1
|
Hameed H, Khan MA, Paiva-Santos AC, Faheem S, Khalid A, Majid MS, Adnan A, Rana F. Liposomes like advanced drug carriers: from fundamentals to pharmaceutical applications. J Microencapsul 2024; 41:456-478. [PMID: 38990129 DOI: 10.1080/02652048.2024.2376116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIMS There are around 24 distinct lipid vesicles described in the literature that are similar to vesicular systems such as liposomes. Liposome-like structures are formed by combining certain amphiphilic lipids with a suitable stabiliser. Since their discovery and classification, self-assembled liposome-like structures as active drug delivery vehicles captured researchers' curiosity. METHODOLOGY This comprehensive study included an in-depth literature search using electronic databases such as PubMed, ScienceDirect and Google Scholar, focusing on studies on liposome and liposomes like structure, discussed in literature till 2024, their sizes, benefits, drawback, method of preparation, characterisation and pharmaceutical applications. RESULTS Pharmacosomes, cubosomes, ethosomes, transethosomes, and genosomes, all liposome-like structures, have the most potential due to their smaller size with high loading capacity, ease of absorption, and ability to treat inflammatory illnesses. Genosomes are futuristic because of its affinity for DNA/gene transport, which is an area of focus in today's treatments. CONCLUSION This review will critically analyse the composition, preparation procedures, drug encapsulating technologies, drug loading, release mechanism, and related applications of all liposome-like structures, highlighting their potential benefits with enhanced efficacy over each other and over traditional carriers by paving the way for exploring novel drug delivery systems in the Pharma industry.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Aleena Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Aiman Adnan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Fizza Rana
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Jerga R, Brablecová V, Talášková V, Tomková H, Součková J, Barták P, Skopalová J. A novel device for the determination of liposome/water partition coefficients. Talanta 2024; 269:125434. [PMID: 38008025 DOI: 10.1016/j.talanta.2023.125434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
A novel, cheap and easy-to-construct device and a simple method for partition coefficient determination in liposome/water system based on modified equilibrium dialysis have been developed. The device consists of two vials separated by a semi-permeable membrane, through which the free form of a low molecular weight substance is transported by shaking assisted diffusion. Five test substances, eugenol, carvacrol, thymol, 4-hydroxybenzyl alcohol (4-HBA) and butylparaben were analyzed after equilibration in aqueous phase by three methods, HPLC-UV, GC-MS and DPV with comparable results. This shows the possibility of using the proposed method in any laboratory with any equipment capable of analyzing the substance under study. The liposome/water partition coefficients (log Pl/w) determined for eugenol (2.39), thymol (2.83), carvacrol (2.78) and butylparaben (3.30) are consistent with previously published data. A strong effect of NaCl on the liposome/water partition coefficient was observed. The value of log Pl/w = 1.06 determined for 4-HBA in the presence of 0.15 mol L-1 NaCl in the partitioning liposomal system was considerably lower than in the absence of the salt (log Pl/w = 2.06). The developed method was used to determine the partition coefficient of morphine in liposome/water system without NaCl (log Pl/w = 2.65) under given conditions.
Collapse
Affiliation(s)
- Radek Jerga
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Veronika Brablecová
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Veronika Talášková
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Hana Tomková
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jitka Součková
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Petr Barták
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jana Skopalová
- Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Dikkumbura A, Aucoin AV, Ali RO, Dalier A, Gilbert DW, Schneider GJ, Haber LH. Influence of Acetaminophen on Molecular Adsorption and Transport Properties at Colloidal Liposome Surfaces Studied by Second Harmonic Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3852-3859. [PMID: 35298170 PMCID: PMC8969770 DOI: 10.1021/acs.langmuir.2c00086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Time-resolved second harmonic generation (SHG) spectroscopy is used to investigate acetaminophen (APAP)-induced changes in the adsorption and transport properties of malachite green isothiocyanate (MGITC) dye to the surface of unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes in an aqueous colloidal suspension. The adsorption of MGITC to DOPC liposome nanoparticles in water is driven by electrostatic and dipole-dipole interactions between the positively charged MGITC molecules and the zwitterionic phospholipid membranes. The SHG intensity increases as the added MGITC dye concentration is increased, reaching a maximum as the MGITC adsorbate at the DOPC bilayer interface approaches a saturation value. The experimental adsorption isotherms are fit using the modified Langmuir model to obtain the adsorption free energies, adsorption equilibrium constants, and the adsorbate site densities to the DOPC liposomes both with and without APAP. The addition of APAP is shown to increase MGITC adsorption to the liposome interface, resulting in a larger adsorption equilibrium constant and a higher adsorption site density. The MGITC transport times are also measured, showing that APAP decreases the transport rate across the DOPC liposome bilayer, especially at higher MGITC concentrations. Studying molecular interactions at the colloidal liposome interface using SHG spectroscopy provides a detailed foundation for developing potential liposome-based drug-delivery systems.
Collapse
Affiliation(s)
- Asela
S. Dikkumbura
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra V. Aucoin
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rasidah O. Ali
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aliyah Dalier
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Dylan W. Gilbert
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Kuo YC, Lee YJ, Rajesh R. Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112615. [DOI: 10.1016/j.msec.2021.112615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023]
|
5
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
6
|
Chen X, Miao X, Ma T, Leng Y, Hao L, Duan H, Yuan J, Li Y, Huang X, Xiong Y. Gold Nanobeads with Enhanced Absorbance for Improved Sensitivity in Competitive Lateral Flow Immunoassays. Foods 2021; 10:1488. [PMID: 34198969 PMCID: PMC8307668 DOI: 10.3390/foods10071488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Colloidal gold based lateral flow immunoassay (LFIA) commonly suffers from relatively low detection sensitivity due to the insufficient brightness of conventional gold nanoparticles (AuNPs) with the size of 20-40 nm. METHODS Herein, three kinds of gold nanobeads (GNBs) with the size of 94 nm, 129 nm, and 237 nm, were synthesized by encapsulating numerous hydrophobic AuNPs (10 nm) into polymer matrix. The synthesized GNBs exhibited the enhanced colorimetric signal intensity compared with 20-40 nm AuNPs. The effects of the size of GNBs on the sensitivity of LFIA with competitive format were assessed. RESULTS The results showed that the LFIA using 129 nm GNBs as amplified signal probes exhibits the best sensitivity for fumonisin B1 (FB1) detection with a cut-off limit (for visual qualitative detection) at 125 ng/mL, a half maximal inhibitory concentration at 11.27 ng/mL, and a detection limit at 1.76 ng/mL for detection of real corn samples, which are 8-, 3.82-, and 2.89-fold better than those of conventional AuNP40-based LFIA, respectively. The developed GNB-LFIA exhibited negligible cross-reactions with other common mycotoxins. In addition, the accuracy, precision, reliability, and practicability were demonstrated by determining real corn samples. CONCLUSIONS All in all, the proposed study provides a promising strategy to enhance the sensitivity of competitive LFIA via using the GNBs as amplified signal probes.
Collapse
Affiliation(s)
- Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xintao Miao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jing Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (X.C.); (X.M.); (T.M.); (Y.L.); (L.H.); (H.D.); (J.Y.); (Y.L.); (Y.X.)
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
7
|
Woo SW, Jo YK, Yoo YE, Kim SK. High-Throughput Synthesis of Liposome Using an Injection-Molded Plastic Micro-Fluidic Device. MICROMACHINES 2021; 12:mi12020170. [PMID: 33572238 PMCID: PMC7915932 DOI: 10.3390/mi12020170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
For mass production of liposomes, we designed a plastic micro-channel device on the basis of 5 μm of micro-nozzle array forming T-junction with 100 μm depth of micro-channel. A micro-channel unit for synthesizing liposomes consisted of two micro-nozzle arrays for mixing two solutions as well as delivery and recovery channels for supplying solutions and collecting liposome suspension. The number of micro-nozzles was approximately 2400 for a micro-channel unit, and seven units were applied independently on a micro-channel plate. The plastic micro-channel plate was injection-molded for mass production using a micro-channel stamper previously fabricated by UV lithography and nickel electroforming process. A plastic cover plate with seven pairs of inlet and outlet ports was machined by mechanical milling and drilling and was assembled with a micro-channel plate using a holder to form a liposome synthesizing device. Flow and mixing of solutions in the micro-channels were tested using colored water to check the micro-fluidic characteristics of the device. Finally, a L-α-phosphatidylcholine (SOY PC) liposome was synthesized using EtOH solution of SOY PC (95%) and saline (0.85% NaOH solution) to find that the liposomes were around 230 and 260 nm in diameter, depending on the flow rate of the lipid solution.
Collapse
Affiliation(s)
- Sang-Won Woo
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yusung-Gu, Daejeon 34103, Korea;
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea
| | - Yun Kyong Jo
- Neo Nanotech Co., Ltd., Suite 304, 8-dong, 156 Gajeongbuk-ro, Yusung-Gu, Daejeon 34103, Korea;
| | - Yeong-Eun Yoo
- Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yusung-Gu, Daejeon 34103, Korea;
- Correspondence: (Y.-E.Y.); (S.K.K.)
| | - Sun Kyoung Kim
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea
- Correspondence: (Y.-E.Y.); (S.K.K.)
| |
Collapse
|
8
|
Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta 2021; 222:121532. [PMID: 33167240 DOI: 10.1016/j.talanta.2020.121532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/26/2022]
Abstract
A method for monitoring the efficiency of the hybrid magnetoliposomes (h-MLs) separation using multiphase density gradient centrifugation (MDGC) coupled with a continuous flow system (CFS) is described. Several h-MLs suspensions containing hydrophobic magnetic gold nanoparticles (Fe3O4@AuNPs-C12SH) and different fluorophores encapsulated have been synthesized using the rapid solvent evaporation (RSE) method. The MDGC system was prepared using a non-linear multiphase density gradient formed with a bottom layer with 100% (v/v) sucrose solution and six layers containing a mixture of sucrose solution (with concentrations ranged between 10 and 55% v/v), and fixed concentrations of ficoll (30% v/v) and percoll (15% v/v) solutions. The density gradient profile was previously stabilized using a relative centrifugal force (RCF) of 4480×g for 30 min. The synthesized h-MLs were added to the density gradient profile and separated by centrifugation at 2520×g for 20 min. The efficiency of the separation procedure was tested, aspirating the separated extract into the CFS and lysing liposomes before their translation to the detector introducing surfactant solutions. The luminescence signals provided by the release of the encapsulated fluorophores and other materials provided the distribution status of the liposomes in each density gradient stage. The monitoring of the different samples revealed four different fractions (MLs, h-Ls, h-MLs, and non-encapsulated fluorophores) for each separated h-MLs. Additional information on the h-MLs has also been acquired by confocal microscopy.
Collapse
|
9
|
Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device. Mikrochim Acta 2020; 187:620. [PMID: 33084998 DOI: 10.1007/s00604-020-04597-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
A useful 3D printed device for the inside microfluidic integration into a conventional optical detector has been developed. The coupling system supposes the complete integration of a microfluidic device inside the sample compartment of a conventional spectrofluorimeter. For this purpose, a commercial chip-holder, including a microfluidic chip, was anchored inside the detector using a "lab-built" 3D printing alignment prototype. The variables affecting the position of the 3D printed device, such as horizontal and vertical and rotary angles, were optimized. The usefulness of the microfluidic integration system has been tested using an organized suspension of separated hybrid magnetoliposomes containing nanomaterials that were previously separated using a multiphase density gradient centrifugation (MDGC) method. The whole integration system consists of three well-established parts: the impulsion unit, the displacement unit, and the microfluidic chip. The impulsion unit is formed by two syringe pumps, which propel under microflow-rate regime the solutions through to the microfluidic system. The first fluid incorporates an immiscible solution that provides the solution which fills positive oil/water (O/W) displacement unit. In this unit, the previously organized MDGC suspension, which includes different liposome populations, was layer-by-layer displaced to a y-mixer microfluidic chip. The separation content merges with the second solution propelled by the other syringe pump. This solution incorporates a surfactant that promotes the liposome lysis. The novelty supposes the easy incorporation of a 3D printer alignment device, which facilitates the incorporation of the microfluidic channel focused into the optical pathway of the luminescence detector. Graphical abstract.
Collapse
Affiliation(s)
- Ángela Écija-Arenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Anexo "Marie Curie", 14071, Córdoba, Spain
| | - Vanesa Román-Pizarro
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Anexo "Marie Curie", 14071, Córdoba, Spain
| | - Juan Manuel Fernández-Romero
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, Edificio Anexo "Marie Curie", 14071, Córdoba, Spain.
| |
Collapse
|
10
|
Liu G, Hou S, Tong P, Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Crit Rev Anal Chem 2020; 52:392-412. [DOI: 10.1080/10408347.2020.1805293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Peihong Tong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
11
|
Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Affiliation(s)
- Carola Hofmann
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Axel Duerkop
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| | - Antje J. Baeumner
- Universität Regensburg Institut für Analytische Chemie, Chemo- und Biosensorik Universitätsstraße 31 93053 Regensburg Deutschland
| |
Collapse
|
13
|
Hofmann C, Duerkop A, Baeumner AJ. Nanocontainers for Analytical Applications. Angew Chem Int Ed Engl 2019; 58:12840-12860. [DOI: 10.1002/anie.201811821] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Carola Hofmann
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Axel Duerkop
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| | - Antje J. Baeumner
- University of Regensburg Institute of Analytical Chemistry, Chemo- and Biosensors Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
14
|
Weiss VU, Wieland K, Schwaighofer A, Lendl B, Allmaier G. Native Nano-electrospray Differential Mobility Analyzer (nES GEMMA) Enables Size Selection of Liposomal Nanocarriers Combined with Subsequent Direct Spectroscopic Analysis. Anal Chem 2019; 91:3860-3868. [PMID: 30735037 PMCID: PMC6427476 DOI: 10.1021/acs.analchem.8b04252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Gas-phase
electrophoresis employing a nano-electrospray differential
mobility analyzer (nES DMA), aka gas-phase electrophoretic mobility
molecular analyzer (nES GEMMA), enables nanoparticle separation in
the gas-phase according to their surface-dry diameter with number-based
concentration detection. Moreover, particles in the nanometer
size range can be collected after size selection on supporting materials.
It has been shown by subsequent analyses employing orthogonal methods,
for instance, microscopic or antibody-based techniques, that the surface
integrity of collected analytes remains intact. Additionally, native
nES GEMMA demonstrated its applicability for liposome characterization.
Liposomes are nanometer-sized, biodegradable, and rather labile carriers
(nanoobjects) consisting of a lipid bilayer encapsulating an aqueous
lumen. In nutritional and pharmaceutical applications, these vesicles
allow shielded, targeted transport and sustained release of bioactive
cargo material. To date, cargo quantification is based on bulk measurements
after bilayer rupture. In this context, we now compare capillary electrophoresis
and spectroscopic characterization of vesicles in solution (bulk measurements)
to the possibility of spectroscopic investigation of individual, size-separated/collected
liposomes after nES GEMMA. Surface-dried, size-selected vesicles were
collected intact on calcium fluoride (CaF2) substrates
and zinc selenide (ZnSe) prisms, respectively, for subsequent spectroscopic
investigation. Our proof-of-principle study demonstrates that the
off-line hyphenation of gas-phase electrophoresis and confocal Raman
spectroscopy allows detection of isolated, nanometer-sized soft material/objects.
Additionally, atomic force microscopy-infrared spectroscopy (AFM-IR)
as an advanced spectroscopic system was employed to access molecule-specific
information with nanoscale lateral resolution. The off-line hyphenation
of nES GEMMA and AFM-IR is introduced to enable chemical imaging of
single, i.e., individual, liposome particles.
Collapse
Affiliation(s)
- Victor U Weiss
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Karin Wieland
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| | - Guenter Allmaier
- Institute of Chemical Technologies and Analytics , Vienna University of Technology (TU Wien) , A-1060 Vienna , Austria
| |
Collapse
|
15
|
|
16
|
Applicability of Fluorescent Hybrid Magnetoliposomes for the Determination of Reactive Oxygen Compounds in Food. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
|
18
|
Sugawara M. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing. CHEM REC 2017; 18:433-444. [PMID: 29135061 DOI: 10.1002/tcr.201700046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022]
Abstract
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel-based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore-forming compounds. Channel-forming compounds, such as receptor ion-channels, channel-forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane-bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.
Collapse
Affiliation(s)
- Masao Sugawara
- Department of chemistry, College of humanities and sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
19
|
A novel enantioseparation approach based on liposome electrokinetic capillary chromatography. J Pharm Biomed Anal 2017; 145:186-194. [DOI: 10.1016/j.jpba.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
|
20
|
Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays. SENSORS 2017. [PMID: 28644380 PMCID: PMC5539552 DOI: 10.3390/s17071480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chloroform; evaporating the solvent, followed by hydration of the resulting thin film with ATP in phosphate-buffered saline (PBS). Upon lysis of the liposome, the SERS intensity of the SiO₂@Au@Ag NPs increased with the logarithm of number of ATP-encapsulated liposomes after lysis in the range of 8 × 10⁶ to 8 × 1010. The detection limit of liposome was calculated to be 1.3 × 10-17 mol. The successful application of ATP-encapsulated liposomes to SiO₂@Au@Ag NPs based SERS analysis has opened a new avenue for Raman label chemical (RCL)-encapsulated liposome-enhanced SERS-based immunoassays.
Collapse
|
21
|
Román-Pizarro V, Fernández-Romero JM, Gómez-Hens A. Automatic determination of coenzyme Q10 in food using cresyl violet encapsulated into magnetoliposomes. Food Chem 2017; 221:864-870. [DOI: 10.1016/j.foodchem.2016.11.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
|
22
|
Mohan A, McClements DJ, Udenigwe CC. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem 2016; 213:143-148. [PMID: 27451165 DOI: 10.1016/j.foodchem.2016.06.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/26/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022]
Abstract
Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.
Collapse
Affiliation(s)
- Aishwarya Mohan
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | | | - Chibuike C Udenigwe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
23
|
Lu L, Doak WJ, Schertzer JW, Chiarot PR. Membrane mechanical properties of synthetic asymmetric phospholipid vesicles. SOFT MATTER 2016; 12:7521-7528. [PMID: 27722472 PMCID: PMC5139623 DOI: 10.1039/c6sm01349j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synthetic lipid vesicles have served as important model systems to study cellular membrane biology. Research has shown that the mechanical properties of bilayer membranes significantly affects their biological behavior. The properties of a lipid bilayer are governed by lipid acyl chain length, headgroup type, and the presence of membrane proteins. However, few studies have explored how membrane architecture, in particular trans-bilayer lipid asymmetry, influences membrane mechanical properties. In this study, we investigated the effects of lipid bilayer architecture (i.e. asymmetry) on the mechanical properties of biological membranes. This was achieved using a customized micropipette aspiration system and a novel microfluidic technique previously developed by our team for building asymmetric phospholipid vesicles with tailored bilayer architecture. We found that the bending modulus and area expansion modulus of the synthetic asymmetric bilayers were up to 50% larger than the values acquired for symmetric bilayers. This was caused by the dissimilar lipid distribution in each leaflet of the bilayer for the asymmetric membrane. To the best of our knowledge, this is the first report on the impact of trans-bilayer asymmetry on the area expansion modulus of synthetic bilayer membranes. Since the mechanical properties of bilayer membranes play an important role in numerous cellular processes, these results have significant implications for membrane biology studies.
Collapse
Affiliation(s)
- Li Lu
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA. and Binghamton Biofilm Research Center, State University of New York at Binghamton, Binghamton, NY, USA
| | - William J Doak
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA.
| | - Jeffrey W Schertzer
- Binghamton Biofilm Research Center, State University of New York at Binghamton, Binghamton, NY, USA and Department of Biological Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| | - Paul R Chiarot
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY, USA. and Binghamton Biofilm Research Center, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
24
|
Ong SGM, Ming LC, Lee KS, Yuen KH. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics 2016; 8:E25. [PMID: 27571096 PMCID: PMC5039444 DOI: 10.3390/pharmaceutics8030025] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/24/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022] Open
Abstract
The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32%) and F2(98%)], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm), MS (357 nm) and NS (813 nm)], but with essentially similar encapsulation efficiencies (about 93%). Results indicated that the extent of bioavailability of griseofulvin was improved 1.7-2.0 times when given in the form of liposomes (F1) compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2), compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm) did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.
Collapse
Affiliation(s)
- Sandy Gim Ming Ong
- School of Pharmaceutical Sciences, Universiti of Sains Malaysia, 11800 Penang, Malaysia.
| | - Long Chiau Ming
- Unit for Medication Outcomes Research and Education (UMORE), Pharmacy, School of Medicine, University of Tasmania, 7001 Hobart, Australia.
- Vector‑borne Diseases Research Group (VERDI), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam, 42300 Selangor, Malaysia.
| | - Kah Seng Lee
- Unit for Medication Outcomes Research and Education (UMORE), Pharmacy, School of Medicine, University of Tasmania, 7001 Hobart, Australia.
| | - Kah Hay Yuen
- School of Pharmaceutical Sciences, Universiti of Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
25
|
García-Manrique P, Matos M, Gutiérrez G, Estupiñán OR, Blanco-López MC, Pazos C. Using Factorial Experimental Design To Prepare Size-Tuned Nanovesicles. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo García-Manrique
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Oscar R. Estupiñán
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - María Carmen Blanco-López
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| | - Carmen Pazos
- Department of Chemical
and Environmental Engineering and ‡Department of
Physical and Analytical Chemistry, University of Oviedo, Julián
Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
26
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Beloglazova NV, Goryacheva IY, Shmelin PS, Kurbangaleev V, De Saeger S. Preparation and characterization of stable phospholipid–silica nanostructures loaded with quantum dots. J Mater Chem B 2015; 3:180-183. [DOI: 10.1039/c4tb01662a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural dependence of silica–liposome hybrids on silanization conditions was investigated.
Collapse
Affiliation(s)
- N. V. Beloglazova
- Laboratory of Food Analysis
- Faculty of Pharmaceutical Sciences
- Ghent University
- 9000 Ghent
- Belgium
| | - I. Yu. Goryacheva
- Department of General and Inorganic Chemistry
- Chemistry Faculty
- Saratov State University
- 410012 Saratov
- Russia
| | | | | | - S. De Saeger
- Laboratory of Food Analysis
- Faculty of Pharmaceutical Sciences
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
28
|
Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 2014; 11:20140459. [PMID: 25401172 PMCID: PMC4223894 DOI: 10.1098/rsif.2014.0459] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023] Open
Abstract
Liposomes are vesicular structures made of lipids that are formed in aqueous solutions. Structurally, they resemble the lipid membrane of living cells. Therefore, they have been widely investigated, since the 1960s, as models to study the cell membrane, and as carriers for protection and/or delivery of bioactive agents. They have been used in different areas of research including vaccines, imaging, applications in cosmetics and tissue engineering. Tissue engineering is defined as a strategy for promoting the regeneration of tissues for the human body. This strategy may involve the coordinated application of defined cell types with structured biomaterial scaffolds to produce living structures. To create a new tissue, based on this strategy, a controlled stimulation of cultured cells is needed, through a systematic combination of bioactive agents and mechanical signals. In this review, we highlight the potential role of liposomes as a platform for the sustained and local delivery of bioactive agents for tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Nelson Monteiro
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra S. Cláudio do Barco, 4806-909, Caldas das Taipas, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
29
|
da Rosa Zavareze E, Telles AC, Mello El Halal SL, da Rocha M, Colussi R, Marques de Assis L, Suita de Castro LA, Guerra Dias AR, Prentice-Hernández C. Production and characterization of encapsulated antioxidative protein hydrolysates from Whitemouth croaker (Micropogonias furnieri) muscle and byproduct. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Song X, Shukla S, Oh S, Kim Y, Kim M. Development of fluorescence-based liposome immunoassay for detection of Cronobacter muytjensii in pure culture. Curr Microbiol 2014; 70:246-52. [PMID: 25300633 DOI: 10.1007/s00284-014-0708-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
Abstract
Cronobacter spp. are important foodborne pathogens that carry a very high risk of infection to neonates as well as immunocompromised individuals. In the present study, fluorescence-based liposome immunoassay was developed as a new sensitive and rapid diagnostic system for detection of Cronobacter muytjensii (C. muytjensii). Liposomes (size, 206 nm) used in this study were made from cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)], and sulforhodamine B (SRB). The outer surface of liposome was conjugated with rabbit anti-C. muytjensii IgG in order to develop immunoliposome. The immunoliposome was incubated with C. muytjensii, which was coated on a 96-well plate. Immunoliposomes bound to C. muytjensii were lysed with 30 mM octyl β-D-glucopyranoside, after which the SRB fluorescence signal was measured at an excitation wavelength of 550 nm and emission wavelength of 585 nm. The signal was directly proportional to the amount of bacterial cells in the test sample. The developed fluorescence-based liposome immunoassay was confirmed to be highly specific to C. muytjensii with a detection limit of 6.3 × 10(4) CFU ml(-1) in pure culture as well as sensitive, efficient, and rapid when compared to culture-based methods. Based on its rapid efficiency and low cost, this fluorescence-based liposome immunoassay may be used to develop diagnostic kits for C. muytjensii detection.
Collapse
Affiliation(s)
- Xinjie Song
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | |
Collapse
|
31
|
Román-Pizarro V, Fernández-Romero JM, Gómez-Hens A. Fluorometric determination of alkaline phosphatase activity in food using magnetoliposomes as on-flow microcontainer devices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1819-25. [PMID: 24495223 DOI: 10.1021/jf5004804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liposomes containing magnetic gold nanoparticles (AuNPs) and an enzymatic substrate (4-methylumbelliferyl-phosphate) have been used as on-flow microcontainers for reagent preconcentration in a flow injection method for the determination of alkaline phosphatase (ALP) activity. The dynamic range of the calibration graph was 6.4 × 10(-3)-0.25 U L(-1) ALP, and the detection limit was 1.9 × 10(-3) U L(-1). The precision, expressed as relative standard deviation (RSD%), was in the range of 0.7-2.4%. The overall method showed a sampling frequency of 10 h(-1). The method was applied to the determination of ALP in milk samples with recovery values ranging between 87.5 and 104.6%. The residual ALP activity in milk samples subjected to temperature treatments was also determined. The results obtained in the analysis of all milk samples were compared with those obtained by applying a previously described flow injection method.
Collapse
Affiliation(s)
- Vanessa Román-Pizarro
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry (IUQFN UCO), Campus of Rabanales, Marie Curie Building (Annex) University of Córdoba , E-14071 Córdoba, Spain
| | | | | |
Collapse
|
32
|
Mirigian S, Muthukumar M. Kinetics of particle wrapping by a vesicle. J Chem Phys 2013; 139:044908. [PMID: 23902020 PMCID: PMC3739830 DOI: 10.1063/1.4813921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/30/2013] [Indexed: 11/14/2022] Open
Abstract
We present theoretical results on kinetics for the passive wrapping of a single, rigid particle by a flexible membrane. Using a simple geometric ansatz for the shape of the membrane/particle complex we first compute free energy profiles as a function of the particle size, attraction strength between the particle and vesicle, and material properties of the vesicle--bending stiffness and stretching modulus. The free energy profiles thus computed are taken as input to a stochastic model of the wrapping process, described by a Fokker-Planck equation. We compute average uptake rates of the particle into the vesicle. We find that the rate of particle uptake falls to zero outside of a thermodynamically allowed range of particle sizes. Within the thermodynamically allowed range of particle size, the rate of uptake is variable and we compute the optimal particle size and maximal uptake rate as a function of the attraction strength, the vesicle size, and vesicle material properties.
Collapse
Affiliation(s)
- Stephen Mirigian
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
33
|
Beloglazova NV, Shmelin PS, Speranskaya ES, Lucas B, Helmbrecht C, Knopp D, Niessner R, De Saeger S, Goryacheva IY. Quantum Dot Loaded Liposomes As Fluorescent Labels for Immunoassay. Anal Chem 2013; 85:7197-204. [DOI: 10.1021/ac401729y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. V. Beloglazova
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis,
9000 Ghent, Belgium
| | - P. S. Shmelin
- OJSC CSRIT Technomash, “Neuronet”, 121108 Moscow, Russia
| | - E. S. Speranskaya
- Saratov State University, Chemistry Institute, Department of General and Inorganic Chemistry,
410012 Saratov, Russia
| | - B. Lucas
- Ghent University, Faculty of Pharmaceutical
Sciences, Laboratory of General Biochemistry
and Physical Pharmacy, 9000 Ghent, Belgium
| | - C. Helmbrecht
- Technische Universität München, Institute of Hydrochemistry and Chemical Balneology & Chair of Analytical Chemistry, D-81377 München, Germany
| | - D. Knopp
- Technische Universität München, Institute of Hydrochemistry and Chemical Balneology & Chair of Analytical Chemistry, D-81377 München, Germany
| | - R. Niessner
- Technische Universität München, Institute of Hydrochemistry and Chemical Balneology & Chair of Analytical Chemistry, D-81377 München, Germany
| | - S. De Saeger
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Food Analysis,
9000 Ghent, Belgium
| | - I. Yu. Goryacheva
- Saratov State University, Chemistry Institute, Department of General and Inorganic Chemistry,
410012 Saratov, Russia
| |
Collapse
|
34
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
35
|
Chun JY, Choi MJ, Min SG, Weiss J. Formation and stability of multiple-layered liposomes by layer-by-layer electrostatic deposition of biopolymers. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.05.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature. Biomech Model Mechanobiol 2012; 12:997-1017. [PMID: 23224250 DOI: 10.1007/s10237-012-0459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is modeling by a shell-like body with finite thickness. In this setting, the interface between the leaflets of a lipid bilayer is assumed to coincide with the mid-surface of the corresponding shell-like body. The three-dimensional deformation gradient is found to involve the curvature tensors of the mid-surface in the spontaneous and the deformed states, the deformation gradient of the mid-surface, and the transverse deformation. Attention is also given to the coherency of the leaflets and to the area compatibility of the closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid bilayers in the liquid phase is developed. In combination, the requirements of frame indifference and material symmetry yield a representation for the energy density of a lipid bilayer. This representation shows that three scalar invariants suffice to describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and transverse isotropy. In addition to exploring the geometrical and physical properties of these invariants, fundamental constitutively associated kinematical quantities are emphasized. On this basis, the effect on the energy density of assuming that the lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument is used to extract an areal energy density per unit area from the three-dimensional energy density. This step explains the origin of spontaneous curvature in the areal energy density. Importantly, along with a standard contribution associated with the natural curvature of the lipid bilayer, our analysis indicates that constitutive asymmetry between the leaflets of the lipid bilayer gives rise to a secondary contribution to the spontaneous curvature.
Collapse
|
37
|
Franzen U, Østergaard J. Physico-chemical characterization of liposomes and drug substance–liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography. J Chromatogr A 2012; 1267:32-44. [DOI: 10.1016/j.chroma.2012.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 01/19/2023]
|
38
|
Abstract
Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles) that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.
Collapse
|
39
|
Gold nanoparticle-biotinylated liposome hybrids as analytical reagents for biotin determination using a competitive assay and resonance light scattering detection. Talanta 2012; 99:538-43. [DOI: 10.1016/j.talanta.2012.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 11/24/2022]
|
40
|
Edwards KA, Bolduc OR, Baeumner AJ. Miniaturized bioanalytical systems: enhanced performance through liposomes. Curr Opin Chem Biol 2012; 16:444-52. [PMID: 22673065 DOI: 10.1016/j.cbpa.2012.05.182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/28/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022]
Abstract
Biorecognition-element labeled liposomes are simple and versatile tools used to amplify signals for the detection of analytes of environmental, clinical, food safety, and national security interest. Relying on measurement of encapsulated species via electrochemical or spectroscopic techniques, or properties inherent to liposomes themselves (such as mass, refractive index, or charge), many advances have been made in both bench-scale and microfluidic applications. Some of these measurement techniques are inherently sensitivity limited, but through the inclusion of liposomes, reduced limits of detection potentially broaden the utility towards otherwise challenging levels of analytes. Other advances took advantage of the hydrophobic environment required by many biorecognition elements to expand the target selectivity range or utilized the amphipathic nature of the lipid bilayer to provide enhanced separation capabilities. Novel handling approaches included wavelength-specific release of contents encapsulated within thermosensitive liposomes or application of electric fields to move, concentrate, and strategically lyse liposomes. These and other topics are discussed in terms of either present incorporation or adaptation to microfluidic devices.
Collapse
Affiliation(s)
- Katie A Edwards
- Cornell University, Department of Biological and Environmental Engineering, Ithaca, NY 14853, United States
| | | | | |
Collapse
|
41
|
Zhang C, Li J, Xu L, Shi ZG. Fast immobilized liposome chromatography based on penetrable silica microspheres for screening and analysis of permeable compounds. J Chromatogr A 2012; 1233:78-84. [DOI: 10.1016/j.chroma.2012.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/04/2012] [Accepted: 02/07/2012] [Indexed: 11/26/2022]
|
42
|
Dual polarization interferometric and capillary electrophoretic analysis of supported lipid bilayer constructed on silica-based surface: Evaluation of its anti-protein adsorption effect. Anal Chim Acta 2012; 714:127-33. [DOI: 10.1016/j.aca.2011.11.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 11/20/2022]
|
43
|
Abstract
Stimuli-responsive systems for the transport and delivery of materials to a given location at a specific time are highly valuable in numerous applications. The characteristics of the delivery system are dictated by the requirements of a particular application, which include the nature of the stimulus for actuation of the delivery process. Electron transfer has moved to the forefront as a stimulus for responsive delivery systems, particularly for those used in drug and reagent delivery, and for analyte transport/separation avenues. Interest in redox-activated delivery of materials arises from the abundance of redox-active stimuli that can be used to make delivery occur, the often simple chemical nature of the activation process, and the ease of constructing delivery vehicles with an integrated redox-responsive trigger group. This review is focused on vesicle- and micelle-based vehicles whose contents can be delivered by a redox stimulus due to their potential to meet the needs of key applications.
Collapse
Affiliation(s)
- Robin L McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA.
| |
Collapse
|
44
|
Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of Liposomes and Protein Particles as Templates for Delivery Purposes. Biomacromolecules 2011; 12:3353-68. [DOI: 10.1021/bm200658b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raquel Silva
- Department of Textile Engineering,
Campus de Azurém, University of Minho, 4800-058, Guimarães, Portugal
| | - Helena Ferreira
- Department of Textile Engineering,
Campus de Azurém, University of Minho, 4800-058, Guimarães, Portugal
- Health Sciences Research Sciences,
Department of Pharmaceutical Sciences, CICS, Rua Central de Gandra, 1317, 4585-116 Gandra-PRD, Portugal
| | - Artur Cavaco-Paulo
- Department of Textile Engineering,
Campus de Azurém, University of Minho, 4800-058, Guimarães, Portugal
| |
Collapse
|
45
|
Serro AP, Carapeto A, Paiva G, Farinha JPS, Colaço R, Saramago B. Formation of an intact liposome layer adsorbed on oxidized gold confirmed by three complementary techniques: QCM-D, AFM and confocal fluorescence microscopy. SURF INTERFACE ANAL 2011. [DOI: 10.1002/sia.3820] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. P. Serro
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico, TU Lisbon; Av. Rovisco Pais 1049-001 Lisboa Portugal
- Centro de Investigacão Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz; Campus Universitário; Quinta da Granja, Monte de Caparica; 2829-511 Caparica Portugal
| | - A. Carapeto
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico, TU Lisbon; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - G. Paiva
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico, TU Lisbon; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - J. P. S. Farinha
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology; Instituto Superior Técnico; 1049-001 Lisboa Portugal
| | - R. Colaço
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico, TU Lisbon; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - B. Saramago
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico, TU Lisbon; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
46
|
Franzen U, Nguyen TT, Vermehren C, Gammelgaard B, Østergaard J. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: Encapsulation and leakage. J Pharm Biomed Anal 2011; 55:16-22. [DOI: 10.1016/j.jpba.2010.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/20/2010] [Accepted: 12/26/2010] [Indexed: 11/16/2022]
|
47
|
Godard T, Grushka E. The use of phospholipid modified column for the determination of lipophilic properties in high performance liquid chromatography. J Chromatogr A 2011; 1218:1211-8. [DOI: 10.1016/j.chroma.2010.12.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|
48
|
Synthetic membranes (vesicles) in inorganic ion analysis: A review. Anal Chim Acta 2011; 683:156-69. [DOI: 10.1016/j.aca.2010.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 11/22/2022]
|
49
|
Hadorn M, Eggenberger Hotz P. Encapsulated Multi-vesicle Assemblies of Programmable Architecture: Towards Personalized Healthcare. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES 2011. [DOI: 10.1007/978-3-642-18472-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Berti D, Caminati G, Baglioni P. Functional liposomes and supported lipid bilayers: towards the complexity of biological archetypes. Phys Chem Chem Phys 2011; 13:8769-82. [DOI: 10.1039/c0cp02400g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|