1
|
Liyanage DK, Torkamaneh D, Belzile F, Balasubramanian P, Hill B, Thilakarathna MS. The Genotypic Variability among Short-Season Soybean Cultivars for Nitrogen Fixation under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1004. [PMID: 36903865 PMCID: PMC10005650 DOI: 10.3390/plants12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Soybean fixes atmospheric nitrogen through the symbiotic rhizobia bacteria that inhabit root nodules. Drought stress negatively affect symbiotic nitrogen fixation (SNF) in soybean. The main objective of this study was to identify allelic variations associated with SNF in short-season Canadian soybean varieties under drought stress. A diversity panel of 103 early-maturity Canadian soybean varieties was evaluated under greenhouse conditions to determine SNF-related traits under drought stress. Drought was imposed after three weeks of plant growth, where plants were maintained at 30% field capacity (FC) (drought) and 80% FC (well-watered) until seed maturity. Under drought stress, soybean plants had lower seed yield, yield components, seed nitrogen content, % nitrogen derived from the atmosphere (%Ndfa), and total seed nitrogen fixed compared to those under well-watered conditions. Significant genotypic variability among soybean varieties was found for yield, yield parameters, and nitrogen fixation traits. A genome-wide association study (GWAS) was conducted using 2.16 M single nucleotide single nucleotide polymorphisms (SNPs) for different yield and nitrogen fixation related parameters for 30% FC and their relative performance (30% FC/80% FC). In total, five quantitative trait locus (QTL) regions, including candidate genes, were detected as significantly associated with %Ndfa under drought stress and relative performance. These genes can potentially aid in future breeding efforts to develop drought-resistant soybean varieties.
Collapse
Affiliation(s)
- Dilrukshi Kombala Liyanage
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Parthiba Balasubramanian
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Brett Hill
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Malinda S. Thilakarathna
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
2
|
Singh J, Verma PK. Role of Nod factor receptors and its allies involved in nitrogen fixation. PLANTA 2023; 257:54. [PMID: 36780015 DOI: 10.1007/s00425-023-04090-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.
Collapse
Affiliation(s)
- Jawahar Singh
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090, Tlalnepantla, State of Mexico, Mexico.
| | - Praveen Kumar Verma
- Plant-Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 10067, India.
| |
Collapse
|
3
|
Singh J, Valdés‐López O. Discovering the genetic modules controlling root nodule symbiosis under abiotic stresses: salinity as a case study. THE NEW PHYTOLOGIST 2023; 237:1082-1085. [PMID: 36401792 PMCID: PMC10107258 DOI: 10.1111/nph.18627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Legumes form a symbiotic association with rhizobia and fix atmospheric nitrogen in specialized root organs known as nodules. It is well known that salt stress inhibits root nodule symbiosis by decreasing rhizobial growth, rhizobial infection, nodule number, and nitrogenase activity in diverse legumes. Despite this knowledge, the genetic and molecular mechanisms governing salt stress's inhibition of nodulation and nitrogen fixation are still elusive. In this Viewpoint, we summarize the most recent knowledge of the genetic mechanisms that shape this symbiosis according to the salt levels in the soil. We emphasize the relevance of modulating the activity of the transcription factor Nodule Inception to properly shape the symbiosis with rhizobia accordingly. We also highlight the knowledge gaps that are critical for gaining a deeper understanding of the molecular mechanisms underlying the adaptation of the root nodule symbiosis to salt-stress conditions. We consider that filling these gaps can help to improve legume nodulation and harness its ecological benefits even under salt-stress conditions.
Collapse
Affiliation(s)
- Jawahar Singh
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| | - Oswaldo Valdés‐López
- Facultad de Estudios Superiores Iztacala, Laboratorio de Genómica Funcional de LeguminosasUniversidad Nacional Autónoma de MéxicoTlalnepantlaEstado de México54090Mexico
| |
Collapse
|
4
|
Alexander A, Singh VK, Mishra A. Introgression of a novel gene AhBINR differentially expressed during PGPR Brachybacterium saurashtrense-Arachis hypogaea interaction enhances plant performance under nitrogen starvation and salt stress in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111429. [PMID: 36029896 DOI: 10.1016/j.plantsci.2022.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Plant growth-promoting rhizobacteria provide endurance during environmental stress conditions. Previously, we have shown that the interaction of the halotolerant diazotrophic bacteria Brachybacterium saurashtrense JG06 induces physio-biochemical and molecular changes in Arachis hypogaea under nitrogen starvation conditions. Here we deciphered the role of a novel gene AhBINR that was differentially overexpressed in A. hypogaea after interaction with B. saurashtrense JG06 under nitrogen deficit conditions. Overexpression of the AhBINR gene in the model plant (tobacco) showed higher growth parameters (root length, shoot length, fresh weight, and dry weight) under nitrogen starvation and salt stress in comparison to the wild type and vector control. Transgenic plants were enabled with a higher photosynthesis rate, which provides the support for better performance under N2 starvation and salt stress. Results showed that the transgenic plants overexpressing the AhBINR gene had better physiological status and lower ROS accumulation under adverse conditions. Microarray transcriptome analysis showed that the transcription factors, biotic and abiotic stress, photosynthesis, and metabolism-related genes were differentially expressed (total 736 and 6530 genes were expressed under nitrogen deficit and salt stress conditions, respectively at a 5-fold change level) in comparison to wild type plants. Overall results showed the involvement of the AhBINR gene in the activation of the abiotic stress (nitrogen starvation and salt stress) related pathways, which can be overexpressed after legume-rhizobacterial interaction.
Collapse
Affiliation(s)
- Ankita Alexander
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vijay K Singh
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India.
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Lin Y, Chu S, Xu X, Han X, Huang H, Tong Z, Zhang J. Identification of Nitrogen Starvation-Responsive miRNAs to Reveal the miRNA-Mediated Regulatory Network in Betula luminifera. Front Genet 2022; 13:957505. [PMID: 36061195 PMCID: PMC9428261 DOI: 10.3389/fgene.2022.957505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Because of the immobility, plants encounter a series of stresses, such as varied nutrient concentrations in soil, which regulate plant growth, development, and phase transitions. Nitrogen (N) is one of the most limiting factors for plants, which was exemplified by the fact that low nitrogen (LN) has a great adverse effect on plant growth and development. In the present study, we explored the potential role of microRNAs (miRNAs) in response to LN stress in Betula luminifera. We identified 198 miRNAs using sRNA sequencing, including 155 known and 43 novel miRNAs. Among them, 98 known miRNAs and 31 novel miRNAs were differentially expressed after 0.5 h or 24 h of LN stress. Based on degradome data, 122 differential expressed miRNAs (DEmiRNAs) including 102 known miRNAs and 20 novel miRNAs targeted 203 genes, comprising 321 miRNA–target pairs. A big proportion of target genes were transcription factors and functional proteins, and most of the Gene Ontology terms were enriched in biological processes; moreover, one Kyoto Encyclopedia of Genes and Genomes term “ascorbate and aldarate metabolism” was significantly enriched. The expression patterns of six miRNAs and their corresponding target genes under LN stress were monitored. According to the potential function for targets of DEmiRNAs, a proposed regulatory network mediated by miRNA–target pairs under LN stress in B. luminifera was constructed. Taken together, these findings provide useful information to elucidate miRNA functions and establish a framework for exploring N signaling networks mediated by miRNAs in B. luminifera. It may provide new insights into the genetic engineering of the high use efficiency of N in forestry trees.
Collapse
|