1
|
Chen D, Xu X, Yang Y, Meng H, Xu M, Dong L, Ma G, Zhang X. Discovery of Cadinane-Type Sesquiterpenoids from the Infected Stems of Hibiscus tiliaceus as Potential Agrochemical Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4089-4099. [PMID: 38353561 DOI: 10.1021/acs.jafc.3c08508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Ten new cadinane-type sesquiterpenoids, named hibisceusins I-R (1-10), along with 14 known sesquiterpenoids (11-24), were acquired from the tainted stems of Hibiscus tiliaceus. Their structures were identified via spectroscopic analysis, one-dimensional (1D) and two-dimensional (2D) NMR, and computer-assisted structure elucidation techniques, including infrared (IR) and mass spectrometry (MS) data. Additionally, subsequent DP4/DP4+ probability methods were used to resolve 3's relative configurations by comparing their experimental values to the predicted NMR data. The absolute configurations of compounds 1-4 were measured through electronic circular dichroism (ECD) spectra. The ability of all isolates to inhibit the growth of five phytopathogenic fungi (Rhizopus stolonifer, Verticillium dahliae Kleb., Thanatephorus cucumeris, Fusarium oxysporum Schltdl., and F. oxysporum HK-27) was evaluated. Aldehydated sesquiterpenoids (1, 6-9, 11, 12, and 22) and a known sesquiterpenoid quinine (18) exhibited significant inhibitory activities against V. dahliae, T. cucumeris, F. oxysporum, and F. oxysporum HK-27 with minimum inhibitory concentration (MIC) values of 2.5-50 μg/mL, but all isolates remained inactive against R. stolonifer. Moreover, the effects of the isolates on the mycelial morphology were watched through scanning electron microscopy. This study revealed that aldehydated cadinane-type sesquiterpenoids could be used as novel antifungal molecules to develop agrochemical fungicides in plant protection.
Collapse
Affiliation(s)
- Deli Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xudong Xu
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yun Yang
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Hui Meng
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Minghui Xu
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Lin Dong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Guoxu Ma
- Hainan Branch Institute of Medicinal Plant Development (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaopo Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
2
|
Wu S, Malaco Morotti AL, Wang S, Wang Y, Xu X, Chen J, Wang G, Tatsis EC. Convergent gene clusters underpin hyperforin biosynthesis in St John's wort. THE NEW PHYTOLOGIST 2022; 235:646-661. [PMID: 35377483 DOI: 10.1111/nph.18138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The meroterpenoid hyperforin is responsible for the antidepressant activity of St John's wort extracts, but the genes controlling its biosynthesis are unknown. Using genome mining and biochemical work, we characterize two biosynthetic gene clusters (BGCs) that encode the first three steps in the biosynthesis of hyperforin precursors. The findings of syntenic and phylogenetic analyses reveal the parallel assembly of the two BGCs. The syntenous BGC in Mesua ferrea indicates that the first cluster was assembled before the divergence of the Hypericaceae and Calophyllaceae families. The assembly of the second cluster is the result of a coalescence of genomic fragments after a major duplication event. The differences between the two BGCs - in terms of gene expression, response to methyl jasmonate, substrate specificity and subcellular localization of key enzymes - suggest that the presence of the two clusters could serve to generate separate pools of precursors. The parallel assembly of two BGCs with similar compositions in a single plant species is uncommon, and our work provides insights into how and when these gene clusters form. Our discovery helps to advance our understanding of the evolution of plant specialized metabolism and its genomic organization. Additionally, our results offer a foundation from which hyperforin biosynthesis can be more fully understood, and which can be used in future metabolic engineering applications.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, 666303, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- CEPAMS - Centre of Excellence for Plant and Microbial Science, Shanghai, 200032, China
| |
Collapse
|
3
|
Uenoyama R, Miyazaki T, Adachi M, Nishikawa T, Hurst JL, Miyazaki M. Domestic cat damage to plant leaves containing iridoids enhances chemical repellency to pests. iScience 2022; 25:104455. [PMID: 35880027 PMCID: PMC9308154 DOI: 10.1016/j.isci.2022.104455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Catnip (Nepeta cataria) and silver vine (Actinidia polygama) produce iridoids with arthropod-repellent effects. Cats rub and roll against these plants, transferring iridoids to their fur that repels mosquitoes. Cats also lick and chew plant leaves during this response, although the benefit of this additional behavior has remained unknown. Here, we show that feline leaf damage substantially increases iridoid emission from both plants while also diversifying iridoids in silver vine. Cats show an equivalent duration of response to the complex cocktail of iridoids in damaged silver vine and to the much higher level of a single iridoid produced by damaged catnip. The more complex iridoid cocktail produced when silver vine is licked and chewed by cats increases mosquito repellency at low concentration. In conclusion, feline leaf damage contributes by releasing more mosquito-repellent iridoids. Feline olfactory and behavioral sensitivity is fine-tuned to plant-specific iridoid production for maximizing the mosquito repellency gained. Feline damage of specific plants increases release of iridoids that repel mosquitoes Damaged silver vine emits a relatively low amount of complex iridoids Damaged catnip emits a high amount of the predominant iridoid nepetalactone Cat responsiveness to these damaged plants is similar despite different iridoid emissions
Collapse
Affiliation(s)
- Reiko Uenoyama
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tamako Miyazaki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Masaatsu Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Jane L. Hurst
- Mammalian Behaviour & Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, CH64 7TE Neston, UK
| | - Masao Miyazaki
- Division of Agriculture, Graduate School of Arts and Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- Corresponding author
| |
Collapse
|
4
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
5
|
Hatcher CR, Sommer U, Heaney LM, Millett J. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis. ANNALS OF BOTANY 2021; 128:301-314. [PMID: 34077503 PMCID: PMC8389465 DOI: 10.1093/aob/mcab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Secondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis. METHODS We conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa. KEY RESULTS For the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought - 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants. CONCLUSIONS Secondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought - we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.
Collapse
Affiliation(s)
- Christopher R Hatcher
- Loughborough University, Loughborough, UK
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | - Ulf Sommer
- Biocrates Life Sciences AG, Innsbruck, Austria
| | - Liam M Heaney
- Agri-Tech Centre, Pershore College, Part of WCG, Pershore, UK
| | | |
Collapse
|
6
|
Biochemistry of Terpenes and Recent Advances in Plant Protection. Int J Mol Sci 2021; 22:ijms22115710. [PMID: 34071919 PMCID: PMC8199371 DOI: 10.3390/ijms22115710] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/23/2023] Open
Abstract
Biodiversity is adversely affected by the growing levels of synthetic chemicals released into the environment due to agricultural activities. This has been the driving force for embracing sustainable agriculture. Plant secondary metabolites offer promising alternatives for protecting plants against microbes, feeding herbivores, and weeds. Terpenes are the largest among PSMs and have been extensively studied for their potential as antimicrobial, insecticidal, and weed control agents. They also attract natural enemies of pests and beneficial insects, such as pollinators and dispersers. However, most of these research findings are shelved and fail to pass beyond the laboratory and greenhouse stages. This review provides an overview of terpenes, types, biosynthesis, and their roles in protecting plants against microbial pathogens, insect pests, and weeds to rekindle the debate on using terpenes for the development of environmentally friendly biopesticides and herbicides.
Collapse
|
7
|
Stander EA, Sepúlveda LJ, Dugé de Bernonville T, Carqueijeiro I, Koudounas K, Lemos Cruz P, Besseau S, Lanoue A, Papon N, Giglioli-Guivarc’h N, Dirks R, O’Connor SE, Atehortùa L, Oudin A, Courdavault V. Identifying Genes Involved in alkaloid Biosynthesis in Vinca minor Through Transcriptomics and Gene Co-Expression Analysis. Biomolecules 2020; 10:biom10121595. [PMID: 33255314 PMCID: PMC7761029 DOI: 10.3390/biom10121595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.
Collapse
Affiliation(s)
- Emily Amor Stander
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Liuda Johana Sepúlveda
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Thomas Dugé de Bernonville
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Inês Carqueijeiro
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Konstantinos Koudounas
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Pamela Lemos Cruz
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Sébastien Besseau
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Arnaud Lanoue
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, 49933 Angers, France;
| | - Nathalie Giglioli-Guivarc’h
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
| | - Ron Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands;
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Lucia Atehortùa
- Laboratorio de Biotecnología, Sede de Investigación Universitaria, Universidad de Antioquia, Antioquia Medellin 050021, Colombia;
| | - Audrey Oudin
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| | - Vincent Courdavault
- EA2106 “Biomolécules et Biotechnologies Végétales”, Université de Tours, 37200 Tours, France; (E.A.S.); (L.J.S.); (T.D.d.B.); (I.C.); (K.K.); (P.L.C.); (S.B.); (A.L.); (N.G.-G.)
- Correspondence: (A.O.); (V.C.)
| |
Collapse
|