery through the digestive system. We created tobacco (Nicotiana tabacum) plants carrying GFP-Fc1, proIGF-I-Fc1, and Mstn-Fc1 fusion genes, in which fusion with the immunoglobulin G Fc domain improved both protein stability and absorption in the small intestine. No transplastomic plants were obtained with the Mstn-Fc1 gene, suggesting that the protein is toxic to plant cells. proIGF-I-Fc1 protein levels were too low to enable in vivo testing. However, GFP-Fc1 accumulated at a high level, enabling evaluation of chloroplast-made Fc fusion proteins for oral delivery. Tobacco leaves were lyophilized for testing in a mouse system. We report that the orally administered GFP-Fc1 fusion protein (5.45 µg/g GFP-Fc1) has been taken up by the intestinal epithelium cells, evidenced by confocal microscopy. GFP-Fc1 subsequently entered the circulation where it was detected by ELISA. Data reported here confirm that chloroplast expression and oral administration of lyophilized leaves is a potential delivery system of therapeutic proteins fused with Fc1, with the advantage that the proteins may be stored at room temperature.
Collapse
Affiliation(s)
- Lisa LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Chih-Hsuan Chou
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Hanqin Lei
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611, USA.
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
9
|
Liu W, He J, Li Z, Weng S, Guo C, He J. Oxygen-Sensing Protein Cysteamine Dioxygenase from Mandarin Fish Involved in the Arg/N-Degron Pathway and Siniperca chuatsi Rhabdovirus Infection. Viruses 2023; 15:1644. [PMID: 37631990 PMCID: PMC10458066 DOI: 10.3390/v15081644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in teleost fish. Mandarin fish (Siniperca chuatsi) is one of the most important freshwater economic fishes in China. As the scale of the rearing density continues to increase, hypoxia has become an important factor threatening the growth of mandarin fish. Herein, the molecular characterization, the oxygen-sensing enzyme function, and the role in virus infection of ADO from mandarin fish (scADO) were explored. Bioinformation analysis results showed that scADO had all the molecular foundations for achieving thiol dioxygenase function: three histidine residues coordinated with Fe(II), PCO/ADO domain, and a "jelly roll" β-barrel structure. The expression pattern analysis showed that scAdo was highly expressed in the immune-related tissues, liver, and kidneys and responded to hypoxia on the expression level. Protein degradation experiment results revealed that scADO could lead to the degradation of RGS4 protein through the Cys branch of the Arg/N-degron pathway. Furthermore, the expression levels of scADO responded to fish virus infection. scADO could significantly promote the replication of Siniperca chuatsi rhabdovirus, and this was associated with its thiol dioxygenase activity. These findings not only demonstrate scADO as an oxygen-sensing protein in teleost fish, but are also of considerable importance for clarifying the contribution of the mechanism of hypoxia to the outbreaks of fish viruses.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.L.); (J.H.); (Z.L.); (J.H.)
| | - Jian He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.L.); (J.H.); (Z.L.); (J.H.)
- Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.L.); (J.H.); (Z.L.); (J.H.)
| | - Shaoping Weng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.L.); (J.H.); (Z.L.); (J.H.)
- Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jianguo He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.L.); (J.H.); (Z.L.); (J.H.)
- Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
10
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
11
|
Sun Y, Li J, Zhang L, Lin R. Regulation of chloroplast protein degradation. J Genet Genomics 2023:S1673-8527(23)00049-8. [PMID: 36863685 DOI: 10.1016/j.jgg.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Chloroplasts are unique organelles that not only provide sites for photosynthesis and many metabolic processes, but also are sensitive to various environmental stresses. Chloroplast proteins are encoded by genes from both nuclear and chloroplast genomes. During chloroplast development and responses to stresses, the robust protein quality control systems are essential for regulation of protein homeostasis and the integrity of chloroplast proteome. In this review, we summarize the regulatory mechanisms of chloroplast protein degradation refer to protease system, ubiquitin-proteasome system, and the chloroplast autophagy. These mechanisms symbiotically play a vital role in chloroplast development and photosynthesis under both normal or stress conditions.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
12
|
Wang Q, Sun L, Knut Lundquist P. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. Proteomics 2023; 23:e2100377. [PMID: 36070201 PMCID: PMC9957804 DOI: 10.1002/pmic.202100377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Peter Knut Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Dougan DA, Truscott KN. Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS. Methods Enzymol 2023. [PMID: 37532398 DOI: 10.1016/bs.mie.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.
Collapse
|
14
|
Pożoga M, Armbruster L, Wirtz M. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants. Int J Mol Sci 2022; 23:ijms232214492. [PMID: 36430970 PMCID: PMC9692967 DOI: 10.3390/ijms232214492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids, mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between these subcellular compartments. While up to 80% of cytosolic and 20-30% of plastidic proteins are subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins such as their three-dimensional structure, binding properties and lifetime. Since the majority of proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent characterization of post-translationally acting plant Nats, which localize to the plasma membrane and the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in development and stress responses as well as their evolution-driven adaptation to function in different cellular compartments.
Collapse
|
15
|
Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, Sun Q, van Wijk KJ. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:1339-1357. [PMID: 35946374 DOI: 10.1111/nph.18426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A network of peptidases governs proteostasis in plant chloroplasts and mitochondria. This study reveals strong genetic and functional interactions in Arabidopsis between the chloroplast stromal CLP chaperone-protease system and the PREP1,2 peptidases, which are dually localized to chloroplast stroma and the mitochondrial matrix. Higher order mutants defective in CLP or PREP proteins were generated and analyzed by quantitative proteomics and N-terminal proteomics (terminal amine isotopic labeling of substrates (TAILS)). Strong synergistic interactions were observed between the CLP protease system (clpr1-2, clpr2-1, clpc1-1, clpt1, clpt2) and both PREP homologs (prep1, prep2) resulting in embryo lethality or growth and developmental phenotypes. Synergistic interactions were observed even when only one of the PREP proteins was lacking, suggesting that PREP1 and PREP2 have divergent substrates. Proteome phenotypes were driven by the loss of CLP protease capacity, with little impact from the PREP peptidases. Chloroplast N-terminal proteomes showed that many nuclear encoded chloroplast proteins have alternatively processed N-termini in prep1prep2, clpt1clpt2 and prep1prep2clpt1clpt2. Loss of chloroplast protease capacity interferes with stromal processing peptidase (SPP) activity due to folding stress and low levels of accumulated cleaved cTP fragments. PREP1,2 proteolysis of cleaved cTPs is complemented by unknown proteases. A model for CLP and PREP activity within a hierarchical chloroplast proteolysis network is proposed.
Collapse
Affiliation(s)
- Elden Rowland
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Jitae Kim
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
- S-Korea Bioenergy Research Center, Chonnam National University, Gwangju, 61186, South Korea
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Anton Poliakov
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | | | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
16
|
Meinnel T, Giglione C. N-terminal modifications, the associated processing machinery, and their evolution in plastid-containing organisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6013-6033. [PMID: 35768189 DOI: 10.1093/jxb/erac290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The N-terminus is a frequent site of protein modifications. Referring primarily to knowledge gained from land plants, here we review the modifications that change protein N-terminal residues and provide updated information about the associated machinery, including that in Archaeplastida. These N-terminal modifications include many proteolytic events as well as small group additions such as acylation or arginylation and oxidation. Compared with that of the mitochondrion, the plastid-dedicated N-terminal modification landscape is far more complex. In parallel, we extend this review to plastid-containing Chromalveolata including Stramenopiles, Apicomplexa, and Rhizaria. We report a well-conserved machinery, especially in the plastid. Consideration of the two most abundant proteins on Earth-Rubisco and actin-reveals the complexity of N-terminal modification processes. The progressive gene transfer from the plastid to the nuclear genome during evolution is exemplified by the N-terminus modification machinery, which appears to be one of the latest to have been transferred to the nuclear genome together with crucial major photosynthetic landmarks. This is evidenced by the greater number of plastid genes in Paulinellidae and red algae, the most recent and fossil recipients of primary endosymbiosis.
Collapse
Affiliation(s)
- Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
17
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
18
|
Zhang X, Hu Y, Eme L, Maruyama S, Eveleigh RJ, Curtis BA, Sibbald SJ, Hopkins JF, Filloramo GV, van Wijk KJ, Archibald JM. TreeTuner: A pipeline for minimizing redundancy and complexity in large phylogenetic datasets. STAR Protoc 2022; 3:101175. [PMID: 35243369 PMCID: PMC8857567 DOI: 10.1016/j.xpro.2022.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Various bioinformatics protocols have been developed for trimming the number of operational taxonomic units (OTUs) in phylogenetic datasets, but they typically require significant manual intervention. Here we present TreeTuner, a semiautomated pipeline that allows both coarse and fine-scale tuning of large protein sequence phylogenetic datasets via the minimization of OTU redundancy. TreeTuner facilitates preliminary investigation of such datasets as well as more rigorous downstream analysis of specific subsets of OTUs. For complete details on the use and execution of this protocol, please refer to Maruyama et al. (2013) and Sibbald et al. (2019).
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yining Hu
- Department of Computer Science, Western University, London, ON N6A 5B7, Canada
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Shinichiro Maruyama
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Robert J.M. Eveleigh
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bruce A. Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Shannon J. Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia F. Hopkins
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gina V. Filloramo
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
19
|
Jha SG, Borowsky AT, Cole BJ, Fahlgren N, Farmer A, Huang SSC, Karia P, Libault M, Provart NJ, Rice SL, Saura-Sanchez M, Agarwal P, Ahkami AH, Anderton CR, Briggs SP, Brophy JAN, Denolf P, Di Costanzo LF, Exposito-Alonso M, Giacomello S, Gomez-Cano F, Kaufmann K, Ko DK, Kumar S, Malkovskiy AV, Nakayama N, Obata T, Otegui MS, Palfalvi G, Quezada-Rodríguez EH, Singh R, Uhrig RG, Waese J, Van Wijk K, Wright RC, Ehrhardt DW, Birnbaum KD, Rhee SY. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 2021; 10:e66877. [PMID: 34491200 PMCID: PMC8423441 DOI: 10.7554/elife.66877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.
Collapse
Affiliation(s)
- Suryatapa Ghosh Jha
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Alexander T Borowsky
- Department of Botany and Plant Sciences, University of California, RiversideRiversideUnited States
| | - Benjamin J Cole
- Joint Genome Institute, Lawrence Berkeley National LaboratoryWalnut CreekUnited States
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Andrew Farmer
- National Center for Genome ResourcesSanta FeUnited States
| | | | - Purva Karia
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-LincolnLincolnUnited States
| | - Nicholas J Provart
- Department of Cell and Systems Biology and the Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Selena L Rice
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Maite Saura-Sanchez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos AiresBuenos AiresArgentina
| | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Amir H Ahkami
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National LaboratoryRichlandUnited States
| | - Steven P Briggs
- Department of Biological Sciences, University of California, San DiegoSan DiegoUnited States
| | | | | | - Luigi F Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico IINapoliItaly
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
- Department of Plant Biology, Carnegie Institution for ScienceTübingenGermany
| | | | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast LansingUnited States
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universitaet zu BerlinBerlinGermany
| | - Dae Kwan Ko
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Sagar Kumar
- Department of Plant Breeding & Genetics, Mata Gujri College, Fatehgarh Sahib, Punjabi UniversityPatialaIndia
| | - Andrey V Malkovskiy
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Naomi Nakayama
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-LincolnMadisonUnited States
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-MadisonMadisonUnited States
| | - Gergo Palfalvi
- Division of Evolutionary Biology, National Institute for Basic BiologyOkazakiJapan
| | - Elsa H Quezada-Rodríguez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de MéxicoLeónMexico
| | - Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhianaIndia
| | - R Glen Uhrig
- Department of Science, University of AlbertaEdmontonCanada
| | - Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of TorontoTorontoCanada
| | - Klaas Van Wijk
- School of Integrated Plant Science, Plant Biology Section, Cornell UniversityIthacaUnited States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia TechBlacksburgUnited States
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for ScienceStanfordUnited States
| |
Collapse
|
20
|
Zheng Y, Nandakumar KS, Cheng K. Optimization of CAR-T Cell-Based Therapies Using Small-Molecule-Based Safety Switches. J Med Chem 2021; 64:9577-9591. [PMID: 34191515 DOI: 10.1021/acs.jmedchem.0c02054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor T cell therapy has demonstrated antileukemia efficacy. However, this therapeutic approach is hampered by severe cytokine release syndrome, which is a major impediment to its widespread application in the clinic. The safety of this approach can be improved by engineering a rapid and reversible "off" or "on" safety switch for CAR-T cells. Cutting-edge investigations combining the advantages of genetic engineering and chemical technology have led to the invention of small-molecule-based safety switches for CAR-T cells. Small molecules such as FITC, folate, rimiducid, rapamycin, proteolysis-targeting chimera (PROTAC) compounds, and dasatinib are being investigated to design such safety switches. Optimized CAR-T cells may have enhanced therapeutic efficiency with fewer adverse effects. Herein we summarize and classify current novel small-molecule-based safety switches for CAR-T cells that aim to provide pharmacological control over the activities and toxicities associated with CAR-T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Yanjun Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Tying up loose ends: the N-degron and C-degron pathways of protein degradation. Biochem Soc Trans 2021; 48:1557-1567. [PMID: 32627813 PMCID: PMC7458402 DOI: 10.1042/bst20191094] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Selective protein degradation by the ubiquitin-proteasome system (UPS) is thought to be governed primarily by the recognition of specific motifs — degrons — present in substrate proteins. The ends of proteins — the N- and C-termini – have unique properties, and an important subset of protein–protein interactions involve the recognition of free termini. The first degrons to be discovered were located at the extreme N-terminus of proteins, a finding which initiated the study of the N-degron (formerly N-end rule) pathways, but only in the last few years has it emerged that a diverse set of C-degron pathways target analogous degron motifs located at the extreme C-terminus of proteins. In this minireview we summarise the N-degron and C-degron pathways currently known to operate in human cells, focussing primarily on those that have been discovered in recent years. In each case we describe the cellular machinery responsible for terminal degron recognition, and then consider some of the functional roles of terminal degron pathways. Altogether, a broad spectrum of E3 ubiquitin ligases mediate the recognition of a diverse array of terminal degron motifs; these degradative pathways have the potential to influence a wide variety of cellular functions.
Collapse
|
22
|
Giglione C, Meinnel T. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs. TRENDS IN PLANT SCIENCE 2021; 26:375-391. [PMID: 33384262 DOI: 10.1016/j.tplants.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
N terminal protein α-acetylation (NTA) is a pervasive protein modification that has recently attracted renewed interest. Early studies on NTA were mostly conducted in yeast and metazoans, providing a detailed portrait of the modification, which was indirectly applied to all eukaryotes. However, new findings originating from photosynthetic organisms have expanded our knowledge of this modification, revealing strong similarities as well as idiosyncratic features. Here, we review the most recent advances on NTA and its dedicated machinery in photosynthetic organisms. We discuss the cytosolic and unique plastid NTA machineries and their critical biological roles in development, stress responses, protein translocation, and stability. These new findings suggest that the multitasking plastid and cytosolic machineries evolved to support the specific needs of photoautotrophs.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Bouchnak I, van Wijk KJ. Structure, function, and substrates of Clp AAA+ protease systems in cyanobacteria, plastids, and apicoplasts: A comparative analysis. J Biol Chem 2021; 296:100338. [PMID: 33497624 PMCID: PMC7966870 DOI: 10.1016/j.jbc.2021.100338] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
ATPases Associated with diverse cellular Activities (AAA+) are a superfamily of proteins that typically assemble into hexameric rings. These proteins contain AAA+ domains with two canonical motifs (Walker A and B) that bind and hydrolyze ATP, allowing them to perform a wide variety of different functions. For example, AAA+ proteins play a prominent role in cellular proteostasis by controlling biogenesis, folding, trafficking, and degradation of proteins present within the cell. Several central proteolytic systems (e.g., Clp, Deg, FtsH, Lon, 26S proteasome) use AAA+ domains or AAA+ proteins to unfold protein substrates (using energy from ATP hydrolysis) to make them accessible for degradation. This allows AAA+ protease systems to degrade aggregates and large proteins, as well as smaller proteins, and feed them as linearized molecules into a protease chamber. This review provides an up-to-date and a comparative overview of the essential Clp AAA+ protease systems in Cyanobacteria (e.g., Synechocystis spp), plastids of photosynthetic eukaryotes (e.g., Arabidopsis, Chlamydomonas), and apicoplasts in the nonphotosynthetic apicomplexan pathogen Plasmodium falciparum. Recent progress and breakthroughs in identifying Clp protease structures, substrates, substrate adaptors (e.g., NblA/B, ClpS, ClpF), and degrons are highlighted. We comment on the physiological importance of Clp activity, including plastid biogenesis, proteostasis, the chloroplast Protein Unfolding Response, and metabolism, across these diverse lineages. Outstanding questions as well as research opportunities and priorities to better understand the essential role of Clp systems in cellular proteostasis are discussed.
Collapse
Affiliation(s)
- Imen Bouchnak
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York, USA.
| |
Collapse
|
24
|
Westrich LD, Gotsmann VL, Herkt C, Ries F, Kazek T, Trösch R, Armbruster L, Mühlenbeck JS, Ramundo S, Nickelsen J, Finkemeier I, Wirtz M, Storchová Z, Räschle M, Willmund F. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Res 2021; 49:400-415. [PMID: 33330923 PMCID: PMC7797057 DOI: 10.1093/nar/gkaa1192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.
Collapse
Affiliation(s)
- Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Tanja Kazek
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jens Stephan Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, 600 16th St, N316, San Francisco, CA 94143, USA
| | - Jörg Nickelsen
- Department of Molecular Plant Science, University of Munich, Grosshaderner-Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
25
|
Kim L, Heo J, Kwon DH, Shin JS, Jang SH, Park ZY, Song HK. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Protein Sci 2020; 30:700-708. [PMID: 33368743 DOI: 10.1002/pro.4018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
The N-degron pathway determines the half-life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N-terminal residue (N-degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N-degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N-degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N-degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N-degron. The key determinants for α-amino group recognition are conserved among all ClpS proteins, but the α3-helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N-degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N-degron. A combination of the fine-tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N-degron selectivity of the plant ClpS protein.
Collapse
Affiliation(s)
- Leehyeon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jiwon Heo
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Jin Seok Shin
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
26
|
Polymerase delta-interacting protein 38 (PDIP38) modulates the stability and activity of the mitochondrial AAA+ protease CLPXP. Commun Biol 2020; 3:646. [PMID: 33159171 PMCID: PMC7647994 DOI: 10.1038/s42003-020-01358-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Over a decade ago Polymerase δ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX. Our structural analysis revealed that PDIP38 is composed of two conserved domains separated by an α/β linker region. The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like β-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain of CLPX. In contrast, the C-terminal (DUF525) domain forms an immunoglobin-like β-sandwich fold, which contains a highly conserved putative substrate binding pocket. Importantly, PDIP38 modulates the substrate specificity of CLPX and protects CLPX from LONM-mediated degradation, which stabilises the cellular levels of CLPX. Collectively, our findings shed new light on the mechanism and function of mitochondrial PDIP38, demonstrating that PDIP38 is a bona fide adaptor protein for the mitochondrial protease, CLPXP. Strack et al find that Polymerase δ interacting protein 38 (PDIP38) is targeted to the mitochondrial matrix where it colocalises with the mitochondrial AAA + protein CLPXP. PDIP38 modulates the specificity of CLPXP in vitro and alters the stability of CLPX in vitro and in cells. The PDIP38 structure leads the authors to speculate that PDIP38 is a CLPXP adaptor.
Collapse
|
27
|
Hofsetz E, Demir F, Szczepanowska K, Kukat A, Kizhakkedathu JN, Trifunovic A, Huesgen PF. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis. Mol Cell Proteomics 2020; 19:1330-1345. [PMID: 32467259 PMCID: PMC8014998 DOI: 10.1074/mcp.ra120.002082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/24/2020] [Indexed: 12/29/2022] Open
Abstract
The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.
Collapse
Affiliation(s)
- Eduard Hofsetz
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Alexandra Kukat
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, School of Biomedical Engineering, Department of Pathology & Laboratory Medicine, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging at CECAD Research Centre, and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Pitter F Huesgen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Cologne, Germany, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
28
|
Bienvenut WV, Brünje A, Boyer J, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 2020; 16:e9464. [PMID: 32633465 PMCID: PMC7339202 DOI: 10.15252/msb.20209464] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Collapse
Affiliation(s)
- Willy V Bienvenut
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Génétique Quantitative et ÉvolutionGif‐sur‐YvetteFrance
| | - Annika Brünje
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Jean‐Baptiste Boyer
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jens S Mühlenbeck
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Gautier Bernal
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute of Plant Sciences Paris‐SaclayGif‐sur‐YvetteFrance
| | - Ines Lassowskat
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Cyril Dian
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Eric Linster
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Trinh V Dinh
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Minna M Koskela
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Institute of MicrobiologyTřeboňCzech Republic
| | - Vincent Jung
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute IMAGINEParisFrance
| | - Julian Seidel
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Laura K Schyrba
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Aiste Ivanauskaite
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Jürgen Eirich
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Rüdiger Hell
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Paula Mulo
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Markus Wirtz
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Thierry Meinnel
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Carmela Giglione
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Iris Finkemeier
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| |
Collapse
|