1
|
Joksimoski S, Kerpen K, Telgheder U. Atmospheric pressure photoionization – High-field asymmetric ion mobility spectrometry (APPI-FAIMS) studies for on-site monitoring of aromatic volatile organic compounds (VOCs) in groundwater. Talanta 2022; 247:123555. [DOI: 10.1016/j.talanta.2022.123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022]
|
2
|
Capillary Sensor for Detection of Amphetamine Precursors in Sewage Water. Polymers (Basel) 2021; 13:polym13111846. [PMID: 34199443 PMCID: PMC8199614 DOI: 10.3390/polym13111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
This paper deals with the problem of detecting benzyl methyl ketone (BMK), which is a precursor of amphetamine that can be synthesized in home labs. The focus of our work was to identify an improvement for the analysis of sewage introduced into the municipal sewage system. The sensors used to detect BKM in these systems are often clogged and therefore cannot function properly. In this article, a new method of detecting BMK and other chemicals in wastewater is presented. A system containing capillary polypropylene, hydrophobized with polysiloxane coating fibers was prepared. These solutions were used for continuous online measurements by ion mobility spectrometry. The use of pipes with a polysiloxane coating reduces the permeation of water and significantly increases the BMK permeation due to its high solubility in the polymer.
Collapse
|
3
|
Wiśnik-Sawka M, Budzyńska E, Puton J. Application of Ion Mobility Spectrometry for Permeability Studies of Organic Substances through Polymeric Materials. Molecules 2020; 25:molecules25132983. [PMID: 32610631 PMCID: PMC7411691 DOI: 10.3390/molecules25132983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Drift tube ion mobility spectrometers (DT IMS) allow the concentration of different organic compounds to be measured. This gives the opportunity to use these detectors in measuring the penetration of various substances through polymer membranes. Permeation measurements of two substances (2-heptanone and dimethyl methylphosphonate (DMMP)) through a cylindrical silicone rubber membrane were carried out. The membrane separated the aqueous solution from the air. The analyte was introduced into water, and then its concentration in air on the opposite side of the membrane was recorded. Based on the dynamics of detector signal changes, the diffusion coefficients for both tested substances were determined. Determination of permeability coefficients was based on precise quantitative measurements, which took into account the non-linearity of the detector characteristics and the effect of water on detection sensitivity. The analysis of measurement results was based on a mathematical description of diffusion process.
Collapse
|
4
|
Ratiu IA, Bocos-Bintintan V, Monedeiro F, Milanowski M, Ligor T, Buszewski B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Crit Rev Anal Chem 2019; 50:501-512. [PMID: 31514505 DOI: 10.1080/10408347.2019.1663147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Simple tests using sniff analysis that have the ability of diagnosing and rapidly distinguishing between infections due to different bacteria are urgently required by medical community worldwide. Professionals interested in this topic wish for these tests to be simultaneously cheap, fast, easily applicable, non-invasive, robust, reliable, and sensitive. Current analytical instrumentation has already the ability for performing real time (minutes or a few dozens of minutes) analysis of volatile bacterial biomarkers (the VOCs emitted by bacteria). Although many articles are available, a review displaying an objective evaluation of the current status in the field is still needed. This review tries to present an overview regarding the bacterial biomarkers released from in vitro cultivation of various bacterial strains and also from different biological matrices investigated, over the last 10 years. We have described results of relevant studies, which used modern analytical techniques to evaluate specific biomarker profiles associated with bacterial infections. Our purpose was to present a comprehensive view of available possibilities for detection of emitted bacterial VOCs from different matrices. We intend that this review to be of general interest for both medical doctors and for all researchers preoccupied with bacterial infectious diseases and their rapid diagnosis using analytical instrumentation.
Collapse
Affiliation(s)
- Ileana-Andreea Ratiu
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland.,Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Victor Bocos-Bintintan
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Fernanda Monedeiro
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland.,Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, CEP, Brazil
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
5
|
Szymańska U, Wiergowski M, Sołtyszewski I, Kuzemko J, Wiergowska G, Woźniak MK. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Safaei Z, Eiceman GA, Puton J, Stone JA, Nasirikheirabadi M, Anttalainen O, Sillanpää M. Differential Mobility Spectrometry of Ketones in Air at Extreme Levels of Moisture. Sci Rep 2019; 9:5593. [PMID: 30944342 PMCID: PMC6447537 DOI: 10.1038/s41598-019-41485-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 11/08/2022] Open
Abstract
The performance of a differential mobility spectrometer was characterized at ambient pressure and ten values of water vapor concentration, from 1.0 × 102 to 1.7 × 104 ppm using a homologous series of seven ketones from acetone to 2-dodecanone. Dispersion plots at 30 °C with separation fields from 35 to 123 Td exhibited increased alpha functions for the hydrated proton, protonated monomers, and proton bound dimers with increased moisture levels. Increases in the level of moisture were accompanied by decreased quantitative response with progressive suppression in the formation of the proton bound dimer first and then protonated monomer. Product ions for 2-octanone at 7 ppb were not observed above a moisture level of 4.0 × 103 ppm, establishing a limit for observation of analyte ion formation. The observation limit increased from 1.1 × 103 ppm for acetone to 5.7 × 103 ppm for 2-dodecanone. These findings demonstrate that ketones can be determined with a differential mobility spectrometry (DMS) analyzer near room temperature in the presence of elevated levels of moisture expected with the use of membrane inlets or headspace sampling of surface or ground waters. Moisture levels entering this DMS analyzer employed as an environmental monitor should be kept at 1.0 × 103 ppm or below and quantitative studies for individual ketones should be made at a fixed moisture level.
Collapse
Affiliation(s)
- Z Safaei
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - G A Eiceman
- Department of Chemistry and Biochemistry, 1175 North Horseshoe Drive, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - J Puton
- Institute of Chemistry, Military University of Technology, Kaliskiego 2, Warsaw, Poland
| | - J A Stone
- Department of Chemistry, Queens University, Kingston, Ont., K7L 4J1, Canada
| | - M Nasirikheirabadi
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - O Anttalainen
- Environics Oy, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - M Sillanpää
- Department of Green Chemistry, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
7
|
Kermani M, Jafari MT, Saraji M. Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Mikrochim Acta 2019; 186:88. [PMID: 30631951 DOI: 10.1007/s00604-018-3215-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Carbon sheets were attached to magnetite (Fe3O4) nanoparticles. The resulting nanocomposite is shown to be a viable sorbent for use in magnetic dispersive solid-phase microextraction of three organophosphorus pesticides. The sorbent was synthesized via the sol-gel process followed by calcination and was characterized by an X-ray diffractometer, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and Raman spectrometry techniques. The affecting parameters in the adsorption and desorption steps were assessed and optimized via response surface methodology. Following desorption with dichloromethane, the OPPs were quantified by gas chromatography along with ion mobility spectrometry detection. Under optimized conditions, the limits of detection were 1.00, 0.46 and 0.85 μg L-1 for fenthion, malathion and chlorpyrifos, respectively. Response is linear in the concentration range of 2-500 μg L-1 for fenthion and malathion, and 2-1000 μg L-1 for chlorpyrifos with the determination coefficient larger than 0.9969. The intra-day and inter-day precision were from 3 to 9% and 5 to 16%, respectively. The enrichment factor was greater than 142 for all the studied pesticides. The sorbent was used for analyze spiked water and vegetable samples and gave relative recovery higher than 82%. Graphical abstract A flowchart of the synthesis of porous magnetized carbon sheet nanocomposites and the process of the magnetic dispersive solid-phase microextraction (MD-μ-SPE) of three organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry (GC-IMS).
Collapse
Affiliation(s)
- Mansoure Kermani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad T Jafari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
8
|
Sun T, Wang D, Tang Y, Xing X, Zhuang J, Cheng J, Du Z. Fabric-phase sorptive extraction coupled with ion mobility spectrometry for on-site rapid detection of PAHs in aquatic environment. Talanta 2018; 195:109-116. [PMID: 30625520 DOI: 10.1016/j.talanta.2018.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023]
Abstract
The contamination of water is a high risk to human health, so there is an urgent need to rapidly detect water pollution in the field. Ion mobility spectrometry (IMS) is suitable for on-site analysis with the merit of rapid analysis and compact size. In this study, we developed a new method which coupled fabric phase sorptive extraction (FPSE) with IMS for rapid detection of polycyclic aromatic hydrocarbons (PAHs) in water present in the field. Polydimethylsiloxane (PDMS) was coated on the glass fiber cloth through a sol-gel reaction. After extracting the PAHs in water, the fabric coated PDMS could be directly put into the inlet of IMS instrument for thermal desorption. The PAHs were analyzed by the IMS instrument operated in the positive ion mode with a corona discharge (CD) ionization source. The primary parameters affecting extraction efficiency such as extraction time, extraction temperature, and ionic strength were investigated and optimized by using phenanthrene (Phe), benzo[a]anthracene (BaA) and benzo[a]pyrene (BaP) as model compounds. Under the optimal conditions, the FPSE-IMS detection limits were 5 ng ml-1,8 ng ml-1 and 10 ng ml-1 respectively. Satisfactory recoveries were obtained in the range from 80.5% to 100.5% by testing the spiked real water samples and validated by the standard method(HJ487-2009). Based on the results, the method of FPSE-IMS could be feasibly applied for monitoring the water quality on-site and providing early warning in the field.
Collapse
Affiliation(s)
- Tangqiang Sun
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Di Wang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Yan Tang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Xuebin Xing
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jingcong Zhuang
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxing Cheng
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China
| | - Zhenxia Du
- College of Science, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
9
|
Jafari MT, Saraji M, Kermani M. Sol-gel electrospinning preparation of hybrid carbon silica nanofibers for extracting organophosphorus pesticides prior to analyzing them by gas chromatography-ion mobility spectrometry. J Chromatogr A 2018; 1558:1-13. [DOI: 10.1016/j.chroma.2018.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 01/31/2023]
|
10
|
Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S. Trace analysis by ion mobility spectrometry: From conventional to smart sample preconcentration methods. A review. Anal Chim Acta 2018; 1026:37-50. [PMID: 29852992 DOI: 10.1016/j.aca.2018.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid and high sensitive technique widely used in security and forensic areas. However, a lack of selectivity is usually observed in the analysis of complex samples due to the scarce resolution of the technique. The literature concerning the use of conventional and novel smart materials in the pretreatment and preconcentration of samples previous to IMS determinations has been critically reviewed. The most relevant strategies to enhance selectivity and sensitivity of IMS determinations have been widely discussed, based in the use of smart materials, as immunosorbents, aptamers, molecularly imprinted polymers (MIPs), ionic liquids (ILs) and nanomaterial. The observed trend is focused on the development of IMS analytical methods in combination of selective sample treatments in order to achieve quick, reliable, sensitive, and selective methods for the analysis of complex samples such as biological fluids, food, or environmental samples.
Collapse
Affiliation(s)
- A Sorribes-Soriano
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - M de la Guardia
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - F A Esteve-Turrillas
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain
| | - S Armenta
- Analytical Chemistry Department, University of Valencia, 50(th) Dr. Moliner St., 46100, Burjassot, Spain.
| |
Collapse
|
11
|
Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Li Z, Xu C, Shu J. Detection of sub-pptv benzene, toluene, and ethylbenzene via low-pressure photoionization mass spectrometry. Anal Chim Acta 2017; 964:134-141. [PMID: 28351629 DOI: 10.1016/j.aca.2017.01.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 02/03/2023]
Abstract
This paper reports on the advanced development of an ultrasensitive method for the detection of benzene, toluene, and ethylbenzene (or BTE) by low-pressure photoionization mass spectrometry (LPPI-MS). The LPPI source is composed of a laboratory-assembled krypton lamp and a stainless steel cylindrical ionizer. A compact V-shaped mass spectrometer is coupled to the LPPI source with a set of ion immigration optics under dc bias. The fixed standard concentration (FSC) and fixed standard volume (FSV) method are employed to calibrate the sensitivities of the instrument. The corresponding detection sensitivity toward BTE is 4-7 counts/pptv and the 2σ limit of detection (LOD) is 0.5-0.8 part per trillion by volume (pptv). In addition, the measurement accuracy is 95%-105%, and the corresponding precision ranges from 3% to 15% and from 9% to 31% for the FSC and FSV methods, respectively. The stability (standard deviation) of LPPI-MS for a 1 ppbv BTE mixture is less than 0.025 (>12 h). In the detection of BTE, water in ambient air is the most significant interfering factor, leading to the increased background, and inferior LODs of 1-2 pptv for BTE under an RH of ∼90% is observed. Experimental results indicated that LPPI-MS is reliable for the detection of sub-pptv levels of BTE under laboratory conditions.
Collapse
Affiliation(s)
- Zhen Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ce Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jinian Shu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Ion mobility spectrometry: Current status and application for chemical warfare agents detection. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Armenta S, de la Guardia M, Abad-Fuentes A, Abad-Somovilla A, Esteve-Turrillas FA. Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry. Anal Bioanal Chem 2016; 408:8559-8567. [DOI: 10.1007/s00216-016-9995-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
|
15
|
Choi SS, Son CE, Shin MW, Choi GS. Influence of Smear Matrix Type on Detection Efficiencies of Explosives in Corona Discharge-Ion Mobility Spectrometer. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sung-Seen Choi
- Department of Chemistry; Sejong University; Seoul 143-747 Korea
| | - Chae Eun Son
- Department of Chemistry; Sejong University; Seoul 143-747 Korea
| | | | | |
Collapse
|
16
|
Arnanthigo Y, Anttalainen O, Safaei Z, Sillanpää M. Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0189-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
A novel headspace sampler for field detection of chemical warfare agents and simulants connected to a commercial ion mobility detector. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s12127-016-0188-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Off-line coupling of multidimensional immunoaffinity chromatography and ion mobility spectrometry: A promising partnership. J Chromatogr A 2015; 1426:110-7. [DOI: 10.1016/j.chroma.2015.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 11/11/2015] [Indexed: 02/04/2023]
|
19
|
Sabo M, Malásková M, Harmathová O, Hradski J, Masár M, Radjenovic B, Matejčík Š. Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry. Anal Chem 2015; 87:7389-94. [DOI: 10.1021/acs.analchem.5b01585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Sabo
- Department
of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48, Bratislava, Slovakia
| | - Michaela Malásková
- Department
of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48, Bratislava, Slovakia
| | - Olga Harmathová
- Department
of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48, Bratislava, Slovakia
| | - Jasna Hradski
- Department
of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Marián Masár
- Department
of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Branislav Radjenovic
- Institute
of Physics, University of Belgrade, P.O. Box 57, 11080 Belgrade, Serbia
| | - Štefan Matejčík
- Department
of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 842 48, Bratislava, Slovakia
| |
Collapse
|
20
|
Gałuszka A, Migaszewski ZM, Namieśnik J. Moving your laboratories to the field--Advantages and limitations of the use of field portable instruments in environmental sample analysis. ENVIRONMENTAL RESEARCH 2015; 140:593-603. [PMID: 26051907 DOI: 10.1016/j.envres.2015.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/05/2015] [Accepted: 05/16/2015] [Indexed: 05/21/2023]
Abstract
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector), ultraviolet-visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities.
Collapse
Affiliation(s)
- Agnieszka Gałuszka
- Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St., 25-406 Kielce, Poland.
| | - Zdzisław M Migaszewski
- Geochemistry and the Environment Division, Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St., 25-406 Kielce, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT), 11/12 G. Narutowicz St., 80-233 Gdańsk, Poland
| |
Collapse
|
21
|
Portable solid phase micro-extraction coupled with ion mobility spectrometry system for on-site analysis of chemical warfare agents and simulants in water samples. SENSORS 2014; 14:20963-74. [PMID: 25384006 PMCID: PMC4279520 DOI: 10.3390/s141120963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/11/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
Abstract
On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples.
Collapse
|
22
|
Applications of liquid-phase microextraction in the sample preparation of environmental solid samples. Molecules 2014; 19:6776-808. [PMID: 24858267 PMCID: PMC6271381 DOI: 10.3390/molecules19056776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 11/17/2022] Open
Abstract
Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc.) published in the last decade. Several innovative liquid-phase microextraction (LPME) techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME), hollow fiber-liquid phase microextraction (HF-LPME), dispersive liquid-liquid microextraction (DLLME). Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.
Collapse
|
23
|
Holopainen S, Luukkonen V, Nousiainen M, Sillanpää M. Determination of chlorophenols in water by headspace solid phase microextraction ion mobility spectrometry (HS-SPME-IMS). Talanta 2013; 114:176-82. [DOI: 10.1016/j.talanta.2013.04.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
|
24
|
Holopainen S, Nousiainen M, Sillanpää M. Determination of fuel ethers in water by membrane extraction ion mobility spectrometry. Talanta 2013; 106:448-53. [PMID: 23598150 DOI: 10.1016/j.talanta.2013.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
|
25
|
The Role of Ion Mobility Spectrometry to Support the Food Protected Designation of Origin. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-59562-1.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|