1
|
Liu C, Li P, Yan X, Yang L, Liu P, Wang Q. Design of a dual Ir-Eu tag for fluorescent visualization and ICP-MS quantification of SIRPα and its host cells. Anal Bioanal Chem 2024; 416:2691-2697. [PMID: 38133669 DOI: 10.1007/s00216-023-05108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
With the expansion of ICP-MS application into the field of bioanalysis, there is an urgent need for novel element tags today. Here, we report the design of a dual-element Ir-Eu tag, opening the door to simultaneous fluorescent imaging and ICP-MS quantification. The ratio of 153Eu/193Ir may serve as a precision control of the labeling process, allowing internal validation of the quantitative results obtained. As for SIRPα and its host cell analysis exemplified here, the Ir-Eu tag demonstrated superior figures of ICP-MS quantification with the LOD (3σ) down to 0.5 (153Eu) and 1.1 (193Ir) pM SIRPα and 220 (153Eu) and 830 (193Ir) RAW264.7 cells more than 130 times more sensitive compared with the LOD (3σ) of 65.2 pM SIRPα at 612 nm using fluorometry. Not limited to these demonstrations, we believe that the design ideas of the dual Ir-Eu tags should be applicable to various cases of bioanalysis when dual optical profiling and ICP-MS quantification are indispensable.
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery & Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery & Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Parastar H, Tauler R. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.201801134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadi Parastar
- Department of Chemistry Sharif University of Technology Tehran Iran
| | - Roma Tauler
- Department of Environmental Chemistry IDAEA-CSIC 08034 Barcelona Spain
| |
Collapse
|
3
|
Michalke B. Review about Powerful Combinations of Advanced and Hyphenated Sample Introduction Techniques with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) for Elucidating Trace Element Species in Pathologic Conditions on a Molecular Level. Int J Mol Sci 2022; 23:ijms23116109. [PMID: 35682788 PMCID: PMC9181184 DOI: 10.3390/ijms23116109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Element analysis in clinical or biological samples is important due to the essential role in clinical diagnostics, drug development, and drug-effect monitoring. Particularly, the specific forms of element binding, actual redox state, or their spatial distribution in tissue or in single cells are of interest in medical research. This review summarized exciting combinations of sophisticated sample delivery systems hyphenated to inductively coupled plasma-mass spectrometry (ICP-MS), enabling a broadening of information beyond the well-established outstanding detection capability. Deeper insights into pathological disease processes or intracellular distribution of active substances were provided, enabling a better understanding of biological processes and their dynamics. Examples were presented from spatial elemental mapping in tissue, cells, or spheroids, also considering elemental tagging. The use of natural or artificial tags for drug monitoring was shown. In the context of oxidative stress and ferroptosis iron, redox speciation gained importance. Quantification methods for Fe2+, Fe3+, and ferritin-bound iron were introduced. In Wilson’s disease, free and exchangeable copper play decisive roles; the respective paragraph provided information about hyphenated Cu speciation techniques, which provide their fast and reliable quantification. Finally, single cell ICP-MS provides highly valuable information on cell-to-cell variance, insights into uptake of metal-containing drugs, and their accumulation and release on the single-cell level.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München-German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| |
Collapse
|
4
|
Lemke N, El-Khatib AH, Tchipilov T, Jakubowski N, Weller MG, Vogl J. Procedure providing SI-traceable results for the calibration of protein standards by sulfur determination and its application on tau. Anal Bioanal Chem 2022; 414:4441-4455. [PMID: 35316347 PMCID: PMC9142460 DOI: 10.1007/s00216-022-03974-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022]
Abstract
Quantitative proteomics is a growing research area and one of the most important tools in the life sciences. Well-characterized and quantified protein standards are needed to achieve accurate and reliable results. However, only a limited number of sufficiently characterized protein standards are currently available. To fill this gap, a method for traceable protein quantification using sulfur isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) was developed in this study. Gel filtration and membrane filtration were tested for the separation of non-protein-bound sulfur in the protein solution. Membrane filtration demonstrated a better performance due to the lower workload and the very low sulfur blanks of 11 ng, making it well suited for high-purity proteins such as NIST SRM 927, a bovine serum albumin (BSA). The method development was accomplished with NIST SRM 927e and a commercial avidin. The quantified mass fraction of NIST SRM 927e agreed very well with the certified value and showed similar uncertainties (3.6%) as established methods while requiring less sample preparation and no species-specific standards. Finally, the developed procedure was applied to the tau protein, which is a biomarker for a group of neurodegenerative diseases denoted “tauopathies” including, e.g., Alzheimer’s disease and frontotemporal dementia. For the absolute quantification of tau in the brain of transgenic mice overexpressing human tau, a well-defined calibration standard was needed. Therefore, a pure tau solution was quantified, yielding a protein mass fraction of (0.328 ± 0.036) g/kg, which was confirmed by amino acid analysis.
Collapse
Affiliation(s)
- Nora Lemke
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Ahmed H El-Khatib
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Teodor Tchipilov
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | | | - Michael G Weller
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Jochen Vogl
- , Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
| |
Collapse
|
5
|
Zeptomole detection of DNA based on microparticle dissociation from a glass plate in a combined acoustic-gravitational field. Talanta 2022; 238:123042. [PMID: 34801899 DOI: 10.1016/j.talanta.2021.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
In this study, we propose a novel detection principle based on the dissociation of microparticles immobilized on a glass plate through weak hybridization involving 4-6 base pairs (bps) in a combined acoustic-gravitational field. Particle dissociation from the glass plate occurs when the resultant of the acoustic radiation force (Fac) and the sedimentation force (Fsed) exerted on the particle exceeds the binding force owing to the weak hybridization (Fbind). Because Fac and Fsed can be controlled by the microparticle density, and Fac is a function of the applied voltage to the transducer (V), an increase in V induces particle dissociation. The binding of gold nanoparticles (AuNPs) onto silica microparticles (SPs) resulting from the strong hybridization of 20 bps induces an increase in the density of SPs, leading to an increase in Fac and Fsed; consequently, the voltage V required for dissociation becomes lower than that required without AuNP binding. We demonstrate that the dependence of the binding number of AuNPs per SP on V follows the theoretical prediction. The binding of 7500 AuNPs per SP can be detected as a 10 V change in V. The present approach allows the detection of 2000 DNA molecules involved in the strong hybridization between AuNPs and SP.
Collapse
|
6
|
Xia LY, Tang YN, Zhang J, Dong TY, Zhou RX. Advances in the DNA Nanotechnology for the Cancer Biomarkers Analysis: Attributes and Applications. Semin Cancer Biol 2022; 86:1105-1119. [PMID: 34979273 DOI: 10.1016/j.semcancer.2021.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
The most commonly used clinical methods are enzyme-linked immunosorbent assay (ELISA) and quantitative PCR (qPCR) in which ELISA was applied for the detection of protein biomarkers and qPCR was especially applied for nucleic acid biomarker analysis. Although these constructed methods have been applied in wide range, they also showed some inherent shortcomings such as low sensitivity, large sample volume and complex operations. At present, many methods have been successfully constructed on the basis of DNA nanotechnology with the merits of high accuracy, rapid and simple operation for cancer biomarkers assay. In this review, we summarized the bioassay strategies based on DNA nanotechnology from the perspective of the analytical attributes for the first time and discussed and the feasibility of the reported strategies for clinical application in the future.
Collapse
Affiliation(s)
- Ling-Ying Xia
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ya-Nan Tang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jie Zhang
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Tian-Yu Dong
- College of Chemistry, Sichuan University Chengdu, Sichuan 610064, PR China
| | - Rong-Xing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
7
|
Rana S, Prabhakar N. Iron disorders and hepcidin. Clin Chim Acta 2021; 523:454-468. [PMID: 34755647 DOI: 10.1016/j.cca.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Iron is an essential element due to its role in a wide variety of physiological processes. Iron homeostasis is crucial to prevent iron overload disorders as well as iron deficiency anemia. The liver synthesized peptide hormone hepcidin is a master regulator of systemic iron metabolism. Given its role in overall health, measurement of hepcidin can be used as a predictive marker in disease states. In addition, hepcidin-targeting drugs appear beneficial as therapeutic agents. This review emphasizes recent development on analytical techniques (immunochemical, mass spectrometry and biosensors) and therapeutic approaches (hepcidin agonists, stimulators and antagonists). These insights highlight hepcidin as a potential biomarker as well as an aid in the development of new drugs for iron disorders.
Collapse
Affiliation(s)
- Shilpa Rana
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Sector-25, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
8
|
Torregrosa D, Grindlay G, Gras L, Mora J. Immunoassays based on inductively coupled plasma mass spectrometry detection: So far so good, so what? Microchem J 2021. [DOI: 10.1016/j.microc.2021.106200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Liu Z, Liang Y, Zhou Y, Ge F, Yan X, Yang L, Wang Q. Single-cell fucosylation breakdown: Switching fucose to europium. iScience 2021; 24:102397. [PMID: 33997682 PMCID: PMC8091926 DOI: 10.1016/j.isci.2021.102397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/05/2021] [Accepted: 04/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fucosylation and its fucosidic linkage-specific motifs are believed to be essential to understand their distinct roles in cellular behavior, but their quantitative information has not yet been fully disclosed due to the requirements of ultra-sensitivity and selectivity. Herein, we report an approach that converts fucose (Fuc) to stable europium (Eu) isotopic mass signal on hard ionization inductively coupled plasma mass spectrometry (ICP-MS). Metabolically assembled azido-fucose on the cell surface allows us to tag them with an alkyne-customized Eu-crafted bacteriophage MS2 capsid nanoparticle for Eu signal multiplication, resulting in an ever lowest detection limit of 4.2 zmol Fuc. Quantitative breakdown of the linkage-specific fucosylation motifs in situ preserved on single cancerous HepG2 and paracancerous HL7702 cells can thus be realized on a single-cell ICP-MS platform, specifying their roles during the cancering process. This approach was further applied to the discrimination of normal hepatocellular cells and highly, moderately, and poorly differentiated hepatoma cells collected from real hepatocellular carcinoma tissues. Switching facile fucose to stable Eu mass signal on a single-cell ICP-MS platform Ever lowest LOD of 4.2 zmol FucAz was achieved using a Eu-decorated MS2 nanoparticle Single-cell breakdown of fucosidic linkage-specific motifs Discrimination of highly, moderately, and poorly differentiated HCC from normal ones
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaowen Yan
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Lab of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Corresponding author
| |
Collapse
|
10
|
Stevens KG, Pukala TL. Conjugating immunoassays to mass spectrometry: Solutions to contemporary challenges in clinical diagnostics. Trends Analyt Chem 2020; 132:116064. [PMID: 33046944 PMCID: PMC7539833 DOI: 10.1016/j.trac.2020.116064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developments in immunoassays and mass spectrometry have independently influenced diagnostic technology. However, both techniques possess unique strengths and limitations, which define their ability to meet evolving requirements for faster, more affordable and more accurate clinical tests. In response, hybrid techniques, which combine the accessibility and ease-of-use of immunoassays with the sensitivity, high throughput and multiplexing capabilities of mass spectrometry are continually being explored. Developments in antibody conjugation methodology have expanded the role of these biomolecules to applications outside of conventional colorimetric assays and histology. Furthermore, the range of different mass spectrometry ionisation and analysis technologies has enabled its successful adaptation as a detection method for numerous clinically relevant immunological assays. Several recent examples of combined mass spectrometry-immunoassay techniques demonstrate the potential of these methods as improved diagnostic tests for several important human diseases. The present challenges are to continue technological advancements in mass spectrometry instrumentation and develop improved bioconjugation methods, which can overcome their existing limitations and demonstrate the clinical significance of these hybrid approaches.
Collapse
|
11
|
Arias-Borrego A, Callejón-Leblic B, Rodríguez-Moro G, Velasco I, Gómez-Ariza JL, García-Barrera T. A novel HPLC column switching method coupled to ICP-MS/QTOF for the first determination of selenoprotein P (SELENOP) in human breast milk. Food Chem 2020; 321:126692. [PMID: 32251923 DOI: 10.1016/j.foodchem.2020.126692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
In this work, we describe for the first time the presence of selenoprotein P in human breast milk. To this end, a novel analytical method has been developed based on a two-dimensional column switching system, which consisted of three size exclusion columns and one affinity column coupled to inductively coupled plasma mass spectrometry (ICP-MS). The method combines the accurate quantification of selenoproteins and selenometabolites by species unspecific isotopic dilution ICP-MS, with unequivocal identification by quadrupole-time-of-flight mass spectrometry. Several selenopeptides, which contain the amino acid selenocysteine (U, SeCys), were identified after tryptic digestion followed by their separation. The results reveal that the relative selenium concentration in colostrum follows the order: glutathione peroxidase (GPX) ≈ selenoprotein P (SELENOP) > selenocystamine (SeCA) > other selenometabolites (SeMB), in contrast with previously published papers (GPX > SeCA > selenocystine > selenomethionine). A mean concentration of 20.1 ± 1.0 ng Se g-1 as SELENOP (1.45 μg SELENOP/g) was determined in colostrum (31% of total selenium).
Collapse
Affiliation(s)
- A Arias-Borrego
- Research Center for Natural Resources, Health and The ENvironment (RENSMA), Department of Chemistry "Prof. J.C Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - B Callejón-Leblic
- Research Center for Natural Resources, Health and The ENvironment (RENSMA), Department of Chemistry "Prof. J.C Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - G Rodríguez-Moro
- Research Center for Natural Resources, Health and The ENvironment (RENSMA), Department of Chemistry "Prof. J.C Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain
| | - I Velasco
- Pediatrics, Obstetrics & Gynecology Unit, Hospital de Riotinto, Avda la Esquila 5, 21.660 Minas de Riotinto, Huelva, Spain
| | - J L Gómez-Ariza
- Research Center for Natural Resources, Health and The ENvironment (RENSMA), Department of Chemistry "Prof. J.C Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain.
| | - T García-Barrera
- Research Center for Natural Resources, Health and The ENvironment (RENSMA), Department of Chemistry "Prof. J.C Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., 21007 Huelva, Spain.
| |
Collapse
|
12
|
Solovyev N, Ala A, Schilsky M, Mills C, Willis K, Harrington CF. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal Chim Acta 2020; 1098:27-36. [DOI: 10.1016/j.aca.2019.11.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
|
13
|
Liang Y, Liu Q, Zhou Y, Chen S, Yang L, Zhu M, Wang Q. Counting and Recognizing Single Bacterial Cells by a Lanthanide-Encoding Inductively Coupled Plasma Mass Spectrometric Approach. Anal Chem 2019; 91:8341-8349. [DOI: 10.1021/acs.analchem.9b01130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yong Liang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Zhou
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min Zhu
- PerkinElmer Instruments (Shanghai) Co. Ltd., Shanghai 201203, China
| | - Qiuquan Wang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
14
|
Yuan R, Ge F, Liang Y, Zhou Y, Yang L, Wang Q. Viruslike Element-Tagged Nanoparticle Inductively Coupled Plasma Mass Spectrometry Signal Multiplier: Membrane Biomarker Mediated Cell Counting. Anal Chem 2019; 91:4948-4952. [DOI: 10.1021/acs.analchem.9b00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rong Yuan
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fuchun Ge
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Zhou
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Yang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiuquan Wang
- Department of Chemistry & the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Cheignon C, Cordeau E, Prache N, Cantel S, Martinez J, Subra G, Arnaudguilhem C, Bouyssiere B, Enjalbal C. Receptor-Ligand Interaction Measured by Inductively Coupled Plasma Mass Spectrometry and Selenium Labeling. J Med Chem 2018; 61:10173-10184. [PMID: 30395477 DOI: 10.1021/acs.jmedchem.8b01320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the search for an alternative strategy to the radioactivity measurement conventionally performed to probe receptor-ligand interactions in pharmacological assays, we demonstrated that selenium labeling of the studied ligand combined with elemental mass spectrometry was as efficient and robust as the reference method but devoid of its environmental and health hazards. The proof-of-concept was illustrated on two GPCR receptors, vasopressin (V1A) and cholecystokinin B (CCK-B), involving peptides as endogenous ligands. We proposed several methodologies to produce selenium-labeled ligands according to peptide sequences along with binding affinity constraints. A selection of selenopeptides that kept high affinities toward the targeted receptor were engaged in saturation and competitive binding experiments with subsequent sensitive RP-LC-ICP-MS measurements. Experimental values of affinity constant ( Ki) were perfectly correlated to literature data, illustrating the general great potency of replacing radioactive iodine by selenium for ligand labeling to further undergo unaffected pharmacology experiments efficiently monitored by elemental mass spectrometry.
Collapse
Affiliation(s)
- Clémence Cheignon
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Emmanuelle Cordeau
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Nolween Prache
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Sonia Cantel
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Jean Martinez
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Gilles Subra
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| | - Carine Arnaudguilhem
- CNRS/Univ Pau & Pays Adour/E2S UPPA , Institut des Sciences Analytiques et de Physico-Chimie pour L'Environnement et les Matériaux, UMR 5254 , 64000 Pau , France
| | - Brice Bouyssiere
- CNRS/Univ Pau & Pays Adour/E2S UPPA , Institut des Sciences Analytiques et de Physico-Chimie pour L'Environnement et les Matériaux, UMR 5254 , 64000 Pau , France
| | - Christine Enjalbal
- IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France
| |
Collapse
|
16
|
Calderón-Celis F, Encinar JR, Sanz-Medel A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:715-737. [PMID: 28758227 DOI: 10.1002/mas.21542] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 05/10/2023]
Abstract
Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and elemental) proteomics is provided in this review.
Collapse
Affiliation(s)
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
17
|
Quantitative mapping of specific proteins in biological tissues by laser ablation-ICP-MS using exogenous labels: aspects to be considered. Anal Bioanal Chem 2018; 411:549-558. [PMID: 30310944 DOI: 10.1007/s00216-018-1411-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
Laser ablation (LA) coupled with inductively coupled plasma mass spectrometry (ICP-MS) is a versatile tool for direct trace elemental and isotopic analysis of solids. The development of new strategies for quantitative elemental mapping of biological tissues is one of the growing research areas in LA-ICP-MS. On the other hand, the latest advances are related to obtaining not only the elemental distribution of heteroatoms but also molecular information. In this vein, mapping of specific proteins in biological tissues can be done with LA-ICP-MS by use of metal-labelled immunoprobes. However, although LA-ICP-MS is, in principle, a quantitative technique, critical requirements should be met for absolute quantification of protein distribution. In this review, progress based on the use of metal-labelled antibodies for LA-ICP-MS mapping of specific proteins is reported. Critical requirements to obtain absolute quantitative mapping of specific proteins by LA-ICP-MS are highlighted. Additionally, illustrative examples of the advances made so far with LA-ICP-MS are provided. Graphical abstract In the proposed critical review, last advances based on the use of metal-labelled antibodies and critical requirements for LA-ICP-MS quantitative mapping of specific proteins are tackled.
Collapse
|
18
|
Calvete JJ. Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification. Expert Rev Proteomics 2018; 15:555-568. [DOI: 10.1080/14789450.2018.1500904] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| |
Collapse
|
19
|
Montes-Bayón M, Sharar M, Corte-Rodriguez M. Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Cid-Barrio L, Calderón-Celis F, Abásolo-Linares P, Fernández-Sánchez ML, Costa-Fernández JM, Encinar JR, Sanz-Medel A. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Tauler R, Parastar H. Big (Bio)Chemical Data Mining Using Chemometric Methods: A Need for Chemists. Angew Chem Int Ed Engl 2018; 61:e201801134. [DOI: 10.1002/anie.201801134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Roma Tauler
- IDAEA-CSIC Environmental Chemistry Jordi Girona 18-26 08034 Barcelona SPAIN
| | | |
Collapse
|
22
|
Rodríguez-Menéndez S, Fernández B, García M, Álvarez L, Luisa Fernández M, Sanz-Medel A, Coca-Prados M, Pereiro R, González-Iglesias H. Quantitative study of zinc and metallothioneins in the human retina and RPE cells by mass spectrometry-based methodologies. Talanta 2018; 178:222-230. [DOI: 10.1016/j.talanta.2017.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
|
23
|
Miyagawa A, Harada M, Okada T. Zeptomole Detection Scheme Based on Levitation Coordinate Measurements of a Single Microparticle in a Coupled Acoustic-Gravitational Field. Anal Chem 2018; 90:2310-2316. [PMID: 29327918 DOI: 10.1021/acs.analchem.7b04752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel analytical principle in which an analyte (according to its concentration) induces a change in the density of a microparticle, which is measured as a vertical coordinate in a coupled acoustic-gravitational (CAG) field. The density change is caused by the binding of gold nanoparticles (AuNP's) on a polystyrene (PS) microparticle through avidin-biotin association. The density of a 10-μm PS particle increases by 2% when 500 100-nm AuNP's are bound to the PS. The CAG can detect this density change as a 5-10 μm shift of the levitation coordinate of the PS. This approach, which allows us to detect 700 AuNP's bound to a PS particle, is utilized to detect biotin in solution. Biotin is detectable at a picomolar level. The reaction kinetics plays a significant role in the entire process. The kinetic aspects are also quantitatively discussed based on the levitation behavior of the PS particles in the CAG field.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Tokyo Institute of Technology , Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology , Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology , Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
24
|
Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 2017; 164:33-42. [PMID: 28579478 DOI: 10.1016/j.jprot.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and 32S/34S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed. BIOLOGICAL SIGNIFICANCE Animal venoms provide excellent model systems for investigating interactions between predators and prey, and the molecular mechanisms that contribute to adaptive protein evolution. On the other hand, numerous cases of snake bites occur yearly by encounters of humans and snakes in their shared natural environment. Snakebite envenoming is a serious global public health issue that affects the most impoverished and geopolitically disadvantaged rural communities in many tropical and subtropical countries. Unveiling the temporal and spatial patterns of venom variability is of fundamental importance to understand the molecular basis of envenoming, a prerequisite for developing therapeutic strategies against snakebite envenoming. Research on venoms has been continuously enhanced by advances in technology. The combined application of next-generation transcriptomic and venomic workflows has demonstrated unparalleled capabilities for venom characterization in unprecedented detail. However, mass spectrometry is not inherently quantitative, and this analytical limitation has sparked the development of methods to determine absolute abundance of proteins in biological samples. Here we show the potential of a hybrid element and molecular MS configuration for the parallel ESI-QToF-MS and ICP-QQQ detection and absolute quantification of intact sulfur-containing venom proteins via 32S/34S isotope dilution analysis. This configuration has been applied to quantify the toxins of the medically important African snake Naja nigricollis (Tanzania), and the Papuan species Micropechis ikaheka and Pseudechis papuanus.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
26
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
27
|
Nicolás P, Lassalle VL, Ferreira ML. Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzyme Microb Technol 2017; 97:97-103. [DOI: 10.1016/j.enzmictec.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
|
28
|
Hicks MB, Salituro L, Mangion I, Schafer W, Xiang R, Gong X, Welch CJ. Assessment of coulometric array electrochemical detection coupled with HPLC-UV for the absolute quantitation of pharmaceuticals. Analyst 2017; 142:525-536. [PMID: 28098264 DOI: 10.1039/c6an02432g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a coulometric array detector in tandem with HPLC-UV was evaluated for the absolute quantitation of pharmaceutical compounds without standards, an important capability gap in contemporary pharmaceutical research and development. The high-efficiency LC flow-through electrochemical detector system allows for the rapid evaluation of up to 16 different potentials, aiding in the identification and quantitation of electrochemically reactive species. By quantifying the number of electrons added or removed from an analyte during its passage through the detector, the number of moles of the analyte can be established. Herein we demonstrate that molecules containing common electroactive functional groups (e.g. anilines, phenols, parabens and tertiary alkyl amines) can in some cases be reliably quantified in HPLC-EC-UV without the need for authentic standards. Furthermore, the multichannel nature of the CoulArray detector makes it well suited for optimizing the conditions for electrochemical reaction, allowing the impact of changes in potential, flow rate, temperature and pH to be conveniently studied. The electrochemical oxidation of albacivir, zomepirac, diclofenac, rosiglitazone and several other marketed drugs resulted in large linear ranges, predictable recoveries and excellent quantitation using the total moles of electrons and back-calculating using Faraday's law. Importantly, we observed several instances where subtle structural changes within a given class of molecules (e.g. aromatic ring isomers) led to unanticipated changes in electrochemical behavior. Consequently, some care should be taken when applying the technique to the routine quantitation of compound libraries where standards are not available.
Collapse
Affiliation(s)
- Michael B Hicks
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Leah Salituro
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Ian Mangion
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Wes Schafer
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Rong Xiang
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Xiaoyi Gong
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| | - Christopher J Welch
- Department of Process & Analytical Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
29
|
Sun Y, Zhang J, Li J, Zhao M, Liu Y. Preparation of protein imprinted polymers via protein-catalyzed eATRP on 3D gold nanodendrites and their application in biosensors. RSC Adv 2017. [DOI: 10.1039/c7ra03772d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensitive detection of metalloproteins is very essential in human pathologies.
Collapse
Affiliation(s)
- Yue Sun
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Jiameng Zhang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Juan Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Mengyuan Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| | - Yutong Liu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- China
| |
Collapse
|
30
|
Highly Sensitive Analysis of Proteins and Metabolites by Metal Tagging Using LC-ICP-MS. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
|
32
|
Tang N, Li Z, Yang L, Wang Q. ICPMS-Based Specific Quantification of Phosphotyrosine: A Gallium-Tagging and Tyrosine-Phosphatase Mediated Strategy. Anal Chem 2016; 88:9890-9896. [DOI: 10.1021/acs.analchem.6b02979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nannan Tang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhaoxin Li
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Limin Yang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiuquan Wang
- Department
of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis
and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State
Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
33
|
Michalke B. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. Methods Mol Biol 2016; 1483:167-80. [PMID: 27645737 DOI: 10.1007/978-1-4939-6403-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health GmbH, Ingolstädter Landstr. 1, Neuherberg, D-85764, Germany.
| |
Collapse
|
34
|
Calderón-Celis F, Diez-Fernández S, Costa-Fernández JM, Encinar JR, Calvete JJ, Sanz-Medel A. Elemental Mass Spectrometry for Absolute Intact Protein Quantification without Protein-Specific Standards: Application to Snake Venomics. Anal Chem 2016; 88:9699-9706. [PMID: 27593495 DOI: 10.1021/acs.analchem.6b02585] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Absolute protein quantification methods based on molecular mass spectrometry usually require stable isotope-labeled analogous standards for each target protein or peptide under study, which in turn must be certified using natural standards. In this work, we report a direct and accurate methodology based on capLC-ICP-QQQ and online isotope dilution analysis for the absolute and sensitive quantification of intact proteins. The combination of the postcolumn addition of 34S and a generic S-containing internal standard spiked to the sample provides full compound independent detector response and thus protein quantification without the need for specific standards. Quantitative recoveries, using a chromatographic core-shell C4 column for the various protein species assayed were obtained (96-100%). Thus, the proposed strategy enables the accurate quantification of proteins even if no specific standards are available for them. In addition, to the best of our knowledge, we obtained the lowest detection limits reported in the quantitative analysis of intact proteins by direct measurement of sulfur with ICPMS (358 fmol) and protein (ranging from 7 to 15 fmol depending on the assayed protein). The quantitative results for individual and simple mixtures of model proteins were statistically indistinguishable from the manufacturer's values. Finally, the suitability of the strategy for real sample analysis (including quantitative protein recovery from the column) was illustrated for the individual absolute quantification of the proteins and whole protein content in a venom sample. Parallel capLC-ESI-QTOF analysis was employed to identify the proteins, a prerequisite to translate the mass of quantified S for each chromatographic peak into individual protein mass.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Silvia Diez-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - José Manuel Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia , Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo , Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
35
|
|
36
|
Cordeau E, Arnaudguilhem C, Bouyssiere B, Hagège A, Martinez J, Subra G, Cantel S, Enjalbal C. Investigation of Elemental Mass Spectrometry in Pharmacology for Peptide Quantitation at Femtomolar Levels. PLoS One 2016; 11:e0157943. [PMID: 27336163 PMCID: PMC4918930 DOI: 10.1371/journal.pone.0157943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and applied to the measurement of the vasopressin ligand affinity for its V1A receptor through the determination of the dissociation constant (Kd) which was compared to the one recorded with conventional radioactivity assays.
Collapse
Affiliation(s)
- Emmanuelle Cordeau
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Carine Arnaudguilhem
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement LCABIE-IPREM, UMR 5254, Hélioparc, 2 av. Pr. Angot, 64053 Pau, France
| | - Brice Bouyssiere
- Laboratoire de Chimie Analytique Bio-inorganique et Environnement LCABIE-IPREM, UMR 5254, Hélioparc, 2 av. Pr. Angot, 64053 Pau, France
| | - Agnès Hagège
- Institute of Analytical Sciences (ISA), UMR 5280, CNRS, Université Lyon 1, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- * E-mail:
| |
Collapse
|
37
|
Deitrich CL, Cuello-Nuñez S, Kmiotek D, Torma FA, Del Castillo Busto ME, Fisicaro P, Goenaga-Infante H. Accurate Quantification of Selenoprotein P (SEPP1) in Plasma Using Isotopically Enriched Seleno-peptides and Species-Specific Isotope Dilution with HPLC Coupled to ICP-MS/MS. Anal Chem 2016; 88:6357-65. [PMID: 27108743 DOI: 10.1021/acs.analchem.6b00715] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel strategy for the absolute quantification of selenium (Se) included in selenoprotein P (SEPP1), an important biomarker for human nutrition and disease, including diabetes and cancer, is presented here for the first time. It is based on the use of species-specific double isotope dilution mass spectrometry (SSIDA) in combination with HPLC-ICP-MS/MS for the determination of protein bound Se down to the peptide level in a complex plasma matrix with a total content of Se of 105.5 μg kg(-1). The method enabled the selective Se speciation analysis of human plasma samples without the need of extensive cleanup or preconcentration steps as required for traditional protein mass spectrometric approaches. To assess the method accuracy, two plasma reference materials, namely, BCR-637 and SRM1950, for which literature data and a reference value for SEPP1 have been reported, were analyzed using complementary hyphenated methods and the species-specific approach developed in this work. The Se mass fractions obtained via the isotopic ratios (78)Se/(76)Se and (82)Se/(76)Se for each of the Se-peptides, namely, ENLPSLCSUQGLR (ENL) and AEENITESCQUR (AEE) (where U is SeCys), were found to agree within 2.4%. A relative expanded combined uncertainty (k = 2) of 5.4% was achieved for a Se (as SEPP1) mass fraction of approximately 60 μg kg(-1). This work represents a systematic approach to the accurate quantitation of plasma SEPP1 at clinical levels using SSIDA quantification. Such methodology will be invaluable for the certification of reference materials and the provision of reference values to clinical measurements and clinical trials.
Collapse
Affiliation(s)
| | | | - Diana Kmiotek
- LGC , Queens Road, Teddington, London TW110LY, United Kingdom
| | | | | | - Paola Fisicaro
- Laboratoire National de Métrologie et d'Essais (LNE) , 1, Rue Gaston Boissier, 75724 Cedex 15 Paris, France
| | | |
Collapse
|
38
|
Liu R, Zhang S, Wei C, Xing Z, Zhang S, Zhang X. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules. Acc Chem Res 2016; 49:775-83. [PMID: 26990857 DOI: 10.1021/acs.accounts.5b00509] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area is the development and application of the mass cytometer, which fully exploited the multiplexing potential of metal stable isotope tagging. It realized the simultaneous detection of dozens of parameters in single cells, accurate immunophenotyping in cell populations, through modeling of intracellular signaling network and undoubted discrimination of function and connection of cell subsets. Metal stable isotope tagging has great potential applications in hematopoiesis, immunology, stem cells, cancer, and drug screening related research and opened a post-fluorescence era of cytometry. Herein, we review the development of biomolecule quantification using metal stable isotope tagging. Particularly, the power of multiplex and absolute quantification is demonstrated. We address the advantages, applicable situations, and limitations of metal stable isotope tagging strategies and propose suggestions for future developments. The transfer of enzymatic or fluorescent tagging to metal stable isotope tagging may occur in many aspects of biological and clinical practices in the near future, just as the revolution from radioactive isotope tagging to fluorescent tagging happened in the past.
Collapse
Affiliation(s)
- Rui Liu
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
- Collaborative Innovation Center for Comprehensive Utilization of Panxi Strategic Mineral Resources, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P.R. China
| | - Shixi Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Chao Wei
- National Institute of Metrology, Beijing 100029, P.R. China
| | - Zhi Xing
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Sichun Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Xinrong Zhang
- Beijing
Key Laboratory for Microanalytical Methods and Instrumentation, Department
of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
39
|
Xu Y, Gao Y, Zhao X, Xu X, Zhou W, Liu Y, Li C, Liu R. A sensitive atomic absorption spectrometric metalloimmunoassay with copper nanoparticles labeling. Microchem J 2016. [DOI: 10.1016/j.microc.2015.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Garcia-Cortes M, Encinar JR, Costa-Fernandez JM, Sanz-Medel A. Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification. Biosens Bioelectron 2016; 85:128-134. [PMID: 27162143 DOI: 10.1016/j.bios.2016.04.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
One of the major challenges in developing novel assay methods for the detection of biomolecules is achieving high sensitivity, because of the ultralow concentrations typically in clinical samples. Here, a Mn-doped ZnS quantum dots-based immunoassay platform is presented for highly sensitive detection of cancer biomarkers. Ultrahigh sensitivity is achieved through gold deposition on the surface of the nanoparticle tags acting as catalytic seeds, thus effectively amplifying the size of the metallic nanoparticles after the immunoassay and before the tag detection. Elemental mass spectrometry measurement of the gold content allowed detection of Prostate-Specific Antigen (PSA) at the low attog mL(-1) level. Moreover, the developed method showed not only an extremely high sensitivity for PSA detection but also a broad dynamic range, higher than 8 orders of magnitude, particularly useful for clinical studies involving quantitative detection of diverse biomarkers at their very different relevant concentration levels. Its applicability to discriminate small differences in PSA concentrations at low levels (few pgmL(-1)) in real serum samples was successfully evaluated.
Collapse
Affiliation(s)
- Marta Garcia-Cortes
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, Oviedo 33006, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, Oviedo 33006, Spain
| | - Jose M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, Oviedo 33006, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, Oviedo 33006, Spain.
| |
Collapse
|
41
|
Zhao H, Wang S, Nguyen SN, Elci SG, Kaltashov IA. Evaluation of Nonferrous Metals as Potential In Vivo Tracers of Transferrin-Based Therapeutics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:211-9. [PMID: 26392277 PMCID: PMC4724545 DOI: 10.1007/s13361-015-1267-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 05/10/2023]
Abstract
Transferrin (Tf) is a promising candidate for targeted drug delivery. While development of such products is impossible without the ability to monitor biodistribution of Tf-drug conjugates in tissues and reliable measurements of their levels in blood and other biological fluids, the presence of very abundant endogenous Tf presents a significant impediment to such efforts. Several noncognate metals have been evaluated in this work as possible tracers of exogenous transferrin in complex biological matrices using inductively coupled plasma mass spectrometry (ICP MS) as a detection tool. Placing Ni(II) on a His-tag of recombinant Tf resulted in formation of a marginally stable protein-metal complex, which readily transfers the metal to ubiquitous physiological scavengers, such as serum albumin. An alternative strategy targeted iron-binding pockets of Tf, where cognate Fe(III) was replaced by metal ions known to bind this protein. Both Ga(III) and In(III) were evaluated, with the latter being vastly superior as a tracer (stronger binding to Tf unaffected by the presence of metal scavengers and the retained ability to associate with Tf receptor). Spiking serum with indium-loaded Tf followed by ICP MS detection demonstrated that protein quantities as low as 0.04 nM can be readily detected in animal blood. Combining laser ablation with ICP MS detection allows distribution of exogenous Tf to be mapped within animal tissue cross-sections with spatial resolution exceeding 100 μm. The method can be readily extended to a range of other therapeutics where metalloproteins are used as either carriers or payloads. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Hanwei Zhao
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Shunhai Wang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Son N Nguyen
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - S Gokhan Elci
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
42
|
Menendez-Miranda M, Costa-Fernández JM, Encinar JR, Parak WJ, Carrillo-Carrion C. Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst 2016; 141:1266-72. [DOI: 10.1039/c5an02405f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accurate analytical methodology to determine the ratio of fluorophore molecules attached per nanoparticle; applicable to diverse fluorophore–NP conjugates.
Collapse
Affiliation(s)
- Mario Menendez-Miranda
- Fachbereich Physik
- Philipps Universität Marburg
- 35037 Marburg
- Germany
- Department of Physical and Analytical Chemistry
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Spain
| | | | | |
Collapse
|
43
|
Zhang S, Liu R, Xing Z, Zhang S, Zhang X. Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chem Commun (Camb) 2016; 52:14310-14313. [DOI: 10.1039/c6cc08334j] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A multiplex ICP-MS-based miRNA assay was achieved with duplex-specific nuclease amplification using bifunctional oligonucleotide probes with lanthanide tags.
Collapse
Affiliation(s)
- Shixi Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Rui Liu
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Zhi Xing
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Sichun Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xinrong Zhang
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
44
|
de Bang TC, Husted S. Lanthanide elements as labels for multiplexed and targeted analysis of proteins, DNA and RNA using inductively-coupled plasma mass spectrometry. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Limbeck A, Galler P, Bonta M, Bauer G, Nischkauer W, Vanhaecke F. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Anal Bioanal Chem 2015; 407:6593-617. [PMID: 26168964 PMCID: PMC4545187 DOI: 10.1007/s00216-015-8858-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/29/2023]
Abstract
Laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) is a widely accepted method for direct sampling of solid materials for trace elemental analysis. The number of reported applications is high and the application range is broad; besides geochemistry, LA-ICP-MS is mostly used in environmental chemistry and the life sciences. This review focuses on the application of LA-ICP-MS for quantification of trace elements in environmental, biological, and medical samples. The fundamental problems of LA-ICP-MS, such as sample-dependent ablation behavior and elemental fractionation, can be even more pronounced in environmental and life science applications as a result of the large variety of sample types and conditions. Besides variations in composition, the range of available sample states is highly diverse, including powders (e.g., soil samples, fly ash), hard tissues (e.g., bones, teeth), soft tissues (e.g., plants, tissue thin-cuts), or liquid samples (e.g., whole blood). Within this article, quantification approaches that have been proposed in the past are critically discussed and compared regarding the results obtained in the applications described. Although a large variety of sample types is discussed within this article, the quantification approaches used are similar for many analytical questions and have only been adapted to the specific questions. Nevertheless, none of them has proven to be a universally applicable method.
Collapse
Affiliation(s)
- Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
46
|
Montoro Bustos AR, Garcia-Cortes M, González-Iglesias H, Ruiz Encinar J, Costa-Fernández JM, Coca-Prados M, Sanz-Medel A. Sensitive targeted multiple protein quantification based on elemental detection of Quantum Dots. Anal Chim Acta 2015; 879:77-84. [DOI: 10.1016/j.aca.2015.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
|
47
|
Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 2015; 113:2-20. [PMID: 25956803 DOI: 10.1016/j.jpba.2015.04.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Mass-spectrometry based proteomics has evolved as a promising technology over the last decade and is undergoing a dramatic development in a number of different areas, such as; mass spectrometric instrumentation, peptide identification algorithms and bioinformatic computational data analysis. The improved methodology allows quantitative measurement of relative or absolute protein amounts, which is essential for gaining insights into their functions and dynamics in biological systems. Several different strategies involving stable isotopes label (ICAT, ICPL, IDBEST, iTRAQ, TMT, IPTL, SILAC), label-free statistical assessment approaches (MRM, SWATH) and absolute quantification methods (AQUA) are possible, each having specific strengths and weaknesses. Inductively coupled plasma mass spectrometry (ICP-MS), which is still widely recognised as elemental detector, has recently emerged as a complementary technique to the previous methods. The new application area for ICP-MS is targeting the fast growing field of proteomics related research, allowing absolute protein quantification using suitable elemental based tags. This document describes the different stable isotope labelling methods which incorporate metabolic labelling in live cells, ICP-MS based detection and post-harvest chemical label tagging for protein quantification, in addition to summarising their pros and cons.
Collapse
Affiliation(s)
| | - Diego Cobice
- Spectroscopy Group, Analytical Services, Almac, UK
| | - John Malone
- Spectroscopy Group, Analytical Services, Almac, UK
| |
Collapse
|
48
|
Yan X, Li Z, Liang Y, Yang L, Zhang B, Wang Q. A chemical "hub" for absolute quantification of a targeted protein: orthogonal integration of elemental and molecular mass spectrometry. Chem Commun (Camb) 2015; 50:6578-81. [PMID: 24829930 DOI: 10.1039/c3cc48460b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel element-tagged activity-based photo-cleavable biotinylated chemical "Hub" was designed and synthesized to orthogonally integrate ICP-MS and ESI-MS for absolute targeted-protein quantification. This tetrafunctional chemical "hub" allowed us to quantify a targeted protein using species-unspecific isotope dilution ICP-MS and to know which protein is being quantified using ESI-IT-MS at the same time.
Collapse
Affiliation(s)
- Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | |
Collapse
|
49
|
Konz T, Montes-Bayón M, Vaulont S. Hepcidin quantification: methods and utility in diagnosis. Metallomics 2015; 6:1583-90. [PMID: 24874645 DOI: 10.1039/c4mt00063c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepcidin is a 25-amino acid peptide hormone that is produced and secreted predominantly by hepatocytes, circulates in the bloodstream, and is excreted by the kidneys. Since the discovery of hepcidin and the elucidation of its important role in iron homeostasis, hepcidin has been suggested as a promising diagnostic marker for iron-related disorders. In this regard, a number of analytical methods have been developed in order to assess hepcidin concentration in different biological fluids, particularly serum and urine. In this critical review we have tried to address the issues still pending in accurate determination of this peptide by evaluating the available analytical methodologies. Among them, the use of ELISA strategies (in competitive or sandwich formats) and molecular mass spectrometry (MS) including MALDI and/or LC-MS has been critically compared. The use of elemental mass spectrometry (ICP-MS) has also been included as a possible complementary tool to the previous ones. In addition, this manuscript has revised the existing and potentially emerging clinical applications of hepcidin testing for diagnosis. These include the iron disorders such as iron deficiency anemia (IDA, low hepcidin), anemia of chronic disease (ACD, high hepcidin) and the combined state of ACD and IDA or hemochromatosis. Other applications such as using hepcidin in assessing the response to existing therapies in cancer have also been revised in the manuscript.
Collapse
Affiliation(s)
- T Konz
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/Julian Clavería 8, 33006 Oviedo, Spain.
| | | | | |
Collapse
|
50
|
Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid. Anal Bioanal Chem 2015; 407:2829-36. [DOI: 10.1007/s00216-015-8507-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 11/25/2022]
|