1
|
Gao Y, Peng Y, Shi L, Zhang S, Bai R, Lang Y, He Y, Zhang B, Zhang Z, Zhang X. A colorimetric fluorescent probe for reversible detection of HSO 3-/H 2O 2 and effective discrimination of HSO 3-/ClO - and its application in food and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125275. [PMID: 39481270 DOI: 10.1016/j.saa.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
In view of the significant role of reactive sulfur species (RSS) and reactive oxygen species (ROS) in maintaining the redox homeostasis of organisms, we proposed a colorimetric fluorescent probe (HTN) for reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO-. C = C is the active site for the Michael addition of HSO3- and the oxidation of ClO-. When HTN interacts with HSO3- and ClO-, it exhibits fluorescence quenching. The addition of oxidizing H2O2 to the system can restore the conjugate structure of the addition product of HSO3- (HTN-HSO3-) and the fluorescence recovery, but it cannot restore the structure of the oxidation product of ClO- (HTN-ClO-). By studying the change of the reversibility/non-reversibility of the probe structure with the addition of H2O2, the purpose of reversible detection of HSO3-/H2O2 and distinguishing HSO3-/ClO- is achieved. In addition, HTN can not only be used as a fluorescent ink to detect HSO3- on the test paper, but also has excellent detection effect on HSO3- and ClO- in real food samples and water samples. Meantime, HTN has good biocompatibility and can target mitochondria to achieve reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO- in living cells. Therefore, HTN has great potential as a molecular tool for studying redox homeostasis in the interaction network of complex living systems.
Collapse
Affiliation(s)
- Yuexing Gao
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yan Peng
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063008, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Siyun Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruiyang Bai
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yunhe Lang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Yonggui He
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063008, China
| | - Buyue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyi Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
2
|
Wu R, Zhao Y, Gao Y, Gao A, Liu Y, Wang L, Wang M. Theoretical study of excited state dynamics of a ratiometric fluorescent probe for detection of SO 2 derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125165. [PMID: 39312819 DOI: 10.1016/j.saa.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Sulfur dioxide (SO2), a toxic air pollutant, can have harmful effects on human health when inhaled or when it forms bisulfite in the body. In the present work, a ratiometric fluorescent probe, 2-(2'-hydroxyphenyl)benzothiazole-3-ethyl-1,1,2-trimethyl-1H-benzo[e]indolium (HBT-EMBI), was selected to study the mechanism of SO2 derivatives detection. This study provides insights into the attributions of ratiometric fluorescence through hydrogen bond dynamics, electronic excitation properties, radiation rates, and excited state intramolecular proton transfer (ESIPT) processes using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) level. The results confirm that the large Stokes shifts and broad emission spectra of the HBT-EMBI probe are associated with its intramolecular charge transfer (ICT) characteristics and hydrogen bonding-driven ESIPT processes, respectively. After the addition reaction between the probe and HSO3-/SO32-, the conformational populations of HBT-EMBI-HSO3- transfer abnormally from enol configurations to more stable keto configurations, which leads to a distinguished change in the visible color and the ratiometric fluorescence signal, and is not due to the blockage of the ICT process of HBT-EMBI-HSO3-, as previously reported. This work provides a new perspective on the mechanism of detection of SO2 derivatives by ESIPT fluorescent probes.
Collapse
Affiliation(s)
- Ruiqi Wu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.
| | - Ye Gao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Aihua Gao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Li Wang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Meishan Wang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
3
|
Liu Z, Huang K, Sun B, Zhu Y, Xie Z, Shi W. Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb 2+/Cd 2. Int J Biol Macromol 2025; 294:139425. [PMID: 39755305 DOI: 10.1016/j.ijbiomac.2024.139425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/01/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state 13C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO-) in PA-Si-SA endows it synergistic complexation capability toward Pb2+ and Cd2+. PA-Si-SA/GCE (glassy carbon electrode) fabricated by using PA-Si-SA as active modifier was applied to realize the efficient electrochemical detection of Pb2+/Cd2+. Relevant detection ranges, detection limits, anti-interference and detection mechanisms were systematically investigated further. Detection limits of Pb2+ and Cd2+ by PA-Si-SA/GCE were up to ~2.4 × 10-8 mol/L and ~ 4.1 × 10-9 mol/L, with corresponding linear detection ranges of 0.5-140.0 μmol/L and 0.01-140.0 μmol/L, respectively.
Collapse
Affiliation(s)
- Ziqiang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Kaiping Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Baiyang Sun
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Yuanqiang Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Wei Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China.
| |
Collapse
|
4
|
Lee D, Ro H, Hwang S, Lee M, Kim H, Heo J, Cha S. Determination of Sulfites in Dried Fruits by Paper Spray Ionization Tandem Mass Spectrometry. Molecules 2024; 29:2192. [PMID: 38792053 PMCID: PMC11124160 DOI: 10.3390/molecules29102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Sulfite, a widely used food additive, is subject to regulated labeling. The extraction of sulfite as the stable hydroxymethylsulfonate (HMS) form and its quantitative analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been recognized for their good sensitivity, selectivity, and versatility across various food materials. This study aimed to develop a cost-effective and simpler method for sulfite quantitation, while maintaining the superior sensitivity and selectivity of mass spectrometry (MS). To achieve this, we introduced paper spray ionization (PSI), an ambient desorption ionization technique that could achieve the direct measurement of analytes without employing separation. We also employed a novel internal standard (IS) structurally similar to the analyte, replacing the more expensive isotopically labeled IS. Although the PSI-MS/MS method developed in this study exhibited slightly lower analytical performance compared to the conventional LC-MS/MS, it remained effective for sulfite analysis in dried fruits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sangwon Cha
- Department of Chemistry, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Algethami FK, Koraim BH, Abdelrahman EA, El-Reash YGA, Rizk MS, Abdel-Haleem FM. Ionophore-modified polyaniline-based optode for the determination of hydrogen sulfite levels in beverages, wastewater, and soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6275-6285. [PMID: 37955946 DOI: 10.1039/d3ay01320k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Sulfite is a very important species, affecting human health, plant and animal life, and environmental sustainability. In this study, for the first time, an ionophore-based ion-selective optode was constructed for hydrogen sulfite determination in beverages, such as Birell® and Sprite®, water, and soil samples; instead of normal pH-chromoionophores, polyaniline film was precipitated on a glass slide and used for the transduction of the sensation mechanism. The ionophore-modified polyaniline-based optode incorporated thiourea derivative as an ionophore and tridodecyl methyl ammonium chloride as an ion-exchanger. The optode film was prepared in situ with a modified chemical polymerization method, and it was characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD); also, FTIR spectroscopy was performed for the film before and after interaction with hydrogen sulfite for mechanism elucidation. The optode was applied in the hydrogen sulfite concentration range of 10-1 to 10-5 M with a low detection limit of 8.0 × 10-6 M and minimum interference of other interfering species, such as salicylate, iodide, and sulphide. The response mechanism was due to the ion-exchange of hydrogen sulfite with the anion exchanger, followed by the molecular recognition between thiourea ionophore and hydrogen sulfite, with concomitant redox reaction via the protonation of the polyaniline that causes a decrease in absorbance at 685 nm. The optode was applied successfully for the determination of hydrogen sulfite in real beverages, Birell® and Sprite® without any pretreatment steps. Also, it was applied successfully for the environmental monitoring of hydrogen sulfite in real wastewater and soil samples.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Basant H Koraim
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Yasmeen G Abou El-Reash
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Mahmoud S Rizk
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Fatehy M Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Shang Z, Meng Q, Zhang R, Zhang Z. Bifunctional near-infrared fluorescent probe for the selective detection of bisulfite and hypochlorous acid in food, water samples and in vivo. Anal Chim Acta 2023; 1279:341783. [PMID: 37827680 DOI: 10.1016/j.aca.2023.341783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
We report the development of a bifunctional near-infrared fluorescent probe (QZB) for selective sensing of bisulfite (HSO3-) and hypochlorous acid (HOCl). The synergistic detection of HSO3- and HOCl was achieved via a C=C bond recognition site. In comparison with the red-fluorescence QZB, two different products with non-fluorescence and paleturquoise fluorescence were produced by the recognition of QZB towards HSO3- and HOCl respectively, which can realize effectively the dual-functional detection of HSO3- and HOCl. QZB features prominent preponderances of dual-function response, near-infrared emission, reliability at physiological pH, low cytotoxicity and high sensitivity to HSO3- and HOCl. The detection of HSO3- in actual food samples has been successfully achieved using QZB. Utilization of QZB-based test strip to semi-quantitatively detect HSO3- and HOCl in real-world water samples by the "naked-eye" colorimetry are then demonstrated. Simultaneously, the determination of HSO3- and HOCl in real-world water sample has been achieved by smartphone-based standard curves. Additionally, the applications of QZB for imaging HSO3- and HOCl in vivo are successfully demonstrated. Consequently, the successful development of QZB could be promising as an efficient tool for researching the role of HSO3-/HOCl in the regulation of redox homeostasis regulation in vivo and complex signal transduction and for future food safety evaluation.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China; Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, PR China.
| |
Collapse
|
7
|
Peng H, Kong S, Deng X, Deng Q, Qi F, Liu C, Tang R. Development of a Ratiometric Fluorescent Probe with Zero Cross-Talk for the Detection of SO 2 Derivatives in Foods and Live Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14322-14329. [PMID: 37747790 DOI: 10.1021/acs.jafc.3c04056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Sulfur dioxide (SO2) derivatives are extensively utilized as both a preservative for foods and an active gaseous signal molecule in various physiological and pathological processes, but their excessive intake would bring harmful effects on human health; so, the determination of SO2 derivatives is of great importance. Herein, we developed a ratiometric fluorescent probe named 2-(2'-hydroxyphenyl)benzothiazole-3-ethyl-1,1,2-trimethyl-1H-benzo[e]indolium (HBT-EMBI) by introducing a hemicyanine unit of EMBI to an HBT group for the detection of SO2 derivatives via an excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT) effects. The probe displays some advantages, such as a colorimetric change from purple to colorless, a ratiometric fluorescence with zero cross-talk, and a remarkably large emission shift (Δλ = 164 nm) under a single-wavelength excitation. Accordingly, the probe HBT-EMBI has been successfully employed for the colorimetric and ratiometric determination of SO2 derivatives in real food samples and the quantitative visualization of SO2 derivative variations in HepG2 cells.
Collapse
Affiliation(s)
- Huan Peng
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Suna Kong
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Xia Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Qirong Deng
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| | - Fengpei Qi
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
| | - Changhui Liu
- College of Material and Chemical Engineering, Hunan City University, Yiyang 413000, People's Republic of China
| | - Ruiren Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
8
|
Shang Z, Wang Y, Meng Q, Zhang R, Zhang Z. A near-infrared fluorescent probe for imaging of bisulfite in living animals and its application in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122853. [PMID: 37209474 DOI: 10.1016/j.saa.2023.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Bisulfite (HSO3-) has been widely used as an antioxidant, enzyme inhibitor and antimicrobial agent in foodstuffs, pharmaceutical and beverages industries. It is also a signaling molecular in the cardiovascular and cerebrovascular systems. Nevertheless, a high level of HSO3- can cause allergic reactions and asthmatic attacks. Accordingly, the monitoring of HSO3- levels possesses momentous significance from the perspectives of biological technology and food security supervision. Herein, a near-infrared fluorescent probe LJ is rationally constructed for sensing HSO3-. The fluorescence quenching recognition mechanism was realized by the addition reaction of electron-deficient CC bond in probe LJ and HSO3-. Probe LJ revealed multifarious preponderances such as longer wavelength emission (710 nm), low cytotoxicity, larger Stokes shift (215 nm), better selectivity, higher sensitivity (72 nM) and short response time (50 s). Encouragingly, probe LJ can detect HSO3- in living zebrafish and mice in vivo by fluorescence imaging techniques. In the meantime, probe LJ was also successfully employed to semi-quantitatively detect HSO3- in real foodstuff samples and water samples by the "naked-eye" colorimetry without the help of any special instruments. More importantly, quantitative detection of HSO3- in practical food samples was achieved through a smartphone application software. Consequently, probe LJ is expected to provide an effective and convenient way for the detection and monitoring of HSO3- in organisms and for food safety detection, which has tremendous application potential.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| |
Collapse
|
9
|
Li H, Yue L, Huang H, Chen Z, Guo Y, Lin W. A NIR emission fluorescence probe for visualizing elevated levels of SO2 in cancer cells and living tumor. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Liu Z, Shi W, Lei Y, Xie Z. Novel polyamide/silica/chitosan covalent hybrid: One-step BIC/sol-gel preparation at room temperature and dual applications in Hg2+ electrochemical probing and dye adsorption. Carbohydr Polym 2023; 312:120808. [PMID: 37059540 DOI: 10.1016/j.carbpol.2023.120808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Room-temperature preparation of polymer-based covalent hybrids, which with multiple functional characteristics, is instrumental to overcome the performance shortcomings of single-polymer materials and broaden their applications thus. Herein, by introducing chitosan (CS) as a starting substrate into benzoxazine-isocyanide chemistry (BIC)/sol-gel reaction system, a novel polyamide (PA)/SiO2/CS covalent hybrid (PA-Si-CS) was successfully prepared in-situ at 30 °C. PA-Si-CS's chemical structure and elementary properties were characterized here. The introduction of CS combining with the presence of diverse N, O-containing segments (amide, phenol -OH, Si-OH, etc.) in PA-Si-CS provided its synergistic adsorption for Hg2+ and anionic dye Congo red (CR). The capture of PA-Si-CS for Hg2+ was rationally applied to the "enrichment"-type electrochemical probing of Hg2+. Relevant detection range, detection limit, interference, and probing mechanism were systematically analyzed. Compared with the experimental results of control electrodes, the electrode modified with PA-Si-CS (PA-Si-CS/GCE) showed a significantly enhanced electrochemical response to Hg2+, with a detection limit up to ~2.2 × 10-8 mol/L. In addition, PA-Si-CS also exhibited the specific adsorption for CR. Systematic analyses of dye adsorption selectivity, kinetics, isothermal models, thermodynamics, and adsorption mechanism told that PA-Si-CS can be used as an efficient CR adsorbent, with a maximum adsorption capacity of ~348 mg/g.
Collapse
Affiliation(s)
- Ziqiang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Wei Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China.
| | - Yilin Lei
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Zhengfeng Xie
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
11
|
Rational design of a negative photochromic spiropyran-containing fluorescent polymeric nanoprobe for sulfur dioxide derivative ratiometric detection and cell imaging. Anal Bioanal Chem 2023; 415:715-724. [PMID: 36520201 DOI: 10.1007/s00216-022-04462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
It is highly desirable to develop high-performance ratiometric fluorescent probes for SO2 derivative detection and realize their application in biological imaging. In this study, we report the rational design of a novel negative photochromic spiropyran derivative, spiro[azahomoadamantane-pyran] (MAHD-SP), with notable orange fluorescence in its stable ring-opened state without UV regulation. The unsaturated double bond of MAHD-SP underwent the Michael addition reaction of the SO2 derivative, making the fluorescence quenching of MAHD-SP obvious. Then, MAHD-SP, a fluorescent conjugated polymer PFO and a polymeric surfactant PEO113-b-PS49 were used to construct a ratiometric fluorescent polymeric nanoprobe (RFPN) via a coprecipitation method. The probe exhibited high sensitivity and selectivity for the ratiometric detection of SO2 derivatives in pure aqueous solutions. Moreover, the good biocompatibility of RFPN can be used to visualize exogenous and endogenous SO2 derivative generation in living cells.
Collapse
|
12
|
Electrochemical Detection of Sulfite by Electroreduction Using a Carbon Paste Electrode Binder with N-octylpyridinium Hexafluorophosphate Ionic Liquid. Catalysts 2022. [DOI: 10.3390/catal12121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfite is a widely used additive in food and beverages, and its maximum content is limited by food regulations. For this reason, determining the sulfite concentration using fast, low-cost techniques is a current challenge. This work describes the behavior of a sensor based on an electrode formed by carbon nanotubes an ionic liquid as binder, which by electrochemical reduction, allows detecting sulfite with a detection limit of 1.6 ± 0.05 mmol L−1 and presents adequate sensitivity. The advantage of detecting sulfite by reduction and not by oxidation is that the presence of antioxidants such as ascorbic acid does not affect the measurement. The electrode shown here is low-cost and easy to manufacture, robust, and stable.
Collapse
|
13
|
Ferlazzo A, Bressi V, Espro C, Iannazzo D, Piperopoulos E, Neri G. Electrochemical determination of nitrites and sulfites by using waste-derived nanobiochar. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Gajdár J, Herzog G, Etienne M. Amperometric Sensor for Selective On-Site Analysis of Free Sulfite in Wines. ACS Sens 2022; 7:2209-2217. [PMID: 35838550 DOI: 10.1021/acssensors.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accurate and rapid on-site analysis of free SO2 content is crucial in the process of winemaking from a producer and consumer perspective. Herein, we present an amperometric sensor based on commercially available screen-printed electrodes coupled with an electrochemical oxygen filter. The developed amperometric method gave a linear response in a concentration range up to 200 mg L-1 with a limit of quantification of 7.5 mg L-1. The applicability of the developed sensor was successfully tested on 27 white and red wine samples and compared to the Ripper method (iodometry) that is a standard procedure for free SO2 determination. The sensor exhibits similar precision and accuracy but shows no interference from oxidizable species such as ascorbic acid, which is a major advantage over iodometric titration. The performance of the sensor was in addition positively evaluated during on-site analysis in a winery.
Collapse
Affiliation(s)
- Július Gajdár
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France.,SATT Sayens, F-54000 Nancy, France
| | | | | |
Collapse
|
16
|
Kapoor A, Varnika, Pratibha, Rajput JK, Singh D, Kumar N, Jigyasa. Bi2O3 @MWCNT@g-C3N4 Ternary Nanocomposite for the Efficient Electrochemical Determination of Riboflavin in Pharmaceutical Samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Ye Y, Liu C, Wang L, Shen XC, Chen H. A dual-positive charges strategy for sensitive and quantitative detection of mitochondrial SO 2 in cancer cells and tumor tissue. Talanta 2022; 249:123699. [PMID: 35738208 DOI: 10.1016/j.talanta.2022.123699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 12/16/2022]
Abstract
Mitochondrial sulfur dioxide (SO2) correlates with various activities of the development and progression of cancer. However, the specific biological function of mitochondrial SO2 in cancerous cells remains amphibolous. Therefore, it is of great significance and urgency to develop a rapid and accurate method to monitor the dynamic fluctuations of mitochondrial SO2 in cancer cells and tumor tissue. Herein, in this work, we introduce a "dual-positive charges" strategy for simultaneously enhancing the sensitivity and mitochondrial targeting ability of SO2 detection in cancer cells for the first time. For proof of concept, the dual positive charged probe DCP was rationally designed and synthesized based on chromenoquinoline fluorophore. Correspondingly, we also synthesized single positive charged SO2 probe MCP as controls. As expected, the detection limit of dual positive charged DCP for SO2 detection was 0.06 μM, which was 7-fold lower than that of the single positive charged probe MCP. Besides, DCP showed a higher mitochondrial co-localization coefficient in cancer cells and it could distinguish cancer cells (HeLa) and normal cells (L929) in co-incubated system. In a word, the evidence suggested that the implementation of dual-positive charges strategy greatly improved the sensitivity to SO2 response and the specificity of mitochondrial targeting in cancer cells. Finally, DCP was successfully applied to monitor SO2 fluctuation in cancer cells, tumor tissue and living zebrafish. Thus, this work provides a powerful tool to investigate the role of mitochondrial SO2 in cancer and other related diseases.
Collapse
Affiliation(s)
- Yuan Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Chunli Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Liping Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xing-Can Shen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hua Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
18
|
Liu Q, Chen L, Wang Z, Yang Z, Sun Y, Wang S, Gu W. A highly sensitive “turn-on” dehydroabietic acid-based fluorescent probe for rapid sensing HSO3− and its application in sugar samples, living cells, and zebrafish. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
20
|
Bose A, Pandey PK. Re‐designing a biscuit formulation to eliminate sodium metabisulphite. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anupama Bose
- Department of Food Technology and Biochemical Engineering Jadavpur University Kolkata‐ 700032 India
| | | |
Collapse
|
21
|
Selective chemodosimetric ‘Turn-On’ fluorescence sensor for HSO3−: Comparing the reactivity of the exocyclic vs. non-exocyclic C C double bond. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Review of recent advancements in fluorescent chemosensor for ion detection via coumarin derivatives. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02092-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Lan JS, Zeng RF, Wang Y, Zhen L, Liu Y, Ho RJY, Ding Y, Zhang T. All-in-one: Accurate quantification, on-site detection, and bioimaging of sulfite using a colorimetric and ratiometric fluorescent probe in vitro and in vivo. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127229. [PMID: 34653860 DOI: 10.1016/j.jhazmat.2021.127229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
SO2 and its derivatives (SO32-/HSO3-) are used widely in food, beverages, and pharmaceutical production. However, they could induce multiple diseases in respiratory, nervous, and cardiovascular systems. Although several fluorescent probes have been developed for detecting SO32-/HSO3-, reports on rapid fluorescent probes for the on-site detection of SO2 derivatives are scarce. Herein, a colorimetric and ratiometric fluorescent probe 1 based on the intramolecular charge transfer (ICT) was reported. Probe 1 resulted in a 122 nm blue-shift in fluorescent emission and decrement of absorbance at 500 nm upon the addition of sulfite. Therefore, probe 1 could quantify SO32-/HSO3- using both UV-Vis and fluorescent methods (LOD: UV-Vis method 34 nM; fluorescent method 51 nM). Importantly, probe 1 was used for a rapid (60 s) and convenient (1 step, on-site) measurement of the SO2 derivatives in real samples (LOD: 0.47 µM) using smartphone based on the colorimetric method. The SO32-/HSO3--sensing mechanism was confirmed as the Michael addition reaction. Furthermore, the probe was used for the real-time monitoring of SO32-/HSO3- in A549 cells and zebrafish. In summary, an all-in-one fluorescent probe was successfully developed for the accurate quantification, on-site detection, and bioimaging of SO32-/HSO3-.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Liu
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Cho G, Azzouzi S, Zucchi G, Lebental B. Electrical and Electrochemical Sensors Based on Carbon Nanotubes for the Monitoring of Chemicals in Water-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 22:218. [PMID: 35009763 PMCID: PMC8749835 DOI: 10.3390/s22010218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
Carbon nanotubes (CNTs) combine high electrical conductivity with high surface area and chemical stability, which makes them very promising for chemical sensing. While water quality monitoring has particularly strong societal and environmental impacts, a lot of critical sensing needs remain unmet by commercial technologies. In the present review, we show across 20 water monitoring analytes and 90 references that carbon nanotube-based electrochemical sensors, chemistors and field-effect transistors (chemFET) can meet these needs. A set of 126 additional references provide context and supporting information. After introducing water quality monitoring challenges, the general operation and fabrication principles of CNT water quality sensors are summarized. They are sorted by target analytes (pH, micronutrients and metal ions, nitrogen, hardness, dissolved oxygen, disinfectants, sulfur and miscellaneous) and compared in terms of performances (limit of detection, sensitivity and detection range) and functionalization strategies. For each analyte, the references with best performances are discussed. Overall, the most frequently investigated analytes are H+ (pH) and lead (with 18% of references each), then cadmium (14%) and nitrite (11%). Micronutrients and toxic metals cover 40% of all references. Electrochemical sensors (73%) have been more investigated than chemistors (14%) or FETs (12%). Limits of detection in the ppt range have been reached, for instance Cu(II) detection with a liquid-gated chemFET using SWCNT functionalized with peptide-enhanced polyaniline or Pb(II) detection with stripping voltammetry using MWCNT functionalized with ionic liquid-dithizone based bucky-gel. The large majority of reports address functionalized CNTs (82%) instead of pristine or carboxyl-functionalized CNTs. For analytes where comparison is possible, FET-based and electrochemical transduction yield better performances than chemistors (Cu(II), Hg(II), Ca(II), H2O2); non-functionalized CNTs may yield better performances than functionalized ones (Zn(II), pH and chlorine).
Collapse
Affiliation(s)
- Gookbin Cho
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, IP Paris, 91128 Palaiseau, France; (G.C.); (S.A.); (G.Z.)
| | - Sawsen Azzouzi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, IP Paris, 91128 Palaiseau, France; (G.C.); (S.A.); (G.Z.)
| | - Gaël Zucchi
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, IP Paris, 91128 Palaiseau, France; (G.C.); (S.A.); (G.Z.)
| | - Bérengère Lebental
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, IP Paris, 91128 Palaiseau, France; (G.C.); (S.A.); (G.Z.)
- Laboratoire Instrumentation, Simulation et Informatique Scientifique (LISIS), Département Composants et Systèmes (COSYS), Université Gustave Eiffel, 77447 Marne-La-Vallée, France
| |
Collapse
|
25
|
Ou Z, Liu S, Liu Y, Chen H, Li H. A highly sensitive chemosensor for rapid recognition of Cu 2+ and HSO 3- in 100% aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120215. [PMID: 34325174 DOI: 10.1016/j.saa.2021.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Dual-responsive chemosensors have garnered much research interests owing to the ability of recognizing two analytes simultaneously. Herein, the chemosensor BPIS composed of hemicyanine and 2, 2'-dipyridylamine (DPA) was facilely synthesized for sensitive and expeditious recognition of Cu2+ and HSO3- in 100% aqueous solution. By adding Cu2+, BPIS showed substantial spectral changes accompanied by a noticeable color change from pink to yellow under daylight. The absorbance and fluorescence intensity were linearly correlated to the Cu2+ concentration, enabling the quantitative recognition of Cu2+. The limit of detection (LOD) for Cu2+ was down to 4.02 × 10-9 M. The response time of BPIS towards Cu2+ was 10 s, imparting BPIS great potential in real-time detection of Cu2+. Meanwhile, BPIS manifested ratiometric fluorescence response by introducing HSO3- owing to the 1,4-addition between HSO3- and the unsaturated CC bond of BPIS. The color of the BPIS solution progressively faded from pink to colorless with increasing HSO3- concentration, and a LOD of 3.47 × 10-9 M was obtained. In addition, BPIS-coated test paper was found to be an efficient tool for fast, sensitive, portable detection of Cu2+ and HSO3- by naked eyes. More importantly, the precise detection of Cu2+ and HSO3- in real water and sugars were realized, respectively, by capitalizing on BPIS as the signal tool.
Collapse
Affiliation(s)
- Zhipeng Ou
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Shuzhi Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Yijiang Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Hongbiao Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Huaming Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| |
Collapse
|
26
|
Han JH, Gao WY, Feng LH, Wang Y, Shuang SM. An AIE-active probe for selective fluorometric–colorimetric detection of HSO3− in aqueous solution and real samples. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
A novel miniaturized electroanalytical device integrated with gas extraction for the voltammetric determination of sulfite in beverages. Anal Chim Acta 2021; 1185:339067. [PMID: 34711313 DOI: 10.1016/j.aca.2021.339067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Voltammetry and amperometry are inexpensive and high-performance analytical techniques. However, their lack of selectivity limits their use in complex matrices such as biological, environmental, and food samples. Therefore, voltammetric and amperometric analyses of these samples usually require time-consuming and laborious sample pretreatments. In this study, we present a simple and cost-effective approach to fabricate a miniaturized electrochemical cell that can be easily coupled to a head space-like gas extraction procedure in such a way the sample pretreatment and voltammetric detection are performed in a single step. As a proof of concept, we have used the proposed system to quantify sulfite in beverage samples after its conversion to SO2(g). Despite the simplicity and low cost of the proposed system, it provided good analytical performance and a limit of detection of 4.0 μmol L-1 was achieved after only 10 min of extraction. The proposed system is quite versatile since it can be applied to quantify any volatile electroactive species. Also, the proposed system provides a unique way to assess real-time extraction curves, which are essential to study and optimize new gas extraction procedures. Therefore, the approach described in this study could contribute to both applied and fundamental Analytical Chemistry.
Collapse
|
28
|
Tagueu Massah R, Matemb Ma Ntep TJ, Njanja E, Lesly Zambou Jiokeng S, Liang J, Janiak C, Kenfack Tonle I. A metal-organic framework-based amperometric sensor for the sensitive determination of sulfite ions in the presence of ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Liu Y, Wu L, Dai Y, Li Y, Qi S, Du J, Yang Q, Xu H, Li Y. A novel fluorescent probe based on a triphenylamine derivative for the detection of HSO 3- with high sensitivity and selectivity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3667-3675. [PMID: 34337634 DOI: 10.1039/d1ay00800e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A novel highly active fluorescence chemical sensor (TBQN) for HSO3- was synthesized by the Knoevenagel reaction based on triphenylamine-benzothiazole as a new fluorophore. The probe possessed good selectivity toward HSO3- and anti-interference ability with common ions. The fluorescence and UV-vis spectra of the TBQN probe were significantly changed after the addition of HSO3-. At the same time, the probe solution released obvious green fluorescence. Moreover, the limit of detection for HSO3- was calculated to be 3.19 × 10-8 M. The TBQN probe displayed a rapid response to HSO3- and it took about 3 min to complete the recognition. The detection mechanism is the nucleophilic addition reaction between HSO3- and -C[double bond, length as m-dash]C- in the probe molecule. The π-conjugation and ICT (intramolecular charge transfer) transition in the TBQN molecule were destroyed by this addition, which resulted in the change of the fluorescence before and after the addition of HSO3-. Then, the mechanism was verified by theoretical calculations, 1H NMR measurements and mass spectroscopy. In addition, the probe showed low cytotoxicity and could be used for biological imaging in RAW264.7 cells.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry, Jilin University, Changchun, 130021, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Shang J, Li Y, Chen K, Li H. Synthesis and Properties of a Water-soluble Fluorescent Probe Based on ICT System for Detection of Ultra-trace SO 2 Derivatives. J Fluoresc 2021; 31:755-761. [PMID: 33646474 DOI: 10.1007/s10895-021-02702-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
SO2 and its derivatives are widely present in the environment and living organisms, endangering the environment and human health. Therefore, it is of great significance for the effective detection of sulfur dioxide (SO2) and its hydrated derivatives (HSO3- /SO32-). In this study, based on the mechanism of intramolecular charge transfer (ICT), a water-soluble colorimetric fluorescent probe (E)-2-(4-acetamidostyryl)-3-(5-carboxypentyl)-1, 1-dimethyl-1H-benzo[e]indol-3-ium (ABI) for the detection of SO2 derivatives was successfully synthesized from p-acetaminobenzaldehyde by connecting the benzo[e]indoles cationic fluorophore containing highly activated methyl via C = C double bond, and the ABI structure was characterized by HRMS and 1H NMR, 13 C NMR. Studies have shown that the ABI probe has some advantages such as good selectivity for SO2 derivatives, high sensitivity (detection limit LOD = 14.9 nM), and fast reaction rate. After adding HSO3-, the color of the probe solution changed from light yellow to colorless within 10 s, which provides a simple way to identify bisulfite with the naked eye. Studies on the effect of pH on the fluorescence performance of ABI showed that fluorescence performance of ABI was stable in the range of pH (7.0-10.26). Therefore, ABI is expected to become an effective tool for detecting SO2 derivatives in cells and organisms in the future.
Collapse
Affiliation(s)
- Jinyan Shang
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Yanbo Li
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Kangni Chen
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Heping Li
- School of Chemistry and Food Engineering, Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan, 410114, China.
| |
Collapse
|
32
|
Hu Q, Guo R, Zhang L, Liu Q, Cai S, Lin W. A novel fluorescent probe for rapid detection of sulfur dioxide in living cells. LUMINESCENCE 2021; 36:1006-1012. [PMID: 33571398 DOI: 10.1002/bio.4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/06/2022]
Abstract
Sulfur dioxide is one of the reactive sulfur species, which has significant physiological functions in cells. Some physiological processes are closely related to SO2 in organisms, and the high concentration of SO2 in living cells can cause many diseases. In order to investigate the unique function of SO2 at the subcellular level, developing a molecular tool which could detect of SO2 within organelles is imperative. Hence, we developed a cationic dye named HQ-SO2 as a new fluorescent probe to specifically monitor SO2 , which was easy to obtain through one-step reaction. It took Michael addition reaction as the mechanism of reaction for detection of SO2 . In addition, this probe showed a series of highly favorable properties such as rapid response rate, low cytotoxicity, high selectivity, low detection limit, and good photostability, which enabled the probe to track SO2 in living cells.
Collapse
Affiliation(s)
- Qian Hu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Rui Guo
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Liang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Qing Liu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Shushun Cai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
33
|
Sudha V, Murugadoss G, Thangamuthu R. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci Rep 2021; 11:3413. [PMID: 33564014 PMCID: PMC7873194 DOI: 10.1038/s41598-021-82741-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
A facile one-step chemical method is introduced for the successful synthesis of Cu2O, CuO and CuNa2(OH)4 crystal structures and their electrochemical properties were also investigated. X-ray diffraction studies revealed that these copper-based oxide nanoparticles display different crystal structures such as cubic (Cu2O), monoclinic (CuO) and orthorhombic [CuNa2(OH)4]. The microstructural information of nanoparticles was investigated by transmission electron microscopy. It shows attractive morphologies of different orientation such as rod like structure, nanobeads and well-aligned uniform nanorod for Cu2O, CuO and CuNa2(OH)4, respectively. Electrochemical sensing of sulphite (SO32−) on these three copper-based oxide modified electrodes was investigated. Among the three different crystal structures, CuO shows promising electrocatalytic activity towards oxidation of sulphite. A linear variation in peak current was obtained for SO32− oxidation from 0.2 to 15 mM under the optimum experimental condition. The sensitivity and detection limit were in the order of 48.5 µA cm−2 mM−1 and 1.8 µM, respectively. Finally, practical utility of CuO modified electrode was demonstrated for the estimation of sulphite in commercial wine samples.
Collapse
Affiliation(s)
- Velayutham Sudha
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, 630 003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Govindhasamy Murugadoss
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, 630 003, India. .,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600 119, India.
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry (EME) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, 630 003, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
34
|
Zhang Y, Kong X, Li M, Yin Y, Lin W. The development of a biotin-guided and mitochondria-targeting fluorescent probe for detecting SO 2 precisely in cancer cells. Talanta 2020; 225:121992. [PMID: 33592808 DOI: 10.1016/j.talanta.2020.121992] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Mitochondrial sulfur dioxide (SO2) is very closely associated with various activities of cancer cell. However, the specific physiological and pathological roles of mitochondrial SO2 in cancer cells are still not well defined. Lacking a powerful molecular tool for detecting mitochondrial SO2 in cancer cells precisely is an essential factor. So it is urgent to develop a specific method for monitoring mitochondrial SO2 in cancer cells. Herein, we described a distinct cancer cell-specific fluorescent probe NS for detecting mitochondrial SO2 accurately in cancer cells. Biotin, possessing of high affinity for cancer cells, was decorated into probe to provide its cancer cell-targeting property. Moreover, the positive charge hemicyanine group was used to anchor mitochondria selectively. A series of spectral results from concentration titration, dynamics and selectivity experiments showed that NS had high sensitivity, fast response and high selectivity to SO2. These properties render NS ability for detecting SO2 in living cells. In biological imaging, the achievements in detecting exogenous and endogenous SO2 displayed the probe had favorable response to SO2 in living cells with well biocompatibility. Significantly, assisted by competitive experiments with excess biotin, NS demonstrated distinct cancer cell-targeting for detecting mitochondrial SO2. Furthermore, NS could locate mitochondria specially and detect mitochondrial SO2 in cancer cells by co-localization. Moreover, NS can trace SO2 in zebrafish with long wavelength emission. Therefore, NS can achieve in tracing mitochondrial SO2 selectively in cancer cells. It would be a powerful tool for well defining the physiological and pathological roles of mitochondrial SO2 in cancer cells.
Collapse
Affiliation(s)
- Yunyan Zhang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Min Li
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Yaguang Yin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|
35
|
Kuntolaksono S, Shimamura C, Matsuura H. Amperometric Sulfite Sensor Using Electrodecorated Pt Particles onto an Aminated Glassy Carbon Electrode Prepared by Stepwise Electrolysis. ANAL SCI 2020; 36:1547-1550. [PMID: 32741953 DOI: 10.2116/analsci.20n016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/25/2020] [Indexed: 08/09/2023]
Abstract
A novel modified glassy carbon electrode with platinum (Pt)-electrodecorated and nitrogen-containing functional groups was prepared by stepwise electrolysis. The prepared electrode exhibited electrocatalytic activity towards sulfite oxidation that was better than that of a bare glassy carbon electrode. The electrocatalytic activity of sulfite oxidation has been applied to an amperometric sulfite sensor. A favorable linear relationship between the current response (ΔI) and the sulfite concentration up to 500 μM was exhibited. The detection limit was estimated to be 3 μM based on the criterion of a signal-to-noise (S/N) ratio of 3 under optimized conditions. In regards to the reproducibility, the RSD (n = 10) was 8.9% for 80 μM sulfite.
Collapse
Affiliation(s)
- Satrio Kuntolaksono
- Department of Life Science & Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama, 369-0293, Japan
| | - Chihiro Shimamura
- Department of Life Science & Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama, 369-0293, Japan
| | - Hiroaki Matsuura
- Department of Life Science & Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690 Fusaiji, Fukaya, Saitama, 369-0293, Japan.
| |
Collapse
|
36
|
Ci Q, Qin X, Liu J, Wang R, Li Z, Qin W, Lim KL, Zhang CW, Li L. Mitochondria-targeted polydopamine nanoprobes for visualizing endogenous sulfur dioxide derivatives in a rat epilepsy model. Chem Commun (Camb) 2020; 56:11823-11826. [PMID: 33021257 DOI: 10.1039/d0cc04575f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epilepsy is the fourth most common neurological disorder, and aberrantly elevated sulfur dioxide derivatives (SO32-/HSO3-) are thought to underlie the hippocampal neuronal apoptosis in epilepsy. We have designed and synthesized a mitochondria-targeted polydopamine nanoprobe for visualizing endogenous SO32-/HSO3- by the nucleophilic addition reaction. The nanoprobe was used for imaging SO2 derivatives both in the mitochondria of cultured cells and zebrafish, and successfully applied in the hippocampus of a rat model of epilepsy. The PDAD nanoprobe could be of great value for the elucidation of mechanisms of abnormal SO32-/HSO3- involved in diseases such as epilepsy.
Collapse
Affiliation(s)
- Qiaoqiao Ci
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kovaleva SV, Aksinenko OS, Korshunov AV. Electrooxidation of Sulfite Ions on a Composite Carbon-Containing Electrode Modified with Submicron Gold Particles. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820080080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Hassan SSM, H Kamel A, Amr AEGE, Abd-Rabboh HSM, Al-Omar MA, Elsayed EA. A New Validated Potentiometric Method for Sulfite Assay in Beverages Using Cobalt(II) Phthalocyanine as a Sensory Recognition Element. Molecules 2020; 25:E3076. [PMID: 32640703 PMCID: PMC7412148 DOI: 10.3390/molecules25133076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
A simple potentiometric sensor is described for accurate, precise, and rapid determination of sulfite additives in beverages. The sensor is based on the use of cobalt phthalocyanine as a recognition material, dispersed in a plasticized poly(vinyl chloride) matrix membrane. o-Nitrophenyl octyl ether (o-NPOE) as a membrane solvent and tri-dodecylmethyl- ammonium chloride (TDMAC) as ion discriminators are used as membrane additives. Under the optimized conditions, sulfite ion is accurately and precisely measured under batch and flow injection modes of analysis. The sensor exhibits fast and linear response for 1.0 × 10-2-1.0 × 10-6 M (800-0.08 µg/mL) and 1.0 × 10-1-5.0 × 10-5 M (8000-4 µg/mL) sulfite with Nernstian slopes of -27.4 ± 0.3 and -23.7 ± 0.6 mV/concentration decade under static and hydrodynamic modes of operation, respectively. Results in good agreement with the standard iodometric method are obtained.Validation of the assay method is examined in details including precision, accuracy, bias, trueness, repeatability, reproducibility, and uncertainty and good performance characteristics of the method are obtained. The sensor response is stable over the pH range of 5 to 7 without any significant interference from most common anions. The advantages offered by the proposed sensor (i.e., wide range of assay, high accuracy and precision, low detection limit, reasonable selectivity, long term response stability, fast response, and long life span and absence of any sample pretreatment steps) suggest its use in the quality control/quality assurance routine tests in beverages industries, toxicological laboratories and by inspection authorities.
Collapse
Affiliation(s)
- Saad S M Hassan
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Ayman H Kamel
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied Organic Chemistry Department, National Research Center, Dokki 12622, Giza, Egypt
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Elsayed A Elsayed
- Zoology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
39
|
Yang D, He XY, Wu XT, Shi HN, Miao JY, Zhao BX, Lin ZM. A novel mitochondria-targeted ratiometric fluorescent probe for endogenous sulfur dioxide derivatives as a cancer-detecting tool. J Mater Chem B 2020; 8:5722-5728. [PMID: 32514507 DOI: 10.1039/d0tb00149j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new mitochondria-targeted fluorescent probe RBC, constructed using a coumarin moiety which was selected as the donor and a benzothiazole derivative as the acceptor, for SO2 derivatives (HSO3-/SO32-) was presented. The probe designed on a new FRET platform showed high selectivity and a low detection limit. Importantly, the probe could respond to HSO3-/SO32- within 35 s. Furthermore, the probe could target mitochondria and was successfully used for fluorescence imaging of endogenous bisulfite in HepG2 with low cytotoxicity, which significantly assisted in cancer diagnosis.
Collapse
Affiliation(s)
- Di Yang
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Yuan Q, Chen LL, Zhu XH, Yuan ZH, Duan YT, Yang YS, Wang BZ, Wang XM, Zhu HL. An imidazo[1,5-α]pyridine-derivated fluorescence sensor for rapid and selective detection of sulfite. Talanta 2020; 217:121087. [PMID: 32498830 DOI: 10.1016/j.talanta.2020.121087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/28/2023]
Abstract
Sulfur-containing species are essential in the composition and the metabolism of the organisms, thus developing a full set of implements to cover all of them is still a favorable choice. Herein, we chose imidazo [1,5-α]pyridine moiety as the basic fluorophore for the detection of sulfite, and preliminarily completed the toolset since biothiols (GSH, Cys, Hcy), H2S, and PhSH could be detected by sensors based on the same backbone. The designed sensor, IPD-SFT, with structural novelty and large Stokes shift (130 nm), indicated the most attractive advantages of remarkably rapid response period (within 1 min) and high selectivity for sulfite from all the sulfur-containing species. Other practical properties included high sensitivity (LOD = 50 nM) and wide pH adaptability (5.0-11.0). Furthermore, IPD-SFT could monitor both exogenous and endogenous sulfite. It not only raised a potential tool for sulfite detection, but also preliminarily completed the toolset for all the sulfur-containing species. The development of such toolsets might reveal the sulfur-containing metabolism and corresponding physiology and pathological procedures.
Collapse
Affiliation(s)
- Qing Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
41
|
Zhang C, Li L, Liu Q, Chen Z. Colorimetric Differentiation of Multiple Oxidizing Anions Based on Two Core-Shell Au@Ag Nanoparticles with Different Morphologies as Array Recognition Elements. Anal Chem 2020; 92:7123-7129. [PMID: 32320215 DOI: 10.1021/acs.analchem.0c00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The efficient discrimination of oxidizing anions is of considerable importance in environmental monitoring. Here, for the first time, we have developed a simple and fast colorimetric sensor array for detection and identification of oxidizing anions, which takes advantage of the etching of the Ag shell of two core-shell Au@Ag nanoparticles (Au@Ag nanospheres (Au@Ag NPs) and Au@Ag nanocubes (Au@Ag NCs)) by oxidizing anions. The differential etching ability of various oxidizing anions to the Ag shell of the two Au@Ag nanoparticles resulted in different absorbance and color change of the nanoparticles. Thus, employing Au@Ag NPs and Au@Ag NCs as the array's receptors and the indicators, six oxidizing anions (i.e., BrO3-, Cr2O72-, ClO4-, IO3-, IO4-, and MnO4-) down to 10 nM could be identified from each other by their own colorimetric response patterns. Moreover, the complex mixtures of oxidizing anions could be well discriminated. Most importantly, the sensor array was successfully applied to the discrimination of oxidizing anions in river water and tap water samples.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Luwen Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
42
|
Wu D, Rong S, Liu Y, Zheng F, Zhao Y, Yang R, Du X, Meng F, Zou P, Wang G. Detecting and imaging of SO 2 derivatives in living cells with zero cross-talk colorimetric mitochondria-targeted fluorescent probe. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that excessive levels of sulfur dioxide and its derivatives are connected to diverse diseases. Therefore, developing highly sensitive probes to detect and monitor sulfite in living cells is important for the diagnosis of disease and the study of biochemical processes in vivo. In this report, two zero cross-talk ratiometric fluorescent probes were synthesized (CA-ID-MC and CA-BI-MC), which were derived from carbazole-indolenine π-conjugated system for effective detection of sulfite in living cells. Observably, CA-BI-MC exhibited the largest emission shift of 157 nm from 617 to 460 nm with the addition of various concentrations of sulfite, which is beneficial for high-resolution imaging of the sulfite. CA-BI-MC also exhibits high sensitivity and low cytotoxicity. More importantly, this probe successfully located mitochondria and sensed the sulfite in HeLa cells caused by exogenous stimulation.
Collapse
Affiliation(s)
- Dan Wu
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Shiqi Rong
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Yi Liu
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Fei Zheng
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Yankun Zhao
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Ping Zou
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| | - Guangtu Wang
- College of Science, Sichuan Agricultural University, Ya’an 625014, P.R. China
| |
Collapse
|
43
|
Lv M, Zhang Y, Fan J, Yang Y, Chen S, Liang G, Zhang S. A near-infrared fluorescent probe for ratiometric sensing of SO2 in cells and zebrafish. Analyst 2020; 145:7985-7992. [DOI: 10.1039/d0an01468k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SO2 sensing and imaging: the first near-infrared fluorescent probe Mito-HN with AIEE characteristics for ratiometric sensing of SO2 derivatives in vitro, in cells, and in zebrafish was rationally designed and synthesized.
Collapse
Affiliation(s)
- Mengya Lv
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong SAR
- China
| | - Jiayi Fan
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Yanyun Yang
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
| | - Sheng Chen
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- China
- Center for Advanced Analysis & Gene Sequencing
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing
- Zhengzhou University
- Zhengzhou
- China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
44
|
Loganathan C, Narayanamoorthi E, John SA. Leaching of AuNPs from the surface of GO: Sensitive turn on fluorescence detection of toxic preservative. Food Chem 2019; 309:125751. [PMID: 31718839 DOI: 10.1016/j.foodchem.2019.125751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/22/2019] [Accepted: 10/19/2019] [Indexed: 01/15/2023]
Abstract
Development of a novel colorimetric and turn-on fluorescent sensor for potassium metabisulphite (KMS) using graphene oxide stabilized gold nanoparticles (GO-AuNPs) was described. The red color GO-AuNPs was changed to violet while adding 250 × 10-5 M KMS whereas the absorbance band at 523 nm was decreased. The observed changes were ascribed to the leaching of AuNPs from GO. The emission maximum was observed at 448 nm for GO while exciting at 335 nm. However, the GO emission was "turn-off" after the formation of AuNPs on GO surface due to masking of oxygen functional groups responsible for emission. Interestingly, the emission of GO-AuNPs becomes "turn-on" after the addition of 75 × 10-6 M KMS. Further addition of KMS from 150 to 1125 × 10-6 M, the emission intensity of GO-AuNPs linearly increases with the correlation coefficient of 0.9980 and the limit of detection was found to be 9.4 µM L-1/1.2 mg L-1 (S/N = 3).
Collapse
Affiliation(s)
- C Loganathan
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram - 624 302, Dindigul, Tamilnadu, India
| | - E Narayanamoorthi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram - 624 302, Dindigul, Tamilnadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram - 624 302, Dindigul, Tamilnadu, India.
| |
Collapse
|
45
|
Bezerra Martins A, Lobato A, Tasić N, Perez-Sanz FJ, Vidinha P, Paixão TR, Moreira Gonçalves L. Laser-pyrolyzed electrochemical paper-based analytical sensor for sulphite analysis. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Kraikaew P, Pluangklang T, Ratanawimarnwong N, Uraisin K, Wilairat P, Mantim T, Nacapricha D. Simultaneous determination of ethanol and total sulfite in white wine using on-line cone reservoirs membraneless gas-liquid separation flow system. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Fast Determination of the Main Reduced Sulfur Species in Aquatic Systems by a Direct and Second-Derivative Spectrophotometric Method. J CHEM-NY 2019. [DOI: 10.1155/2019/1039487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The determination of reduced sulfur species in aquatic systems is not an easy and fast task to accomplish regarding the numerous possible interferences and risks of oxidation that occur with the usual methods of quantification. The method presented here is a direct spectrophotometric method that can be used to quantify sulfides, sulfites, and thiosulfates in a simple and rapid way. The principle is based on the comparison of second-derivative absorbance spectra of the same sample at different pH (9.2, 4.7, and 1.0) and selected absorption wavelengths (250 and 278 nm). This method has been successfully tested and has demonstrated liability to (i) avoid the biases due to absorbance overlaps between the different major chemical species and (ii) keep, as a direct method, the advantages over indirect methods on interferences reduction. The limits of detections (LOD) reached for total sulfide, sulfite, and thiosulfate are 1.37, 7.32, and 1.92 µM, respectively. The method displays low accuracy mean and low relative standard deviation (<4%) as well as a good linearity (R2 > 0.999). Accordingly, this method represents a very robust alternative in terms of cost and rapidity for the quantification of reduced sulfur species in different aquatic environments, from freshwaters to saline and polluted systems.
Collapse
|
48
|
Carlos KS, Treblin M, de Jager LS. Comparison and optimization of three commercial methods with an LC–MS/MS method for the determination of sulfites in food and beverages. Food Chem 2019; 286:537-540. [DOI: 10.1016/j.foodchem.2019.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|
49
|
Zhou F, Sultanbawa Y, Feng H, Wang YL, Meng Q, Wang Y, Zhang Z, Zhang R. A New Red-Emitting Fluorescence Probe for Rapid and Effective Visualization of Bisulfite in Food Samples and Live Animals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4375-4383. [PMID: 30865447 DOI: 10.1021/acs.jafc.8b07110] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of new methods for rapid and effective detection of bisulfite (HSO3-) in food samples and imaging of HSO3- intake in animals is of significant importance due to the key roles of HSO3- in food quality assurance and community health. In this work, a new responsive fluorescence probe, EQC, is reported for the quantitative detection of HSO3- in food samples and visualization of HSO3- intake in animals. Upon addition of HSO3-, the UV-vis absorption and red emission of EQC were significantly decreased within 120 s. The changes in absorption and emission spectra of EQC were rationalized by theoretical computations. The proposed reaction mechanism of EQC with HSO3- was confirmed by high-resolution mass spectrometry (HRMS) and spectroscopic titration measurements. EQC has the advantages of high sensitivity, selectivity (a detection limit of 18.1 nM), and fast response toward HSO3-, which enable rapid and effective HSO3- detection in buffer solution. The practical applications of EQC were demonstrated by the detection of HSO3- in food samples and the imaging of HSO3- intake in live animals.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
| | - Yasmina Sultanbawa
- Queensland Alliance for Agricultural and Food Innovation (QAAFI) , The University of Queensland , Brisbane 4072 , Australia
| | - Huan Feng
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Qingtao Meng
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
| | - Yue Wang
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
| | - Zhiqiang Zhang
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
| | - Run Zhang
- School of Chemical Engineering , University of Science and Technology Liaoning , Anshan , Liaoning 114051 , People's Republic of China
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane 4072 , Australia
| |
Collapse
|
50
|
A carbazole-hemicyanine dye based ratiometric fluorescent probe for selective detection of bisulfite (HSO3−) in cells and C. elegans. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|