1
|
Pasques O, Munné-Bosch S. Ancient trees are essential elements for high-mountain forest conservation: Linking the longevity of trees to their ecological function. Proc Natl Acad Sci U S A 2024; 121:e2317866121. [PMID: 38315840 PMCID: PMC10873607 DOI: 10.1073/pnas.2317866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024] Open
Abstract
Mature forests and their extremely old trees are rare and threatened ancient vestiges in remote European high-mountain regions. Here, we analyze the role that extremely long-living trees have in mature forests biodiversity in relation to their singular traits underlying longevity. Tree size and age determine relative growth rates, bud abortion, and the water status of long-living trees. The oldest trees suffer indefectible age-related constraints but possess singular evolutionary traits defined by fitness adaptation, modular autonomy, and a resilient metabolism that allow them to have irreplaceable roles in the ecosystem as biodiversity anchors of vulnerable lichen species like Letharia vulpina. We suggest that the role of ancient trees as unique biodiversity reservoirs is linked to their singular physiological traits associated with longevity. The set of evolutionarily plastic tools that can only be provided by centuries or millennia of longevity helps the oldest trees of mature forests drive singular ecological relationships that are irreplaceable and necessary for ecosystem dynamics.
Collapse
Affiliation(s)
- Ot Pasques
- Department of Evolutionary Biology, Ecology and Environmental Science, University of Barcelona, Barcelona08028, Spain
- Research Institute in Biodiversity, University of Barcelona, Barcelona08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Science, University of Barcelona, Barcelona08028, Spain
- Research Institute in Biodiversity, University of Barcelona, Barcelona08028, Spain
| |
Collapse
|
2
|
Baden HM, Colchero F, Cubey R, Dahlgren JP. Aging varies greatly within a single genus: A demographic study of Rhododendron spp. in botanic gardens. AMERICAN JOURNAL OF BOTANY 2023; 110:e16247. [PMID: 37792540 DOI: 10.1002/ajb2.16247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
PREMISE There is mounting evidence that age matters in plant demography, but also indications that relationships between age and demographic rates may vary significantly among species. Age-based plant demographic data, however, are time-consuming to collect and still lacking for most species, and little is known about general patterns across species or what may drive differences. METHODS We used individual birth and death records for 12 Rhododendron species from botanic gardens and conducted Bayesian survival trajectory analyses to assess how mortality changed with age. We calculated the demographic measures of aging rate, life-span equality, and life expectancy for each species, and assessed their relationships with the climatic conditions at species' sites of ancestral origin and with taxonomic group (subgenus). RESULTS We found substantial among-species variation in survival trajectories, with mortality increasing, decreasing, or remaining constant with advancing age. Moreover, we found no relationships between demographic measures and ancestral climatic conditions but there were statistically significant differences among taxonomic groups in the rate of change in mortality with age (aging rate). CONCLUSIONS We conclude that demographic consequences of aging can differ qualitatively, even among species in the same genus. In addition, taxonomic trends in aging rates indicate they may be genetically determined, though evolutionary drivers are still unclear. Furthermore, we suggest there is untapped potential in using botanic garden records in future studies on plant life history.
Collapse
Affiliation(s)
- H Maria Baden
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark
- Department of Biology, University of Southern Denmark
| | - Fernando Colchero
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark
- Department of Mathematics and Data Science, University of Southern Denmark
| | - Rob Cubey
- Plant Records, Royal Botanic Garden Edinburgh, United Kingdom
| | - Johan P Dahlgren
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark
- Department of Biology, University of Southern Denmark
| |
Collapse
|
3
|
Batalova AY, Krutovsky KV. Genetic and Epigenetic Mechanisms of Longevity in Forest Trees. Int J Mol Sci 2023; 24:10403. [PMID: 37373550 DOI: 10.3390/ijms241210403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Trees are unique in terms of development, sustainability and longevity. Some species have a record lifespan in the living world, reaching several millennia. The aim of this review is to summarize the available data on the genetic and epigenetic mechanisms of longevity in forest trees. In this review, we have focused on the genetic aspects of longevity of a few well-studied forest tree species, such as Quercus robur, Ginkgo biloba, Ficus benghalensis and F. religiosa, Populus, Welwitschia and Dracaena, as well as on interspecific genetic traits associated with plant longevity. A key trait associated with plant longevity is the enhanced immune defense, with the increase in gene families such as RLK, RLP and NLR in Quercus robur, the expansion of the CC-NBS-LRR disease resistance families in Ficus species and the steady expression of R-genes in Ginkgo biloba. A high copy number ratio of the PARP1 family genes involved in DNA repair and defense response was found in Pseudotsuga menziesii, Pinus sylvestris and Malus domestica. An increase in the number of copies of the epigenetic regulators BRU1/TSK/MGO3 (maintenance of meristems and genome integrity) and SDE3 (antiviral protection) was also found in long-lived trees. CHG methylation gradually declines in the DAL 1 gene in Pinus tabuliformis, a conservative age biomarker in conifers, as the age increases. It was shown in Larix kaempferi that grafting, cutting and pruning change the expression of age-related genes and rejuvenate plants. Thus, the main genetic and epigenetic mechanisms of longevity in forest trees were considered, among which there are both general and individual processes.
Collapse
Affiliation(s)
- Anastasia Y Batalova
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
| | - Konstantin V Krutovsky
- Genome Research and Education Center, Laboratory of Forest Genomics, Department of Genomics and Bioinformatics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia
- Department of Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University of Göttingen, Albrecht-Thaer-Weg 3, 37075 Göttingen, Germany
- Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str. 3, 119333 Moscow, Russia
- Scientific and Methodological Center, G.F. Morozov Voronezh State University of Forestry and Technologies, Timiryazeva Str. 8, 394036 Voronezh, Russia
| |
Collapse
|
4
|
Pasques O, Munné-Bosch S. Physiological mechanisms underlying extreme longevity in mountain pine trees. PLANT PHYSIOLOGY 2023; 191:974-985. [PMID: 36440969 PMCID: PMC9922391 DOI: 10.1093/plphys/kiac540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Ancient trees are life history longevity winners that mostly persist in remote and environmentally harsh mountainous areas. Here, we performed a multifeature analysis in a protected mature mountain pine (Pinus uncinata) forest to identify the morphological and physiological traits that make these trees unique. We compared the physiology of meristematic and somatic tissues (apical buds and needles, respectively) from juvenile, mature young, mature old, and mature ancient trees under cold stress and nonstress conditions. We successfully identified key morphological features of extreme longevity at the organism level, as well as various growth, vigor, stress, and dormancy markers underlying extreme longevity in old and ancient trees. Results indicated that evolution has exerted selective pressure on specific physiological traits that make trees become longevity winners (<0.1% of the tree population were ancient trees, with an average trunk diameter >100 cm and an estimated age of 700 years). Traits entailing longevity not only included apical dominance loss, epicormic growth, and modular senescence, but also an extreme plasticity in both meristematic and somatic tissues (buds and needles, respectively), as shown by various physiological markers. In conclusion, ancient trees are oddities that not only possess a unique ecological value but also show divergent physiological behaviors selected during their evolution to allow them to cope with adversities and attain long life.
Collapse
Affiliation(s)
- Ot Pasques
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona 08028, Spain
- Research Institute in Biodiversity (IRBio), University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
5
|
Ji Y, Chen X, Lin S, Traw MB, Tian D, Yang S, Wang L, Huang J. High level of somatic mutations detected in a diploid banana wild relative Musa basjoo. Mol Genet Genomics 2023; 298:67-77. [PMID: 36283995 DOI: 10.1007/s00438-022-01959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Plants are thought to lack an early segregating germline and often retain both asexual and sexual reproduction, both of which may allow somatic mutations to enter the gametes or clonal progeny, and thereby impact plant evolution. It is yet unclear how often these somatic mutations occur during plant development and what proportion is transmitted to their sexual or cloned offspring. Asexual "seedless" propagation has contributed greatly to the breeding in many fruit crops, such as citrus, grapes and bananas. Whether plants in these lineages experience substantial somatic mutation accumulation is unknown. To estimate the somatic mutation accumulation and inheritance among a clonal population of plant, here we assess somatic mutation accumulation in Musa basjoo, a diploid banana wild relative, using 30 whole-genome resequenced samples collected from five structures, including leaves, sheaths, panicle, roots and underground rhizome connecting three clonal individuals. We observed 18.5 high proportion de novo somatic mutations on average between each two adjacent clonal suckers, equivalent to ~ 2.48 × 10-8 per site per asexual generation, higher than the per site per sexual generation rates (< 1 × 10-8) reported in Arabidopsis and peach. Interestingly, most of these inter-ramet somatic mutations were shared simultaneously in different tissues of the same individual with a high level of variant allele fractions, suggesting that these somatic mutations arise early in ramet development and that each individual may develop only from a few apical stem cells. These results thus suggest substantial mutation accumulation in a wild relative of banana. Our work reveals the significance of somatic mutation in Musa basjoo genetics variations and contribute to the trait improvement breeding of bananas and other asexual clonal crops.
Collapse
Affiliation(s)
- Yilun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaonan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengqiu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Munné-Bosch S. Spatiotemporal limitations in plant biology research. TRENDS IN PLANT SCIENCE 2022; 27:346-354. [PMID: 34750071 DOI: 10.1016/j.tplants.2021.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 05/12/2023]
Abstract
The way we currently capture biological processes in space and time often limits our understanding of plant development and stress responses, leading to an incomplete picture of plant life. Choosing the correct time frame for the study of every biological process, from seed germination to senescence or in plant stress responses, is essential, despite methodological limitations. A greater effort is needed in current plant biology studies to incorporate spatiotemporal approaches so that scientific knowledge meets the possibilities technological advances currently provide. From molecular, biochemical, and cellular approaches to (eco)physiological and population studies scaled up to the ecosystem level, there is an urgent need to link space and time using integrative and scalable data.
Collapse
Affiliation(s)
- Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Research in Biodiversity (IRBio), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain; Institute of Nutrition and Food Safety (INSA), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Cannon CH, Piovesan G, Munné-Bosch S. Old and ancient trees are life history lottery winners and vital evolutionary resources for long-term adaptive capacity. NATURE PLANTS 2022; 8:136-145. [PMID: 35102274 DOI: 10.1038/s41477-021-01088-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 12/07/2021] [Indexed: 05/26/2023]
Abstract
Trees can live for many centuries with sustained fecundity and death is largely stochastic. We use a neutral stochastic model to examine tree demographic patterns that emerge over time, across a range of population sizes and empirically observed mortality rates. A small proportion of trees (~1% at 1.5% mortality) are life-history 'lottery winners', achieving ages >10-20× the median age. Maximum age increases with bigger populations and lower mortality rates. One-quarter of trees (~24%) achieve ages that are three to four times greater than the median age. Three age classes (mature, old and ancient) contribute unique evolutionary diversity across complex environmental cycles. Ancient trees are an emergent property of forests that requires many centuries to generate. They radically change variance in generation time and population fitness, bridging centennial environmental cycles. These life-history 'lottery' winners are vital to long-term forest adaptive capacity and provide invaluable data about environmental history and individual longevity. Old and ancient trees cannot be replaced through restoration or regeneration for many centuries. They must be protected to preserve their invaluable diversity.
Collapse
Affiliation(s)
| | - Gianluca Piovesan
- Department of Ecological and Biological Sciences (DEB), Università Tuscia, Viterbo, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute in Biodiversity (IrBio), Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Pérez-Llorca M, Munné-Bosch S. Aging, stress, and senescence in plants: what can biological diversity teach us? GeroScience 2021; 43:167-180. [PMID: 33590435 DOI: 10.1007/s11357-021-00336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Aging, stress, and senescence in plants are interconnected processes that determine longevity. We focus here on compiling and discussing our current knowledge on the mechanisms of development that long-lived perennial plants have evolved to prevent and delay senescence. Clonal and nonclonal perennial herbs of various life forms and longevities will be particularly considered to illustrate what biological diversity can teach us about aging as a universal phenomenon. Source-sink relations and redox signaling will also be discussed as examples of regulatory mechanisms of senescence at the organ level. Whether or not effective mechanisms that biological diversity has evolved to completely prevent the wear and tear of aging will be applicable to human aging in the near future ultimately depends on ethical aspects.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.,Institute of Research in Biodiversity (IRBio), University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain. .,Institute of Research in Biodiversity (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|