1
|
Jeong MJ, Kim SM, Lee YJ, Lee YH, Eun HR, Eom M, Jang GH, Lee J, Jo HW, Moon JK, Shin Y. Simultaneous Analysis of 504 Pesticide Multiresidues in Crops Using UHPLC-QTOF at MS 1 and MS 2 Levels. Foods 2024; 13:3503. [PMID: 39517286 PMCID: PMC11545108 DOI: 10.3390/foods13213503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
A robust analytical method was developed for the simultaneous detection of 504 pesticide multiresidues in various crops using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF). The method integrates both MS1 and MS2 levels through sequential window acquisition of all theoretical mass spectra (SWATH) analysis, allowing for accurate mass measurements and the construction of a spectral library to enhance pesticide residue identification. An evaluation of the method was carried out according to international standards, including the FAO guidelines and SANTE/11312/2021. Validation across five representative crops-potato, cabbage, mandarin, brown rice, and soybean-demonstrated exceptional sensitivity, with over 80% of the analytes detected at trace levels (≤2.5 μg/kg). Moreover, an impressive 96.8% to 98.8% of the compounds demonstrated LOQs of ≤10 μg/kg. Most compounds exhibited excellent linearity (r2 ≥ 0.980) and satisfactory recovery rates at spiking levels of 0.01 and 0.1 mg/kg. Among 42 crop samples analyzed, pesticides were detected in 1 cabbage, 3 mandarin, and 6 rice samples, with a mass accuracy within ±5 ppm and a Fit score ≥ 70.8, confirming the method's practical applicability and reliability. The detected residues ranged from 12.3 to 339.3 μg/kg, all below the established maximum residue limits (MRLs). This comprehensive approach offers an efficient, reliable, and scalable solution for pesticide multiresidue monitoring, supporting food safety programs and regulatory compliance.
Collapse
Affiliation(s)
- Mun-Ju Jeong
- Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (M.-J.J.); (M.E.); (G.-H.J.); (J.L.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Su-Min Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Ye-Jin Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Yoon-Hee Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hye-Ran Eun
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Miok Eom
- Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (M.-J.J.); (M.E.); (G.-H.J.); (J.L.)
| | - Gui-Hyun Jang
- Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (M.-J.J.); (M.E.); (G.-H.J.); (J.L.)
| | - JuHee Lee
- Pesticide and Veterinary Drug Residues Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (M.-J.J.); (M.E.); (G.-H.J.); (J.L.)
| | - Hyeong-Wook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Academic Cooperation Foundation, Suwon 16500, Republic of Korea;
| | - Joon-Kwan Moon
- Department of Plant Resources and Landscape Architecture, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
2
|
Qian M, Zhang Y, Bian Y, Feng XS, Zhang ZB. Nitrophenols in the environment: An update on pretreatment and analysis techniques since 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116611. [PMID: 38909393 DOI: 10.1016/j.ecoenv.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.
Collapse
Affiliation(s)
- Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Zhong-Bo Zhang
- Department of Pancreatic and Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Naser Aldine F, Singh AN, Wang H, Makey DM, Barrientos RC, Wong M, Aggarwal P, Regalado EL, Ahmad IAH. Improved assay development of pharmaceutical modalities using feedback-controlled liquid chromatography optimization. J Chromatogr A 2024; 1722:464830. [PMID: 38608366 DOI: 10.1016/j.chroma.2024.464830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Development of meaningful and reliable analytical assays in the (bio)pharmaceutical industry can often be challenging, involving tedious trial and error experimentation. In this work, an automated analytical workflow using an AI-based algorithm for streamlined method development and optimization is presented. Chromatographic methods are developed and optimized from start to finish by a feedback-controlled modeling approach using readily available LC instrumentation and software technologies, bypassing manual user intervention. With the use of such tools, the time requirement of the analyst is drastically minimized in the development of a method. Herein key insights on chromatography system control, automatic optimization of mobile phase conditions, and final separation landscape for challenging multicomponent mixtures are presented (e.g., small molecules drug, peptides, proteins, and vaccine products) showcased by a detailed comparison of a chiral method development process. The work presented here illustrates the power of modern chromatography instrumentation and AI-based software to accelerate the development and deployment of new separation assays across (bio)pharmaceutical modalities while yielding substantial cost-savings, method robustness, and fast analytical turnaround.
Collapse
Affiliation(s)
- Fatima Naser Aldine
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Devin M Makey
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Michelle Wong
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Pankaj Aggarwal
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
4
|
Grazina L, Mafra I, Monaci L, Amaral JS. Mass spectrometry-based approaches to assess the botanical authenticity of dietary supplements. Compr Rev Food Sci Food Saf 2023; 22:3870-3909. [PMID: 37548598 DOI: 10.1111/1541-4337.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.
Collapse
Affiliation(s)
- Liliana Grazina
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Linda Monaci
- ISPA-CNR, Institute of Sciences of Food Production of National Research Council of Italy, Bari, Italy
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
5
|
Zhang Q, Du H, Zhang Y. Recent progress on the detection of animal-derived food stimulants using mass spectrometry-based techniques. Front Nutr 2023; 10:1226530. [PMID: 37533577 PMCID: PMC10391635 DOI: 10.3389/fnut.2023.1226530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background The misuse of animal-derived stimulants in food is becoming increasingly common, and mass spectrometry (MS) is used extensively for their detection and analysis. There is a growing demand for abused-substances detection, highlighting the need for systematic studies on the advantages of MS-based methods in detecting animal-derived stimulants. Objective We reviewed the application of chromatography-mass spectrometry to the screening and detection of food stimulants of animal origin. Specifically, we analyzed four common animal sources of synthetic steroids, β-receptor agonists, zearalenol (ZAL), and glucocorticoids. We also explored the potential of using chromatography-mass spectrometry to detect and analyze animal-derived foods. Methods We searched and screened the Web of Science and Google Scholar databases until April 2023. Our inclusion criteria included a publication year within the last 5 years, publication language of English, and the research fields of food analysis, environmental chemistry, and polymer science. Our keywords were "mass spectrometry," "anabolic androgenic steroids," "β-2agonists," "glucocorticoids," "zearalenone," and "doping." Results Although traditional techniques such as thin-layer chromatography and enzyme-linked immunoassays are simple, fast, and suitable for the initial screening of bulk products, they are limited by their relatively high detection limits. Among the methods based on MS, gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry are the most widely used for detecting food doping agents of animal origin. However, a sensitive method with high repeatability and a short analysis time for a large number of samples is still required. Advances in MS have enabled the detection of extremely low concentrations of these substances. Combining different techniques, such as high-resolution mass spectrometry, ultra-high performance liquid chromatography-tandem mass spectrometry, gas chromatography-combustion-isotope ratio mass spectrometry, ultra-high performance liquid chromatography-high resolution mass spectrometry, and two-dimensional chromatography, offers significant advantages for detecting trace illicit drugs in animal-derived foods. Due to advances in assay technology and sample preparation methods, sample collection and storage methods such as dried blood spots, dried urine spots, and volumetric absorptive microsampling are increasingly accepted because of their increased stability and cost-effectiveness. Significance MS significantly improves the efficiency of detecting doping agents of animal origin. With the continuous development of MS technology, its application in the fields of doping detection and the analysis of doping agents of animal origin is expected to become more extensive.
Collapse
Affiliation(s)
- Qiang Zhang
- Graduate School, Capital University of Physical Education and Sports, Beijing, China
| | - Hongying Du
- Tangshan Normal University, Tangshan, Hebei Province, China
| | - Yingjian Zhang
- Faculty of Sports, Langfang Normal University, Langfang, Hebei Province, China
| |
Collapse
|
6
|
Vaishnavi A. Sarangdhar, Ramanlal N. Kachave. Overview of UHPLC-MS: an Effective and Sensitive Hyphenated Technique. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Hu C, Zhang Y, Zhou Y, Xiang YJY, Liu ZF, Wang ZH, Feng XS. Tetrodotoxin and Its Analogues in Food: Recent Updates on Sample Preparation and Analytical Methods Since 2012. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12249-12269. [PMID: 36153990 DOI: 10.1021/acs.jafc.2c04106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tetrodotoxin (TTX), found in various organisms including pufferfish, is an extremely potent marine toxin responsible for numerous food poisoning accidents. Due to its serious toxicity and public health threat, detecting TTX and its analogues in diverse food matrices with a simple, fast, efficient method has become a worldwide concern. This review summarizes the advances in sample preparation and analytical methods for the determination of TTX and its analogues, focusing on the latest development over the past five years. Current state-of-the-art technologies, such as solid-phase microextraction, online technology, novel injection technology, two-dimensional liquid chromatography, high-resolution mass spectrometry, newly developed lateral flow immunochromatographic strips, immunosensors, dual-mode aptasensors, and nanomaterials-based approaches, are thoroughly discussed. The advantages and limitations of different techniques, critical comments, and future perspectives are also proposed. This review is expected to provide rewarding insights to the future development and broad application of pretreatment and detection methods for TTX and its analogues.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yang-Jia-Yi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
8
|
Doumtsi A, Manousi N, Karavasili C, Fatouros DG, Tzanavaras PD, Zacharis CK. A simple and green LC method for the determination of ibuprofen in milk-containing simulated gastrointestinal media for monitoring the dissolution studies of three dimensional-printed formulations. J Sep Sci 2022; 45:3955-3965. [PMID: 36054076 DOI: 10.1002/jssc.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
A fast and green ultra high-performance LC method was developed for the determination of ibuprofen in milk-containing simulated gastrointestinal media to monitor the dissolution of three-dimensional printed formulations. To remove interfering compounds, protein precipitation using methanol as a precipitation reagent was performed. The separation of the target analyte was performed on an C18 column using a mobile phase consisting of 0.05% v/v aqueous phosphoric acid solution: methanol, 25:75% v/v. Method validation was conducted using the total error concept. The β-expectation tolerance intervals did not exceed the acceptance criteria of ± 15%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between ─ 1.1 to + 3.2% for all analytes, while the relative standard deviation values for repeatability and intermediate precision were less than 2.8% and 3.9%, respectively. The achieved limit of detection was 0.01 μg mL-1 and the lower limit of quantitation was established as 2 μg mL-1 . The proposed method was simple, and it required reduced organic solvent consumption following the requirements of Green Analytical Chemistry. The method was successfully employed for the determination of ibuprofen in real biorelevant media obtained from dissolution studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antigoni Doumtsi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Christina Karavasili
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
9
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann Lab Med 2022; 42:121-140. [PMID: 34635606 PMCID: PMC8548246 DOI: 10.3343/alm.2022.42.2.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
The process of method development for a diagnostic assay based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) involves several disparate technologies and specialties. Additionally, method development details are typically not disclosed in journal publications. Method developers may need to search widely for pertinent information on their assay(s). This review summarizes the current practices and procedures in method development. Additionally, it probes aspects of method development that are generally not discussed, such as how exactly to calibrate an assay or where to place quality controls, using examples from the literature. This review intends to provide a comprehensive resource and induce critical thinking around the experiments for and execution of developing a clinically meaningful LC-MS/MS assay.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Eco-Friendly Separation of Antihyperlipidemic Combination Using UHPLC Particle-Packed and Monolithic Columns by Applying Green Analytical Chemistry Principles. SEPARATIONS 2021. [DOI: 10.3390/separations8120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Efficient separation of pharmaceuticals and metabolites with the adequate resolution is a key factor in choosing the most suitable chromatographic method. For quality control, the analysis time is a key factor, especially in pharmacokinetic studies. High back pressure is considered as one of the most important factors in chromatography’s flow control, especially in UHPLC. The separation of the anti-hyperlipidemic mixtures was carried out using two columns: a column silica-based particle packed UHPLC and a monolithic column. The systematic suitability of the two columns was compared for the separation of Fenofibrate, its active metabolite, Fenofibric acid and Pravastatin using Atorvastatin as an internal standard. Separation on both columns was obtained using ethanol: buffer potassium dihydrogen orthophosphate pH = 3 (adjusted with orthophosphoric acid) (75:25 v/v) as mobile phase and flow rate 0.8 mL/min. The analytes’ peak detection was achieved by using a PDA detector at 287 nm, 214 nm, 236 nm, and 250 nm for Fenofibrate, Fenofibric acid, Pravastatin, and Atorvastatin, respectively. Reduction of back-pressure was achieved with the monolithic column, where the analytes could be completely separated in less than 1.5 min at a flow rate of 5 mL/min. The principles of Green Analytical Chemistry (GAC) were followed throughout the developed method using environmentally safe solvents.
Collapse
|
11
|
Du LY, Jiang T, Wei K, Zhu S, Shen YL, Ye P, Zhang HE, Chen CB, Wang EP. Simultaneous Quantification of Four Ginsenosides in Rat Plasma and Its Application to a Comparative Pharmacokinetic Study in Normal and Depression Rats Using UHPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:4488822. [PMID: 34484847 PMCID: PMC8410448 DOI: 10.1155/2021/4488822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
A sensitive method has been developed for simultaneous determination of ginsenoside Rh1 (G-Rh1), ginsenoside Rb1 (G-Rb1), ginsenoside Rc (G-Rc), and ginsenoside Rd (G-Rd) in rat plasma of normal and depression model group after oral administration of their solutions by using Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-QQQ-MS). The biological samples were prepared by protein precipitation. Ginsenoside Rg3 (G-Rg3) was used as an internal standard (IS). MS analysis was performed under the multiple reaction monitoring (MRM) with electron spray ionization (ESI) operated in the negative mode. The method showed good linearity over a wide concentration range (R 2 > 0.999) and obtained lower limits of quantification (LLOQ) of 5 ng/mL. The whole analysis procedure could be completed in as short as 16.5 min. The intraday precisions, interday precisions, and stabilities were less than 10%. The extraction recoveries from rat plasma were exceeded 86.0%. The results indicated that there were significant differences between the two groups on pharmacokinetics parameters; the absorptions of four analytes in the depression group were higher than those in the normal group because the liver metabolism and internal environment of the model rats had been affected.
Collapse
Affiliation(s)
- Lian-yun Du
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Tao Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Kun Wei
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Shuang Zhu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Yan-long Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ping Ye
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Hui-e Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Chang-bao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - En-peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| |
Collapse
|
12
|
Ali F, AlOthman ZA, Al-Shaalan NH. Mixed-mode open tubular column for peptide separations by capillary electrochromatography. J Sep Sci 2021; 44:2602-2611. [PMID: 33905621 DOI: 10.1002/jssc.202100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
Mixed-mode chromatography open tubular column has been developed for peptide separation in electrochromatography. A column with 92 cm effective length and 50 μm internal diameter is fabricated internally with a copolymer sheet of restricted thickness. Catalyst facilitated binding of the coupling agent 3,5-bis (trifluoromethyl) phenyl isocyanate has been carried out at the interior surface of the column. The initiator sodium diethyldithiocarbamate was bound to the coupling agent. A small amount of N-[2-(acryloylamino) phenyl] acrylamide was used along with methacrylic acid and styrene in the monomer mixture to induce a little polar character in the stationary phase fabricated inside the column. Twenty-three peptides have been separated from a chemically digested protein mixture present in cytochrome C in capillary electrochromatography, in addition to the separation of six commercial peptides. We achieved an average plate count of over 1.5 million/m with the column of current study both for the digested protein components and commercial peptides using 70/30% v/v (acetonitrile/20 mM ammonium formate) at pH 6.5. In addition, the column resulted in baseline separation of all the peptides with very good resolution, enhanced peak capacity, and better retention time span.
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Gritti F. Perspective on the Future Approaches to Predict Retention in Liquid Chromatography. Anal Chem 2021; 93:5653-5664. [PMID: 33797872 DOI: 10.1021/acs.analchem.0c05078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The demand for rapid column screening, computer-assisted method development and method transfer, and unambiguous compound identification by LC/MS analyses has pushed analysts to adopt experimental protocols and software for the accurate prediction of the retention time in liquid chromatography (LC). This Perspective discusses the classical approaches used to predict retention times in LC over the last three decades and proposes future requirements to increase their accuracy. First, inverse methods for retention prediction are essentially applied during screening and gradient method optimization: a minimum number of experiments or design of experiments (DoE) is run to train and calibrate a model (either purely statistical or based on the principles and fundamentals of liquid chromatography) by a mere fitting process. They do not require the accurate knowledge of the true column hold-up volume V0, system dwell volume Vdwell (in gradient elution), and the retention behavior (k versus the content of strong solvent φ, temperature T, pH, and ionic strength I) of the analytes. Their relative accuracy is often excellent below a few percent. Statistical methods are expected to be the most attractive to handle very complex retention behavior such as in mixed-mode chromatography (MMC). Fundamentally correct retention models accounting for the simultaneous impact of φ, I, pH, and T in MMC are needed for method development based on chromatography principles. Second, direct methods for retention prediction are ideally suited for accurate method transfer from one column/system configuration to another: these quality by design (QbD) methods are based on the fundamentals and principles of solid-liquid adsorption and gradient chromatography. No model calibration is necessary; however, they require universal conventions for the accurate determination of true retention factors (for 1 < k < 30) as a function of the experimental variables (φ, T, pH, and I) and of the true column/system parameters (V0, Vdwell, dispersion volume, σ, and relaxation volume, τ, of the programmed gradient profile at the column inlet and gradient distortion at the column outlet). Finally, when the molecular structure of the analytes is either known or assumed, retention prediction has essentially been made on the basis of statistical approaches such as the linear solvation energy relationships (LSERs) and the quantitative structure retention relationships (QSRRs): their ability to accurately predict the retention remains limited within 10-30%. They have been combined with molecular similarity approaches (where the retention model is calibrated with compounds having structures similar to that of the targeted analytes) and artificial intelligence algorithms to further improve their accuracy below 10%. In this Perspective, it is proposed to adopt a more rigorous and fundamental approach by considering the very details of the solid-liquid adsorption process: Monte Carlo (MC) or molecular dynamics (MD) simulations are promising tools to explain and interpret retention data that are too complex to be described by either empirical or statistical retention models.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
14
|
Ali F, Cheong WJ, Rafique A, AlOthman ZA, Sadia M, Muhammad M. Particle packed mixed-mode chromatographic stationary phase for the separation of peptide in liquid chromatography. J Sep Sci 2021; 44:1430-1439. [PMID: 33492780 DOI: 10.1002/jssc.202100001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
A particle-based stationary phase has been prepared for the separation of five synthetic peptides and a mixture containing tryptic digest of cytochrome C in liquid chromatography. Particles originating from silica monolith were differentially sedimented to obtain 1-2 μm particles. A stationary phase was achieved by the coating of poly(styrene-methacrylic acid-N-phenylacrylamide) copolymer onto the particles via reversible addition-fragmentation chain transfer polymerization reaction. Stainless steel column (30 cm long and 1 mm internal diameter) was packed with stationary phase. Very high separation efficiency (ca. 351 000 plates/m) was achieved for five commercial peptides with a percent relative standard deviation of less than 1%. Protocol for the synthesis and modification of silica monolith particles has been well optimized with a good reproducibility both in particle and pore size. The column resolved about 21 peptide components from a mixture containing tryptic digest of cytochrome C, under the elution conditions of acetonitrile/15 mM ammonium format (65/35 v/v%) with a flow rate of 28 μL/min.
Collapse
Affiliation(s)
- Faiz Ali
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.,Department of Chemistry, Inha University, Incheon, South Korea
| | - Won Jo Cheong
- Department of Chemistry, Inha University, Incheon, South Korea
| | - Aamra Rafique
- Department of Chemistry, Faculty of Basic and Applied Sciences, University of The Poonch, Rawalakot, Pakistan
| | - Zeid A AlOthman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maria Sadia
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Wang Q, He BL, Shackman JG. Measuring atropisomers of BMS-986142 using 2DLC as an enabling technology. J Pharm Biomed Anal 2020; 193:113730. [PMID: 33181427 DOI: 10.1016/j.jpba.2020.113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
BMS-986142 has been developed as an innovative Bruton's tyrosine kinase inhibitor for treatment of several autoimmune diseases. The drug substance of BMS-986142 may contain three potential atropisomeric impurities due to its unique structural characteristics. Developing a single liquid chromatography (LC) method to separate all four highly structurally related atropisomers and other process impurities from each other turned out to be a daunting task. Two-dimensional LC (2DLC) was found to be an extremely powerful enabling technology for extracting purity information out of the complex sample impurity profile and facilitated process development before a final single dimension method was discovered. The off-the-shelf 2DLC instrument could be configured to allow injection of the targeted first dimension peak through either no-loss multiple heart-cutting fractions or as a large, single volume fraction with on-line dilution. Excellent precision (relative standard deviation of 0.3 %) and recovery (101.2 ± 0.2 %) was achieved for an atropisomer impurity at a 10 % monitoring level in the first configuration with sensitivity down to 0.2 % w/w. With the second instrument configuration, which eliminated the need for fraction recombination, similar figures of merit were maintained for the second dimension at the cost of losing the ability to collect and park multiple fractions.
Collapse
Affiliation(s)
- Qinggang Wang
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Brian Lingfeng He
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Jonathan G Shackman
- Chemical Process Development, Bristol Myers Squibb Company, 1 Squibb Drive, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
16
|
A review of pretreatment and analysis of macrolides in food (Update Since 2010). J Chromatogr A 2020; 1634:461662. [PMID: 33160200 DOI: 10.1016/j.chroma.2020.461662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Macrolides are versatile broad-spectrum antibiotics whose activity stems from the presence of a macrolide ring. They are widely used in veterinary medicine to prevent and treat disease. However, because of their improper use and the absence of effective regulation, these compounds pose a threat to human health and the environment. Consequently, simple, quick, economical, and effective techniques are required to analyze macrolides in animal-derived foods, biological samples, and environmental samples. This paper presents a comprehensive overview of the pretreatment and analytical methods used for macrolides in various sample matrices, focusing on the developments since 2010. Pretreatment methods mainly include liquid-liquid extraction, solid-phase extraction, matrix solid-phase dispersion, and microextraction methods. Detection and quantification methods mainly include liquid chromatography (coupled to mass spectrometry or other detectors), electrochemical methods, capillary electrophoresis, and immunoassays. Furthermore, a comparison between the pros and cons of these methods and prospects for future developments are also discussed.
Collapse
|
17
|
High-throughput screening for high-efficiency small-molecule biosynthesis. Metab Eng 2020; 63:102-125. [PMID: 33017684 DOI: 10.1016/j.ymben.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
Systems metabolic engineering faces the formidable task of rewiring microbial metabolism to cost-effectively generate high-value molecules from a variety of inexpensive feedstocks for many different applications. Because these cellular systems are still too complex to model accurately, vast collections of engineered organism variants must be systematically created and evaluated through an enormous trial-and-error process in order to identify a manufacturing-ready strain. The high-throughput screening of strains to optimize their scalable manufacturing potential requires execution of many carefully controlled, parallel, miniature fermentations, followed by high-precision analysis of the resulting complex mixtures. This review discusses strategies for the design of high-throughput, small-scale fermentation models to predict improved strain performance at large commercial scale. Established and promising approaches from industrial and academic groups are presented for both cell culture and analysis, with primary focus on microplate- and microfluidics-based screening systems.
Collapse
|
18
|
Ye Q, Cheng P, Yan D, Sun Y, Zhang Y, Cao H, Wang S, Meng J. Nine absorbed components pharmacokinetic of raw and processed Moutan Cortex in normal and blood-heat and hemorrhage syndrome model rats. Biomed Chromatogr 2020; 34:e4963. [PMID: 32789887 DOI: 10.1002/bmc.4963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 11/10/2022]
Abstract
Raw Moutan Cortex (RMC) and Processed Moutan Cortex (PMC) have a long history of use in China and other Asian countries. In this study, a rapid and accurate ultra-high-pressure liquid chromatography coupled with diode array detector (UHPLC-DAD) method was developed and validated for the simultaneous determination of nine absorbed compounds of RMC/PMC. After extraction by protein precipitation with methanol from plasma, the analytes were separated on an Acquity UPLC® BEH Shield RP18 column (2.1 × 100 mm, 1.7 μm, Waters, USA). Acetonitrile (A) and 0.1% (v/v) formic acid in water (B) were selected as the mobile phase to perform gradient elution. The linearity of nine analytes was >0.9915. The intra- and inter-assay precision (RSD) values were within 11.18%, and accuracy ranged from 91.32 to 101.29%. Suitable stability, matrix effect and extraction recoveries were also obtained. The validated method was applied to compare the pharmacokinetics of RMC and PMC in Blood-Heat and Hemorrhage Syndrome Model and normal rats. The results revealed that processing and the pathological state could influence the pharmacokinetic characteristics of compounds in RMC/PMC. The study willbe useful for further studies on pharmacokinetics and clinical application of raw and processed Moutan Cortex.
Collapse
Affiliation(s)
- Qiuli Ye
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Pei Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Donghui Yan
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University/Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine/Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| |
Collapse
|
19
|
de Campos DP, Silva-Barcellos NM, Marinho FDM, Barbosa GX, Lana VLVV, de Souza J. A sustainable UPLC-UV method for quantification of donepezil hydrochloride in biorelevant media applied to dissolution profile comparison. Drug Dev Ind Pharm 2020; 46:1578-1588. [PMID: 32808565 DOI: 10.1080/03639045.2020.1810266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Donepezil hydrochloride is one of the most prescribed anti-Alzheimer's drugs, despite being available for more than two decades, chromatographic methods for the quantification of the drug in biorelevant media that mimics pH physiological conditions in vivo (pH 1.2, 4.5, and 6.8) are not available in the literature. These media are used in the dissolution test, an important tool, for registration and quality control of medicines. Considering the need for methods with this purpose, this work aimed to develop and validate a sustainable UPLC-UV method for quantification of donepezil hydrochloride in tablets, specifically on assay and dissolution profile, with reduced environmental impacts. The proposed method has a run time of 2 min and requires for each run, only 0.8 mL of solvents, providing excellent green analysis. The method proved to be selective, linear, precise, accurate, robust in the range of 2-14 µg/mL. Three products (reference, similar, and generic) were analyzed and showed very rapid dissolution. The average content varied from 100.2 ± 0.6% to 109.5 ± 2.1%. Using dissolution efficiency (DE), the drug release profiles were compared in different biorelevant media.
Collapse
Affiliation(s)
- Débora Priscila de Campos
- Department of Pharmacy and Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | | | | | | | | | - Jacqueline de Souza
- Department of Pharmacy and Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
20
|
Leong F, Hua X, Wang M, Chen T, Song Y, Tu P, Chen XJ. Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin Med 2020; 15:76. [PMID: 32742301 PMCID: PMC7388521 DOI: 10.1186/s13020-020-00357-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine (TCM) are becoming more and more popular all over the world. However, quality issues of TCM may lead to medical incidents in practice and therefore quality control is essential to TCM. In this review, the state of TCM in European Pharmacopoeia are compared with that in Chinese Pharmacopoeia, and herbal drugs that are not considered as TCM and not elaborated by TCM working party at European Directorate for the Quality of Medicines & Health Care (EDQM) but present in both European Pharmacopoeia and Chinese Pharmacopoeias are also discussed. Different aspects in quality control of TCM including origins, identification, tests and assays, as well as sample preparation, marker selection and TCM processing are covered to address the importance of establishing comprehensive quality standard of TCM. Furthermore, advanced analytical techniques for quality control and standard establishment of TCM are also reviewed.
Collapse
Affiliation(s)
- Fong Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Xue Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg72, 2333BE Leiden, The Netherlands
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191 China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| |
Collapse
|
21
|
Kresge GA, Grosse S, Zimmer A, Grinias KM, De Pra M, Wong JMT, Steiner F, Grinias JP. Strategies in developing high-throughput liquid chromatography protocols for method qualification of pharmacopeial monographs. J Sep Sci 2020; 43:2964-2970. [PMID: 32388922 DOI: 10.1002/jssc.202000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/11/2022]
Abstract
Method qualification is a key step in the development of routine analytical monitoring of pharmaceutical products. However, when relying on published monographs that describe longer method times based on older high-performance liquid chromatography column and instrument technology, this can delay the overall analysis process for generated drug products. In this study, high-throughput ultrahigh pressure liquid chromatography techniques were implemented to decrease the amount of time needed to complete a 24-run sequence to identify linearity, recovery, and repeatability for both drug assay and impurity analysis in 16 min. Multiple experimental parameters were tested to identify a range of experimental settings that could be used for the sequence while still maintaining this fast analysis time. The full sequence was replicated on a different system and with different columns, further demonstrating its robustness.
Collapse
Affiliation(s)
- Glenn A Kresge
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Alexis Zimmer
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Kaitlin M Grinias
- Analytical Platforms & Platform Modernization , GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ, USA
| |
Collapse
|
22
|
Manousi N, Samanidou VF. Recent Advances in the HPLC Analysis of Tricyclic Antidepressants in Bio-Samples. Mini Rev Med Chem 2020; 20:24-38. [DOI: 10.2174/1389557519666190617150518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 01/15/2023]
Abstract
:
Tricyclic Antidepressants (TCAs) are a group of the main category of antidepressant drugs,
which are commonly prescribed to treat major depressive disorder. Determination of TCA drugs is
very important for clinical and forensic toxicology, especially for therapeutic drug monitoring in various
biofluids. High Performance Liquid Chromatography (HPLC) is a well-established technique for
this purpose. A lot of progress has been made in this field since the past 10 years. Novel extraction
techniques, and novel materials for sample preparation, novel columns and novel applications of analysis
of various biofluids for the determination of TCAs in combination with other drugs are some typical
examples. Moreover, advances have been performed in terms of Green Analytical Chemistry principles.
Herein, we aim to discuss the developed HPLC methods that were reported in the literature for
the time span of 2008-2018.
Collapse
Affiliation(s)
- Natalia Manousi
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Victoria F. Samanidou
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Kalogiouri N, Samanidou V. Advances in the Optimization of Chromatographic Conditions for the Separation of Antioxidants in Functional Foods. ACTA ACUST UNITED AC 2019. [DOI: 10.17145/rss.19.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Tome T, Žigart N, Časar Z, Obreza A. Development and Optimization of Liquid Chromatography Analytical Methods by Using AQbD Principles: Overview and Recent Advances. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00238] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tim Tome
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, SI-1000 Ljubljana, Slovenia
- Analytics Department, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Verovškova ulica 57, SI-1526 Ljubljana, Slovenia
| | - Nina Žigart
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, SI-1000 Ljubljana, Slovenia
- Analytics Department, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Verovškova ulica 57, SI-1526 Ljubljana, Slovenia
| | - Zdenko Časar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, SI-1000 Ljubljana, Slovenia
- Analytics Department, Sandoz Development Center Slovenia, Lek Pharmaceuticals d.d., Verovškova ulica 57, SI-1526 Ljubljana, Slovenia
| | - Aleš Obreza
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Hettiarachchi K, Hayes M, Desai AJ, Wang J, Ren Z, Greshock TJ. Subminute micro-isolation of pharmaceuticals with ultra-high pressure liquid chromatography. J Pharm Biomed Anal 2019; 176:112794. [PMID: 31437749 DOI: 10.1016/j.jpba.2019.112794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 11/26/2022]
Abstract
The drive for faster separations while maintaining quality and yield remains an important consideration for enhanced productivity as well as cost reduction for drug discovery laboratories in the pharmaceutical industry. High-throughput experimentation (HTE) and high-throughput screening (HTS) techniques can benefit from rapid and efficient isolation of product at high purity and recovery from microgram-scale crude reaction mixtures. In this study we describe the isolation of small molecule and biomolecule crude mixtures at the microgram-scale (100-2500 μg) in single or library format with methods as fast as 1.0 min and system pressures averaging 10,000 psi with an ultra-high pressure liquid chromatography (UHPLC) setup. UHPLC technology provides several advantages for rapid (<1.0 min) separations with small-particle (1.8-3.5 μm) size 4.6 × 50 mm C18 columns such as minimal extra column and delay volume, fast detector response time, and higher linear velocities for improved speed and resolution. We typically see a 5-10 fold improvement in purification time and overall sample processing time with low fraction volumes and same-day drying when compared with traditional semi-preparative techniques. There is a significant 50-fold reduction in solvent usage per run, resulting in a much lower cost of solvent and waste handling. Fluidic pathways have been optimized for collection into tared high-density 96 or 384 well 2D barcoded storage tubes in a microtiter plate (MTP) layout. Coupling the system to robotics has enabled us to implement a fully integrated automation platform with additional capabilities for small-scale purification at high speed and reduced cost of materials. The resulting arrays of small-quantity, high-purity compounds enable synthetic route scouting for HTE and HTS for biological target validation.
Collapse
Affiliation(s)
- Kanaka Hettiarachchi
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA.
| | - Michael Hayes
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Aditya J Desai
- Pharmacology, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Jun Wang
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Zhao Ren
- Pharmacology, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Thomas J Greshock
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Chervin J, Talou T, Audonnet M, Dumas B, Camborde L, Esquerré-Tugayé MT, Roux C, Cabanac G, Marti G. Deciphering the phylogeny of violets based on multiplexed genetic and metabolomic approaches. PHYTOCHEMISTRY 2019; 163:99-110. [PMID: 31035059 DOI: 10.1016/j.phytochem.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Molecular phylogenetics based on nucleotide sequence comparisons has profoundly influenced plant taxonomy. A comprehensive chemotaxonomical approach based on GC-MS and UHPLC-HRMS profiling was evaluated for its ability to characterize a large collection of plants all in the violet family Violaceae (n = 111) and thus decipher the taxonomy. A thorough identification of violets is challenging due to their natural hybridization and phenotypic variability. Phylogenetic inference performed on ribosomal internal transcribed spacer sequences using maximum likelihood and neighbor-joining distance methods allowed the clear identification of 58% of the collection. Metabolomic approaches with multivariate data analysis were performed on SPME/GC-MS chromatograms of volatile compounds emitted by fresh mature flowers and on UHPLC-HRMS/MS leaf extracts for non-volatile compounds. Interestingly, molecular and biochemical approaches provided separate classifications while highlighting several common clusters. The profiling of secondary metabolites was proved most suitable for the classification of hundreds of extracts. The combination of phylogenetic and chemotaxonomic approaches, allowed the classification of 96% of the entire collection. A correlation network revealed specific chemotaxonomic biomarkers, in particular flavonoids, coumarins and cyclotides. Overall, our pioneering approach could be useful to solve misclassification issues within collections of close plant species.
Collapse
Affiliation(s)
- Justine Chervin
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, Toulouse, France; Laboratoire de Recherche en Sciences Végétales [LRSV], UMR 5546, UPS/CNRS, Toulouse, France; UMR 152 PharmaDEV, Université de Toulouse, IRD, UPS, Toulouse, France.
| | - Thierry Talou
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, Toulouse, France.
| | - Marjorie Audonnet
- Laboratoire de Recherche en Sciences Végétales [LRSV], UMR 5546, UPS/CNRS, Toulouse, France.
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales [LRSV], UMR 5546, UPS/CNRS, Toulouse, France.
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales [LRSV], UMR 5546, UPS/CNRS, Toulouse, France.
| | | | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales [LRSV], UMR 5546, UPS/CNRS, Toulouse, France.
| | | | - Guillaume Marti
- UMR 152 PharmaDEV, Université de Toulouse, IRD, UPS, Toulouse, France.
| |
Collapse
|
27
|
da Silva ACC, de Lima Feltraco Lizot L, Bastiani MF, Antunes MV, Brucker N, Linden R. Ready for TDM: Simultaneous quantification of amikacin, vancomycin and creatinine in human plasma employing ultra-performance liquid chromatography-tandem mass spectrometry. Clin Biochem 2019; 70:39-45. [PMID: 31228434 DOI: 10.1016/j.clinbiochem.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/18/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Amikacin (AMI) and vancomycin (VAN) are antibiotics largely used in intensive care in the empiric treatment of severe infections by multi-resistant gram-negative and gram-positive bacteria. AMI and VAN are eliminated untransformed by glomerular filtration, showing depuration ratio highly correlated with creatinine (CRE) clearance. AMI, VAN and CRE are highly polar structures, presenting poor retention in reversed-phase liquid chromatography when using conventional stationary phases. OBJECTIVE This study aimed to develop and validate a simple UPLC-MS/MS method for simultaneous determination of AMI, VAN, and CRE in human plasma for therapeutic drug monitoring. RESULTS Samples were prepared by protein precipitation, followed by dilution. Heptafluorobutyric acid (HFBA) was added to the mobile phase at low concentration (0.01%), and separation was performed in an ultra-performance reversed-phase column (particle diameter of 1.8 μm). These conditions allowed retention times of 0.92, 0.93, 2.12, 2.17 and 2.27 min for CRE, CRE-D3, AMI, KAN and VAN, respectively. The assay was linear from 0.5 to 100 mg L-1 for AMI and VAN and 5 to 100 mg L-1. Precision, accuracy and stability assays were acceptable according to bioanalytical validation guidelines. Suitable results. Matrix effects were in the range of +10.5 to +11.6% for AMI, -4.3 to -4.5% for VAN, and - 1.7 to +0.7 for CRE. CONCLUSION The first assay for the simultaneous determination of AMI, VAN and CRE in plasma by liquid chromatography-tandem mass spectrometry was reported. This assay allows the obtention of the necessary analytical data for the clinical application of population pharmacokinetic methods for therapeutic drug monitoring of AMI and VAN.
Collapse
Affiliation(s)
- Anne Caroline Cezimbra da Silva
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Lilian de Lima Feltraco Lizot
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marcos Frank Bastiani
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marina Venzon Antunes
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Natália Brucker
- Graduate Program on Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Linden
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
28
|
Fatima Z, Jin X, Zou Y, Kaw HY, Quinto M, Li D. Recent trends in analytical methods for water-soluble vitamins. J Chromatogr A 2019; 1606:360245. [PMID: 31122728 DOI: 10.1016/j.chroma.2019.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
In this review, recent advances in the analysis of water-soluble vitamins (WSVs) have been reported considering the advantages and disadvantages of various extraction, separation and detection techniques, commonly used for their quantification. Acid hydrolysis, enzyme treatment, SPE based methods and some other extraction methods have been discussed. Particular attention has been devoted to the analytical techniques based on liquid chromatography and electrophoresis. Furthermore, suitability and selectivity of hydrophilic interaction liquid chromatography (HILIC) for WSVs has been discussed in detail. Problems related to these techniques and their possible solutions have also been considered. Special focus has been given to the applications of liquid chromatography (since 2014-2019) for the simultaneous analysis of WSVs and their homologous in complex food samples.
Collapse
Affiliation(s)
- Zakia Fatima
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Xiangzi Jin
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Maurizio Quinto
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China; SAFE - Department of Science of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
29
|
Kim YJ, Tu Y, Chow DSL. Ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC–MS/MS) assay for simultaneous quantifications of CZ48, lactone-stabilized camptothecin, and camptothecin and their pharmacokinetic and biliary evaluations in rats. J Pharm Biomed Anal 2018; 161:122-128. [DOI: 10.1016/j.jpba.2018.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
|
30
|
Liang Y, Zhou T. Recent advances of online coupling of sample preparation techniques with ultra high performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 2018; 42:226-242. [PMID: 30136406 DOI: 10.1002/jssc.201800721] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid-phase extraction and in-tube solid-phase microextraction, while solid-phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.
Collapse
Affiliation(s)
- Yanshan Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China
| |
Collapse
|
31
|
|
32
|
Using Superficially Porous Particles and Ultrahigh Pressure Liquid Chromatography in Pharmacopeial Monograph Modernization of Common Analgesics. Chromatographia 2018. [DOI: 10.1007/s10337-018-3593-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Balla A, Cho KH, Kim YC, Maeng HJ. Simultaneous Determination of Procainamide and N-acetylprocainamide in Rat Plasma by Ultra-High-Pressure Liquid Chromatography Coupled with a Diode Array Detector and Its Application to a Pharmacokinetic Study in Rats. Pharmaceutics 2018; 10:pharmaceutics10020041. [PMID: 29601501 PMCID: PMC6027534 DOI: 10.3390/pharmaceutics10020041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
A simple, sensitive, and reliable reversed-phase, Ultra-High-Pressure Liquid Chromatography (UHPLC) coupled with a Diode Array Detector (DAD) method for the simultaneous determination of Procainamide (PA) and its major metabolite, N-acetylprocainamide (NAPA), in rat plasma was developed and validated. A simple deproteinization method with methanol was applied to the rat plasma samples, which were analyzed using UHPLC equipped with DAD at 280 nm, and a Synergi™ 4 µm polar, reversed-phase column using 1% acetic acid (pH 5.5) and methanol (76:24, v/v) as eluent in isocratic mode at a flow rate 0.2 mL/min. The method showed good linearity (r2 > 0.998) over the concentration range of 20–100,000 and 20–10,000 ng/mL for PA and NAPA, respectively. Intra- and inter-day accuracies ranged from 97.7 to 110.9%, and precision was <10.5% for PA and 99.7 to 109.2 and <10.5%, respectively, for NAPA. The lower limit of quantification was 20 ng/mL for both compounds. This is the first report of the UHPLC-DAD bioanalytical method for simultaneous measurement of PA and NAPA. The most obvious advantage of this method over previously reported HPLC methods is that it requires small sample and injection volumes, with a straightforward, one-step sample preparation. It overcomes the limitations of previous methods, which use large sample volume and complex sample preparation. The devised method was successfully applied to the quantification of PA and NAPA after an intravenous bolus administration of 10 mg/kg procainamide hydrochloride to rats.
Collapse
Affiliation(s)
- Anusha Balla
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Gimhae 50834, Korea.
| | - Yu Chul Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
| |
Collapse
|
35
|
Mao XJ, Li J, Liu D, Qiao T, Ma L, Sun X, Xu L, Shi ZG. Flow-through silica: A potential matrix for fast chromatographic enantioseparation with high enantioselectivity. Talanta 2018; 178:583-587. [DOI: 10.1016/j.talanta.2017.09.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 11/15/2022]
|
36
|
Baeza-Fonte AN, Garcés-Lobo I, Luaces-Alberto MD, Gonçalves LM, Sotomayor MDPT, Valdés-González AC. Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers. J Chromatogr Sci 2017; 56:187-193. [DOI: 10.1093/chromsci/bmx099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 11/07/2017] [Indexed: 11/14/2022]
Affiliation(s)
- Alen N Baeza-Fonte
- Universitary Laboratory for Characterization of the Structure of Substances, Institute of Sciences and Technology of Materials, University of Havana, Calle Zapata y G, s/n, 10400 Habana, Cuba
| | - Idenia Garcés-Lobo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Havana, Calle Zapata y G, s/n, 10400 Habana, Cuba
| | - Markel D Luaces-Alberto
- Department of Analytical Chemistry, Faculty of Chemistry, University of Havana, Calle Zapata y G, s/n, 10400 Habana, Cuba
| | - Luís Moreira Gonçalves
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Maria D P T Sotomayor
- Instituto de Química, UNESP-Univ Estadual Paulista, Departamento de Química Analítica, Av. Prof. Francisco Degni, 55, Jardim Quitandinha, 14800-900 Araraquara, SP, Brazil
| | - Arístides C Valdés-González
- Universitary Laboratory for Characterization of the Structure of Substances, Institute of Sciences and Technology of Materials, University of Havana, Calle Zapata y G, s/n, 10400 Habana, Cuba
| |
Collapse
|
37
|
Simultaneous optimization of pH and binary organic composition by grid form modeling of the retention behavior in reversed-phase ultra high-performance liquid chromatography. J Pharm Biomed Anal 2017; 146:251-260. [DOI: 10.1016/j.jpba.2017.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 11/20/2022]
|
38
|
Ye D, Wang W, Moline D, Islam MS, Chen F, Wang P. A Microwave Flow Detector for Gradient Elution Liquid Chromatography. Anal Chem 2017; 89:10761-10768. [PMID: 28936868 DOI: 10.1021/acs.analchem.7b01924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents a microwave flow detector technique for liquid chromatography (LC) application. The detector is based on a tunable microwave interferometer (MIM) with a vector network analyzer (VNA) for signal measurement and a computer for system control. A microstrip-line-based 0.3 μL flow cell is built and incorporated into the MIM. With syringe pump injection, the detector is evaluated by measuring a few common chemicals in DI water at multiple frequencies from 0.98 to 7.09 GHz. Less than 30 ng minimum detectable quantity (MDQ) is demonstrated. An algorithm is provided and used to obtain sample dielectric permittivity at each frequency point. When connected to a commercial HPLC system and injected with a 10 μL aliquot of 10 000 ppm caffeine DI-water solution, the microwave detector yields a signal-to-noise ratio (SNR) up to 10 under isocratic and gradient elution operations. The maximum sampling rate is 20 Hz. The measurements show that MIM tuning, aided by a digital tunable attenuator (DTA), can automatically adjust MIM operation to retain detector sensitivity when mobile phase changes. Furthermore, the detector demonstrates a capability to quantify coeluted vitamin E succinate (VES) and vitamin D3 (VD3).
Collapse
Affiliation(s)
- Duye Ye
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Weizheng Wang
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - David Moline
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Md Saiful Islam
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Feng Chen
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Pingshan Wang
- Department of Electrical and Computer Engineering, ‡Department of Food, Nutrition, and Packaging Sciences, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
39
|
Mattrey FT, Makarov AA, Regalado EL, Bernardoni F, Figus M, Hicks MB, Zheng J, Wang L, Schafer W, Antonucci V, Hamilton SE, Zawatzky K, Welch CJ. Current challenges and future prospects in chromatographic method development for pharmaceutical research. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Ahmad IAH, Hrovat F, Soliven A, Clarke A, Boswell P, Tarara T, Blasko A. A 14 Parameter Study of UHPLC’s for Method Development Transfer and Troubleshooting. Chromatographia 2017. [DOI: 10.1007/s10337-017-3337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Penetrable silica microspheres for immobilization of bovine serum albumin and their application to the study of the interaction between imatinib mesylate and protein by frontal affinity chromatography. Anal Bioanal Chem 2015; 408:805-14. [PMID: 26573171 DOI: 10.1007/s00216-015-9163-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
In the current study, novel featured silica, named penetrable silica, simultaneously containing macropores and mesopores, was immobilized with bovine serum albumin (BSA) via Schiff base method. The obtained BSA-SiO2 was employed as the high-performance liquid chromatographic (HPLC) stationary phase. Firstly, D- and L-tryptophan were used as probes to investigate the chiral separation ability of the BSA-SiO2 stationary phase. An excellent enantioseparation factor was obtained up to 4.3 with acceptable stability within at least 1 month. Next, the BSA-SiO2 stationary phase was applied to study the interaction between imatinib mesylate (IM) and BSA by frontal affinity chromatography. A single type of binding site was found for IM with the immobilized BSA, and the hydrogen-bonding and van der Waals interactions were expected to be contributing interactions based on the thermodynamic studies, and this was a spontaneous process. Compared to the traditional silica for HPLC stationary phase, the proposed penetrable silica microsphere possessed a larger capacity to bond more BSA, minimizing column overloading effects and enhancing enantioseparation ability. In addition, the lower running column back pressure and fast mass transfer were meaningful for the column stability and lifetime. It was a good substrate to immobilize biomolecules for fast chiral resolution and screening drug-protein interactions.
Collapse
|
42
|
Ali F, Cheong WJ. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography. J Sep Sci 2015; 38:3645-54. [DOI: 10.1002/jssc.201500765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Faiz Ali
- Department of Chemistry; Inha University; Namku Incheon South Korea
| | - Won Jo Cheong
- Department of Chemistry; Inha University; Namku Incheon South Korea
| |
Collapse
|
43
|
Pinto EC, Dolzan MD, Cabral LM, Armstrong DW, de Sousa VP. Topiramate: A Review of Analytical Approaches for the Drug Substance, Its Impurities and Pharmaceutical Formulations. J Chromatogr Sci 2015; 54:280-90. [PMID: 26276847 DOI: 10.1093/chromsci/bmv120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/14/2022]
Abstract
An important step during the development of high-performance liquid chromatography (HPLC) methods for quantitative analysis of drugs is choosing the appropriate detector. High sensitivity, reproducibility, stability, wide linear range, compatibility with gradient elution, non-destructive detection of the analyte and response unaffected by changes in the temperature/flow are some of the ideal characteristics of a universal HPLC detector. Topiramate is an anticonvulsant drug mainly used for the treatment of different types of seizures and prophylactic treatment of migraine. Different analytical approaches to quantify topiramate by HPLC have been described because of the lack of chromophoric moieties on its structure, such as derivatization with fluorescent moieties and UV-absorbing moieties, conductivity detection, evaporative light scattering detection, refractive index detection, chemiluminescent nitrogen detection and MS detection. Some methods for the determination of topiramate by capillary electrophoresis and gas chromatography have also been published. This systematic review provides a description of the main analytical methods presented in the literature to analyze topiramate in the drug substance and in pharmaceutical formulations. Each of these methods is briefly discussed, especially considering the detector used with HPLC. In addition, this article presents a review of the data available regarding topiramate stability, degradation products and impurities.
Collapse
Affiliation(s)
- Eduardo Costa Pinto
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bss, sala 15, Rio de Janeiro 21941-902, Brazil Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Maressa Danielli Dolzan
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Lucio Mendes Cabral
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bss, sala 15, Rio de Janeiro 21941-902, Brazil
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA
| | - Valéria Pereira de Sousa
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bss, sala 15, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
44
|
Regalado EL, Welch CJ. Separation of achiral analytes using supercritical fluid chromatography with chiral stationary phases. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|