1
|
Mao Y, Zhu P, Wang J, Fan C, Yu Z, Yao L, He W, Li X, Zhou F, Gan M, Wu X, Geng D. Protective effects of cannabinoid receptor 2 on annulus fibrosus degeneration by upregulating autophagy via AKT-mTOR-p70S6K signal pathway. Biochem Pharmacol 2024; 232:116734. [PMID: 39710272 DOI: 10.1016/j.bcp.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
As an important pathological process, annulus fibrosus (AF) degeneration contributes greatly to intervertebral disc degeneration (IVDD). Moreover, extracellular matrix (ECM) degradation and AF cell (AFC) autophagy are of utmost importance. The involvement of cannabinoid receptor type 2 (CB2) in the pathological mechanisms underlying different diseases has been demonstrated dueto its capacity toregulateautophagy. The objective of this study was to explore the impact of CB2-induced autophagy on AF degeneration and its underlying mechanism. First, the expression of CB2 in human degenerative AF tissues decreased with increasing degeneration degree, whereas its expression in rat AFCs increased in a concentration- and time-dependent manner following H2O2 intervention. Activation of CB2 increased collagen Ⅰ and Ⅱ expression while decreasing MMP3 and MMP13 expression. In addition, p62 expression decreased, whereas beclin-1 and LC3-Ⅱ/LC3-Ⅰ expression increased after JWH133 intervention. After CB2 activation, the addition of 3-MA impeded the synthesis of collagen Ⅰ and Ⅱ while preserving the elevated levels of MMP3 and MMP13. The activation of CB2 greatly suppressed the protein levels of the AKT/mTOR/p70S6K signaling pathway. In vivo, the JWH133 group exhibited elevated disk height index (DHI) and MRI signals, along with a comparatively intact structure of the intervertebral disc in contrast to the vehicle group. In general, CB2 activation could modulate apoptosis and autophagy in rat AFCs, thereby mitigating the advancement of IVDD. Moreover, the AKT/mTOR/p70S6K signaling pathway plays a role in the development of AF degeneration through the regulation of autophagy. The findings suggest that CB2 is a potentially effective therapeutic target for IVDD.
Collapse
Affiliation(s)
- Yubo Mao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiale Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chunyang Fan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zilin Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Lingye Yao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xinyun Li
- Department of Orthopedics, Medical School of Nantong University Clinical Medicine, Nantong 226000, Jiangsu, China
| | - Feng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Xiexing Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
2
|
Kolupaev YE, Yemets A, Yastreb TO, Blume Y. Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1505874. [PMID: 39726429 PMCID: PMC11669522 DOI: 10.3389/fpls.2024.1505874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly. However, many of its effects are related to its involvement in the signalling network of plant cells and its influence on the expression of a large number of genes important for adaptation to adverse factors. Insights into the functional relationships of melatonin with gasotransmitters (GT) - gaseous molecules performing signalling functions - are still emerging. This review has analysed and summarised the experimental data that testify to the participation of the main GTs - nitric oxide, hydrogen sulfide, and carbon monoxide - in the implementation of the protective effect of melatonin when plants are exposed to abiotic stimuli of various nature. In addition, modulation by melatonin of one of the most important components in the action of GTs and ROS - post-translational modifications of proteins and the influence of ROS and GTs on melatonin synthesis in plants under stress conditions and the specific physiological effects of exogenous melatonin and GTs have been reviewed. Finally, the prospects of the GTs' practical application to achieve synergistic stress-protective effects on plants have been considered.
Collapse
Affiliation(s)
- Yuriy E. Kolupaev
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Alla Yemets
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Tetiana O. Yastreb
- Yuriev Plant Production Institute, National Academy of Agrarian Sciences of Ukraine, Kharkiv, Ukraine
| | - Yaroslav Blume
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Kong L, Ma X, Zhang C, Kim SI, Li B, Xie Y, Yeo IC, Thapa H, Chen S, Devarenne TP, Munnik T, He P, Shan L. Dual phosphorylation of DGK5-mediated PA burst regulates ROS in plant immunity. Cell 2024; 187:609-623.e21. [PMID: 38244548 PMCID: PMC10872252 DOI: 10.1016/j.cell.2023.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/05/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
Collapse
Affiliation(s)
- Liang Kong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Xiyu Ma
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sung-Il Kim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - In-Cheol Yeo
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hem Thapa
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Timothy P Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, the Netherlands
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Zonnequin M, Belcour A, Delage L, Siegel A, Blanquart S, Leblanc C, Markov GV. Empirical evidence for metabolic drift in plant and algal lipid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1339132. [PMID: 38357267 PMCID: PMC10864609 DOI: 10.3389/fpls.2024.1339132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.
Collapse
Affiliation(s)
- Maëlle Zonnequin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
- Univ. Grenoble Alpes, Inria, Grenoble, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
5
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Kovalenko IS. Cannabinoids And Cannabinoid-Like Compounds: Biochemical Characterization And Pharmacological Perspectives. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Publication interest in cannabinoids, including phytocannabinoids, endogenous cannabinoids, synthetic cannabinoids and cannabinomimetic compounds, is due to the therapeutic potential of these compounds in inflammatory pathology. Since recent years, scientific interest was focused on compounds with cannabinomimetic activity. The therapeutic use of phytocannabinoids and endocannabinoids is somewhat limited due to unresolved issues of dosing, toxicity and safety in humans, while cannabinoid-like compounds combine similar therapeutic effects with a high confirmed safety. Targets for endocannabinoids and phytocannabinoids are endocannabinoid receptors 1 and 2, G protein-coupled receptors (GPCRs), peroxisome proliferator-activated receptors (PPARs), and transient receptor potential ion channels (TRPs). Non-endocannabinoid N-acylethanolamines do not interact with cannabinoid receptors and exhibit agonist activity towards non-cannabinoid receptors, such as PPARs, GPCRs and TRPs. This literature review includes contemporary information on the biological activity, metabolism and pharmacological properties of cannabinoids and cannabinoid-like compounds, as well as their receptors. We established that only a few studies were devoted to the relationship of non-endocannabinoid N-acylethanolamines with non-cannabinoid receptors, such as PPARs, GPCRs, and also with TRPs. We have focused on issues that were insufficiently covered in the published sources in order to identify gaps in existing knowledge and determine the prospects for scientific research.
Collapse
|
6
|
Buffagni V, Zhang L, Senizza B, Rocchetti G, Ferrarini A, Miras-Moreno B, Lucini L. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111346. [PMID: 35697150 DOI: 10.1016/j.plantsci.2022.111346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) are key signaling molecules involved in plant growth and stress acclimation processes. This work investigated the effect of spermidine, spermine, and putrescine (alone and in a mixture) in tomato plants using a combined metabolomics and lipidomics approach. The experiments were carried out under non-stress and 100 mM NaCl salinity conditions. Shoot and root biomass, as well as SPAD values, were increased by the application of exogenous PAs but with differences across treatments. Similarly, root length density (F: 34, p < 0.001), average root diameter (F: 14, p < 0.001), and very fine roots (0.0-0.5 mm) increased in PA-treated plants, compared to control. Metabolomics and lipidomics indicated that, despite being salinity the hierarchically prevalent factor, the different PA treatments imposed distinct remodeling at the molecular level. Plants treated with putrescine showed the broader modulation of metabolite profile, whereas spermidine and spermine induced a comparatively milder effect. The pathway analysis from differential metabolites indicated a broad and multi-level intricate modulation of several signaling molecules together with stress-related compounds like flavonoids and alkaloids. Concerning signaling processes, the complex crosstalk between phytohormones (mainly abscisic acid, cytokinins, the ethylene precursor, and jasmonates), and the membrane lipids signaling cascade (in particular, sphingolipids as well as ceramides and other glycerophospholipids), was involved in such complex response of tomato to PAs. Interestingly, PA-specific processes could be observed, with peculiar responses under either control or salinity conditions.
Collapse
Affiliation(s)
- Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 29122, Piacenza, Italy
| | - Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
7
|
Arias‐Gaguancela O, Adhikari B, Aziz M, Chapman KD. Enhanced seedling growth by 3- n-pentadecylphenolethanolamide is mediated by fatty acid amide hydrolases in upland cotton ( Gossypium hirsutum L.). PLANT DIRECT 2022; 6:e421. [PMID: 35844778 PMCID: PMC9277032 DOI: 10.1002/pld3.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 05/25/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is a conserved amidase that is known to modulate the levels of endogenous N-acylethanolamines (NAEs) in both plants and animals. The activity of FAAH is enhanced in vitro by synthetic phenoxyacylethanolamides resulting in greater hydrolysis of NAEs. Previously, 3-n-pentadecylphenolethanolamide (PDP-EA) was shown to exert positive effects on the development of Arabidopsis seedlings by enhancing Arabidopsis FAAH (AtFAAH) activity. However, there is little information regarding FAAH activity and the impact of PDP-EA in the development of seedlings of other plant species. Here, we examined the effects of PDP-EA on growth of upland cotton (Gossypium hirsutum L. cv Coker 312) seedlings including two lines of transgenic seedlings overexpressing AtFAAH. Independent transgenic events showed accelerated true-leaf emergence compared with non-transgenic controls. Exogenous applications of PDP-EA led to increases in overall seedling growth in AtFAAH transgenic lines. These enhanced-growth phenotypes coincided with elevated FAAH activities toward NAEs and NAE oxylipins. Conversely, the endogenous contents of NAEs and NAE-oxylipin species, especially linoleoylethanolamide and 9-hydroxy linoleoylethanolamide, were lower in PDP-EA treated seedlings than in controls. Further, transcripts for endogenous cotton FAAH genes were increased following PDP-EA exposure. Collectively, our data corroborate that the enhancement of FAAH enzyme activity by PDP-EA stimulates NAE-hydrolysis and that this results in enhanced growth in seedlings of a perennial crop species, extending the role of NAE metabolism in seedling development beyond the model annual plant species, Arabidopsis thaliana.
Collapse
Affiliation(s)
- Omar Arias‐Gaguancela
- BioDiscovery Institute, Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | | | - Mina Aziz
- BioDiscovery Institute, Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Kent D. Chapman
- BioDiscovery Institute, Department of Biological SciencesUniversity of North TexasDentonTXUSA
| |
Collapse
|
8
|
Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants (Basel) 2022; 11:antiox11040634. [PMID: 35453319 PMCID: PMC9028855 DOI: 10.3390/antiox11040634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a multiple-function molecule that was first identified in animals and later in plants. Plant melatonin regulates versatile processes involved in plant growth and development, including seed germination, root architecture, flowering time, leaf senescence, fruit ripening, and biomass production. Published reviews on plant melatonin have been focused on two model plants: (1) Arabidopsis and (2) rice, in which the natural melatonin contents are quite low. Efforts to integrate the function and the mechanism of plant melatonin and to determine how plant melatonin benefits human health are also lacking. Barley is a unique cereal crop used for food, feed, and malt. In this study, a bioinformatics analysis to identify the genes required for barley melatonin biosynthesis was first performed, after which the effects of exogenous melatonin on barley growth and development were reviewed. Three integrated mechanisms of melatonin on plant cells were found: (1) serving as an antioxidant, (2) modulating plant hormone crosstalk, and (3) signaling through a putative plant melatonin receptor. Reliable approaches for characterizing the function of barley melatonin biosynthetic genes and to modulate the melatonin contents in barley grains are discussed. The present paper should be helpful for the improvement of barley production under hostile environments and for the reduction of pesticide and fungicide usage in barley cultivation. This study is also beneficial for the enhancement of the nutritional values and healthcare functions of barley in the food industry.
Collapse
|