1
|
Reshetova EN, Barashkova AS, Garifullin BF. Retention mechanisms of dipeptides on superficially porous particle vancomycin- and teicoplanin-based chiral stationary phases. J Chromatogr A 2024; 1730:465135. [PMID: 38991601 DOI: 10.1016/j.chroma.2024.465135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Chromatographic behavior of new chiral stationary phases (CSPs) Chiral-T and Chiral-V with teicoplanin and vancomycin antibiotics grafted onto superficially porous silica particles was studied in relation to dipeptide (DP) stereoisomers. The unbuffered water-methanol solutions were used as mobile phases (MPs). The effects of physical properties and molecular structure of analytes and selectors on retention and separation of DP stereoisomers are discussed herein. Chiral-T was evinced to exhibit high enantioselectivity, with highest α values attaining 16.5, 18.8 and 20.4 for Gly-Leu, dd/ll-Phe-Leu and ld/dl-Ala-Ala. At this point, Chiral-V did not exhibit enantioselectivity towards DP stereoisomers. The effect of MP composition on retention and enantioseparation of DPs was investigated. Lipophilicity of DPs was found to be an essential factor in the dependence of their retention vs. methanol concentration in МPs. Lipophobic DPs were eluted more quickly by water-rich solvents, with lipophilic DPs exhibiting an asymmetric U-shaped, or a descending dependence of retention factor vs. the methanol percentage on Chiral-T or Chiral-V, respectively. A theoretical model taking into account interaction of both solvents of a binary MP with both an analyte and adsorption sites was successfully applied so as to approximate and interpret the dependences of DP retention (monotonic and U-shaped) vs. a modifier content in MP. Water molecules were evinced to predominantly participate in competitive adsorption with DP molecules. The model predicted better solvation of lipophilic DPs by methanol and better solvation of lipophobic DPs by water. An attempt was made to verify the possibility of modeling by molecular docking the processes occurring during interaction between DP stereoisomers and CSPs, including consideration of the influence of competitive binding of eluent molecules in selector cavity.
Collapse
Affiliation(s)
- Elena N Reshetova
- Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences, 3 Academician Korolev St., Perm 614013, Russia.
| | - Anna S Barashkova
- Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences, 3 Academician Korolev St., Perm 614013, Russia; Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, 29 Komsomolsky Ave., Perm 614990, Russia
| | - Bulat F Garifullin
- The A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Academician Arbuzov St., Kazan 420088, Russia
| |
Collapse
|
2
|
Woiwode U, Sievers-Engler A, Lämmerhofer M. Cross-linked polysiloxane-coated stable bond O-9-(2,6-diisopropylphenylcarbamoyl)quinine and quinidine chiral stationary phases as well as application in enantioselective cryo-HPLC. Electrophoresis 2024; 45:989-999. [PMID: 37916661 DOI: 10.1002/elps.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
In this work, brush-type chiral stationary phases (CSPs) with O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinidine (DIPPCQD-brush/-SH) and O-9-(2,6-diisopropylphenylcarbamoyl)-modified quinine (DIPPCQN-brush/-SH) were prepared as benchmarks for comparison with new corresponding polymeric CSPs with more stable bonding chemistry. These polymeric CSPs were prepared by coating a thin poly(3-mercaptopropyl)-methylsiloxane film together with the chiral selector onto vinyl-modified silica. In a second step, immobilization of the quinine/quinidine derivatives as well as cross-linking of the polysiloxane film to the vinyl-silica is achieved by a double thiol-ene click reaction. The polymeric CSPs exhibited similar enantioselectivity as the corresponding brush phases, but showed lower chromatographic efficiencies. Chiral acidic substances were separated into enantiomers (e.g., N-protected amino acids, herbicides like dichlorprop) in accordance with an enantioselective anion-exchange process. Oxidation of residual thiol groups of the polymer DIPPCQN-CSP introduced sulfonic acid co-ligands on the silica surface, which resulted in greatly reduced retention times. Acting as immobilized counterions, they allowed to reduce the concentration of counterions in the mobile phase, which is favorable for liquid chromatography (LC)-electrospray ionization-mass spectrometry application. Ibuprofen showed a single peak under ambient column temperature. However, application of cryogenic cooling of the column enabled to achieve baseline separation at -20°C column temperature. It can be explained by an enthalpically dominated separation, which leads to an increase in separation factors when the temperature is reduced. While it is quite uncommon to work at subzero degree column temperature, this work illustrates the potential to exploit such temperature regime for optimization of LC enantiomer separations.
Collapse
Affiliation(s)
- Ulrich Woiwode
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Reshetova E, Asnin L. Retention mechanisms of rasagiline and its analogues on superficially porous particle vancomycin- and teicoplanin-based chiral stationary phases. J Chromatogr A 2023; 1704:464120. [PMID: 37315444 DOI: 10.1016/j.chroma.2023.464120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Retention and separation of enantiomers of amine derivatives of indane and tetralin (rasagiline and its analogues) on chiral stationary phases (CSPs) Chiral-T and Chiral-V with teicoplanin and vancomycin antibiotics grafted onto superficially porous silica particles under conditions of reversed-phase and polar organic chromatography were studied. The mobile phases (MP) were water-methanol and acetonitrile-methanol solvents modified with triethylamine-acetic acid buffer. The effects of molecular structure and physical properties of the analytes on enantioselective retention are discussed. The retention mechanism is hypothesized to involve the ion-ion attraction between the positively charged amino group of an analyte and the carboxylate anion of either antibiotic. The binding occurs outside of the antibiotic's aglycon basket that accounts for relatively low enantioselectivity observed. The presence of a large substitute at the analyte's amino group complicates enantiorecognition. The effect of the MP solvent composition on retention and enantioseparation was investigated. It is a complex phenomenon combined of different oppositely directed influences that resulted in different shapes, increasing, decreasing, or U-shaped, of the retention factor vs. composition dependences. A model taking into account the interaction of both solvents of a binary MP with both an analyte and an adsorption site was successfully applied to approximate a majority of the studied systems. Pros and cons of the model are discussed.
Collapse
Affiliation(s)
- Elena Reshetova
- Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences, 3 Academician Korolev Str., Perm 614013, Russia.
| | - Leonid Asnin
- Department of Chemistry and Biotechnology, Perm National Research Polytechnic University, 29 Komsomolsky Al, Perm 614990, Russia
| |
Collapse
|
4
|
Lucci E, Dal Bosco C, Antonelli L, Fanali C, Fanali S, Gentili A, Chankvetadze B. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products. J Chromatogr A 2022; 1685:463595. [DOI: 10.1016/j.chroma.2022.463595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
5
|
Geibel C, Kramer M, Lämmerhofer M. Study of microheterogeneity of silatrane-based silica surface bonding chemistry and its optimization for the synthesis of chiral stationary phases for enantioselective liquid chromatography. J Chromatogr A 2022; 1674:463138. [PMID: 35617910 DOI: 10.1016/j.chroma.2022.463138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The present work systematically investigates the chemical microheterogeneity as part of the optimization of a single-step surface bonding chemistry of 3-mercaptopropylsilatrane (MPS) on mesoporous silica gel in comparison to the state-of-the-art silane chemistry with 3-mercaptopropyltrimethoxysilane (MPTMS). MPS functionalization turns out to be a favourable chemistry for the further use in thiol-ene click reactions such as the immobilization of chiral selectors, herein tert-butylcarbamoylquinine (tBuCQN), for the synthesis of chiral stationary phases (CSPs). MPS has higher reactivity than MPTMS and prefers the formation of trifunctional siloxane bondings unlike MPTMS which favours difunctional siloxane bonds to silica, as investigated by solid-state cross-polarization/magic angle spinning (CP/MAS) NMR (29Si and 13C nuclei). Reaction conditions (ternary mixtures of methanol, water and toluene; with and without acid; prewetting of silica; HCl pretreatment of silica) were evaluated with the aim to find conditions which promote the formation of a horizontal siloxane polymer layer on top of the silica surface. Silanization reaction times could be reduced to 2 h. The 29Si NMR signal corresponding to trifunctional siloxane bonding could be increased to 60% with no T1 signal that refers to monofunctional siloxane bonding in spite of water in the ternary reaction mixture. Furthermore, no significant disulfide bridges were formed in this approach, leading to high selector loadings. The thiol and selector coverage reached up to 4.6 and 1.4 µmol/m2, respectively. With the preferred CSP, the enantioselectivity could be increased for a chiral probe (FMOC-Phe) and the mass transfer resistance (C-term) bisected compared to the corresponding CSP prepared from benchmark MPTMS-modified silica (2.54 vs 5.72 ms). It is demonstrated that the fine-tuning of the microstructure on the silica surface can have a significant influence on enantioselectivity and mass transfer kinetics of the resultant CSPs.
Collapse
Affiliation(s)
- Christian Geibel
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany.
| |
Collapse
|
6
|
A perspective on enantioselective chromatography by comparing ultra-high performance supercritical fluid chromatography and normal-phase liquid chromatography through the use of a Pirkle-type stationary phase. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Du Y, Mo Z, Shuai C, Pei H, Wang J, Chen Y, Yue R, He S. Construction of a novel highly electroactive nano-composite film modified with cellulose gum for the electrochemical recognition of tryptophan isomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Krasowska D, Karpowicz R, Drabowicz J. Chiral Polythiophenes: Part I: Syntheses of Monomeric Precursors. Molecules 2021; 26:4205. [PMID: 34299480 PMCID: PMC8306549 DOI: 10.3390/molecules26144205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this mini-review is to comprehensively present the synthetic approaches used for the preparation of non-racemic mono- and multi-substituted thiophenes, which, in turn, can be applied as precursors for the synthesis of chiral polythiophenes isolated as a single chemical entity or having supramolecular thin-layer architectures.
Collapse
Affiliation(s)
- Dorota Krasowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Rafał Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Józef Drabowicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, Armii Krajowej Ave. 13/15, 42-200 Czestochowa, Poland
| |
Collapse
|
9
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
10
|
Klimova YA, Asnin LD. Enantioselective adsorption dynamics of leucyl-leucine in a Chirobiotic R column. J Chromatogr A 2020; 1635:461771. [PMID: 33302135 DOI: 10.1016/j.chroma.2020.461771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
The dynamics of adsorption of the Leu-Leu stereoisomers in a chromatographic column packed with the Chirobiotic R chiral stationary phase bearing grafted antibiotic ristocetin A was studied by means of measurement and analysis of van Deemter plots. Similar measurements were carried out with weakly retained Gly-Gly for the sake of comparison. The bulk diffusion coefficients of the investigated dipeptides were also determined. It is found that the van Deemter plots of both the Leu-Leu stereoisomers and Gly-Gly have an uncommon convex-upward shape. Besides, the van Deemter B coefficients for the Leu-Leu stereoisomers, but not for Gly-Gly, have unusually high values. It is suggested that a high transcolumn contribution to eddy dispersion, which turned out to be enantioselective, accounts for these findings. Adsorption kinetics of all the dipeptides considered is relatively slow, the adsorption rate constant (kads) being of order of magnitude 20-60 s-1. kads does not depend on the configuration of Leu-Leu stereoisomers, although their affinity toward the chiral selector depends on this factor. This supports the above hypothesis that eddy dispersion is mainly responsible for the observed peculiarities in the dynamic behavior of dipeptides, and adsorption kinetics has secondary importance in this phenomenon.
Collapse
Affiliation(s)
- Yana A Klimova
- Perm National Research Polytechnic University, 29 Komsomolsky Al., Perm 614990, Russian Federation
| | - Leonid D Asnin
- Perm National Research Polytechnic University, 29 Komsomolsky Al., Perm 614990, Russian Federation.
| |
Collapse
|
11
|
Potential and current limitations of superficially porous silica as a carrier for polysaccharide-based chiral selectors in separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2020; 1625:461297. [DOI: 10.1016/j.chroma.2020.461297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023]
|
12
|
Ren S, Xue S, Sun X, Rui M, Wang L, Zhang Q. Investigation of the synergistic effect of chiral ionic liquids as additives in non-aqueous capillary electrophoresis for enantioseparation. J Chromatogr A 2020; 1609:460519. [DOI: 10.1016/j.chroma.2019.460519] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
13
|
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115709] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Kohout M, Hovorka Š, Herciková J, Wilk M, Sysel P, Izák P, Bartůněk V, von Baeckmann C, Pícha J, Frühauf P. Evaluation of silica from different vendors as the solid support of anion-exchange chiral stationary phases by means of preferential sorption and liquid chromatography. J Sep Sci 2019; 42:3653-3661. [PMID: 31625277 DOI: 10.1002/jssc.201900731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 11/11/2022]
Abstract
Chromatographic performance of a chiral stationary phase is significantly influenced by the employed solid support. Properties of the most commonly used support, silica particles, such as size and size distribution, and pore size are of utmost importance for both superficially porous particles and fully porous particles. In this work, we have focused on evaluation of fully porous particles from three different vendors as solid supports for a brush-type chiral stationary phase based on 9-O-tert-butylcarbamoyl quinidine. We have prepared corresponding stationary phases under identical experimental conditions and determined the parameters of the modified silica by physisorption measurements and scanning electron microscopy. Enantiorecognition properties of the chiral stationary phases have been studied using preferential sorption experiments. The same material was slurry-packed into chromatographic columns and the chromatographic properties have been evaluated in liquid chromatography. We show that preferential sorption can provide valuable information about the influence of the pore size and total pore volume on the interaction of analytes of different size with the chirally-modified silica surface. The data can be used to understand differences observed in chromatographic evaluation of the chiral stationary phases. The combination of preferential sorption and liquid chromatography separation can provide detailed information on new chiral stationary phases.
Collapse
Affiliation(s)
- Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Štěpán Hovorka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Jana Herciková
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Maciej Wilk
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Petr Sysel
- Department of Polymers, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Izák
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Czech Republic.,Institute of Chemical Processes Fundamentals, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Bartůněk
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Cornelia von Baeckmann
- Department of Inorganic Chemistry-Functional Materials, University of Vienna, Vienna, Austria
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Frühauf
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Heiland JJ, Geissler D, Piendl SK, Warias R, Belder D. Supercritical-Fluid Chromatography On-Chip with Two-Photon-Excited-Fluorescence Detection for High-Speed Chiral Separations. Anal Chem 2019; 91:6134-6140. [DOI: 10.1021/acs.analchem.9b00726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Josef J. Heiland
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - David Geissler
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian K. Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, Liu Z, Ouyang M. Voltammetric enantiomeric differentiation of tryptophan by using multiwalled carbon nanotubes functionalized with ferrocene and β-cyclodextrin. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem 2018; 91:210-239. [DOI: 10.1021/acs.analchem.8b05026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Adrian Clarke
- Novartis Pharma AG, Technical Research and Development, Chemical and Analytical Development (CHAD), Basel, CH4056, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
18
|
Zhang Q, Zhang J, Xue S, Rui M, Gao B, Li A, Bai J, yin Z, Anochie EM. Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis. J Sep Sci 2018; 41:4525-4532. [DOI: 10.1002/jssc.201800792] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jian Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Song Xue
- Department of Pharmacy; Affiliated Hospital of Jiangsu University; Zhenjiang 212013 P. R. China
| | - Mengjie Rui
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Bin Gao
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Ang Li
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jiashuai Bai
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Zhichao yin
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | | |
Collapse
|
19
|
Separation of rotamers of 5-nitrosopyrimidines and estimation of binding constants of their complexes with β-cyclodextrin by capillary electrophoresis. J Chromatogr A 2018; 1570:164-171. [DOI: 10.1016/j.chroma.2018.07.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022]
|
20
|
Recent Achievements and Future Challenges in Supercritical Fluid Chromatography for the Enantioselective Separation of Chiral Pharmaceuticals. Chromatographia 2018. [DOI: 10.1007/s10337-018-3606-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Schmitt K, Woiwode U, Kohout M, Zhang T, Lindner W, Lämmerhofer M. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. J Chromatogr A 2018; 1569:149-159. [DOI: 10.1016/j.chroma.2018.07.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|
22
|
Khundadze N, Pantsulaia S, Fanali C, Farkas T, Chankvetadze B. On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J Chromatogr A 2018; 1572:37-43. [PMID: 30139619 DOI: 10.1016/j.chroma.2018.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 11/17/2022]
Abstract
In this study our preliminary attempt for obtaining fast and highly efficient separations of enantiomers in high-performance liquid chromatography with slightly modified state-of-the-art commercial instrumentation is described. In order to reach this goal after careful selection of chiral analytes, the preparation of chiral stationary phase (CSP), mobile phase composition and column dimensions were optimized. The concept of segmented chiral-achiral column was introduced. As the result of these optimizations baseline separation of enantiomers was achieved with the analysis time between 1-2 s.
Collapse
Affiliation(s)
- Nana Khundadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia
| | - Salome Pantsulaia
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia
| | - Chiara Fanali
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, 90501 CA, USA
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave. 3, 0179 Tbilisi, Georgia.
| |
Collapse
|
23
|
Mazzoccanti G, Ismail OH, D'Acquarica I, Villani C, Manzo C, Wilcox M, Cavazzini A, Gasparrini F. Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chem Commun (Camb) 2018; 53:12262-12265. [PMID: 29072720 DOI: 10.1039/c7cc06999e] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the Inverted Chirality Columns Approach (ICCA) we have developed an enantioselective UHPSFC method to determine the enantiomeric excess (ee) of (-)-Δ9-THC in medicinal marijuana (Bedrocan®). The ee was high (99.73%), but the concentration of the (+)-enantiomer (0.135%) was not negligible, and it is worth a systematic evaluation of bioactivity.
Collapse
Affiliation(s)
- G Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Ciogli A, Ismail OH, Mazzoccanti G, Villani C, Gasparrini F. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram. J Sep Sci 2018; 41:1307-1318. [PMID: 29319915 DOI: 10.1002/jssc.201701406] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/23/2017] [Accepted: 12/25/2017] [Indexed: 11/11/2022]
Abstract
The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations.
Collapse
Affiliation(s)
- Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Giulia Mazzoccanti
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
26
|
Mao XJ, Li J, Liu D, Qiao T, Ma L, Sun X, Xu L, Shi ZG. Flow-through silica: A potential matrix for fast chromatographic enantioseparation with high enantioselectivity. Talanta 2018; 178:583-587. [DOI: 10.1016/j.talanta.2017.09.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 09/30/2017] [Indexed: 11/15/2022]
|
27
|
Calcaterra A, D’Acquarica I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal 2018; 147:323-340. [DOI: 10.1016/j.jpba.2017.07.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
28
|
Huang XY, Pei D, Liu JF, Di DL. A review on chiral separation by counter-current chromatography: Development, applications and future outlook. J Chromatogr A 2018; 1531:1-12. [DOI: 10.1016/j.chroma.2017.10.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
29
|
Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 2017; 41:68-98. [PMID: 29027363 PMCID: PMC5814945 DOI: 10.1002/jssc.201700863] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022]
Abstract
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations.
Collapse
Affiliation(s)
- Bob W J Pirok
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,TI-COAST, Science Park, Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
30
|
|
31
|
Ismail OH, Antonelli M, Ciogli A, Villani C, Cavazzini A, Catani M, Felletti S, Bell DS, Gasparrini F. Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles. J Chromatogr A 2017; 1520:91-102. [PMID: 28911942 DOI: 10.1016/j.chroma.2017.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 10/18/2022]
Abstract
With the aim of pushing forward the limits of high efficient and ultrafast chiral liquid chromatography, a new Chiral Stationary Phase (CSP) has been prepared by covalently bonding the teicoplanin selector on 2.0μm Superficially Porous Particles (SPPs). An already validated bonding protocol, which permits to achieve teicoplanin-based CSPs exhibiting zwitterionic behaviour, has been employed to prepare not only the 2.0μm version of the CSP but also two other analogous CSPs based, respectively, on 2.7μm SPPs and 1.9μm Fully Porous Particles (FPPs). The kinetic performance of these CSPs has been compared through the analysis of both van Deemter curves and kinetic plots by employing in-house packed columns of 4.6mm internal diameter and different lengths (20, 50 and 100mm). In particular on the columns packed with 2.0μm SPPs, extremely large efficiencies were observed for both achiral (>310,000 theoretical plates/meter, N/m; hr: 1.61) and chiral compounds (>290,000 N/m; hr: 1.72) in HILIC conditions. Thanks to their efficiency and enantioselectivity, these CSPs were successfully employed in ultrafast chiral separations. As an example, the enantiomers of haloxyfop were baseline resolved in about 3s, with a resolution higher than 2.0, (flow rate: 8mL/min) on a 2cm long column packed with the 2.0μm chiral SPPs.
Collapse
Affiliation(s)
- Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| | - Michela Antonelli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Cavazzini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - David S Bell
- MilliporeSigma/Supelco, 595 North Harrison Road, Bellefonte, PA 16823, USA
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
32
|
Zhou T, Zeng J, Zhao T, Zhong Q, Yang Y, Tan W. Enantioselective analysis of bambuterol in human plasma using microwave-assisted chiral derivatization coupled with ultra high performance liquid chromatography and tandem mass spectrometry. J Sep Sci 2017; 40:2779-2790. [DOI: 10.1002/jssc.201700280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Ting Zhou
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Jing Zeng
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Ting Zhao
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | | | - Yang Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou China
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology; Guangzhou Higher Education Mega Center; China
| |
Collapse
|
33
|
Catani M, Ismail OH, Gasparrini F, Antonelli M, Pasti L, Marchetti N, Felletti S, Cavazzini A. Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations. Analyst 2017; 142:555-566. [DOI: 10.1039/c6an02530g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the use of superficially porous particles (SPPs) as chiral stationary phases for ultra-high performance liquid enantioseparations.
Collapse
Affiliation(s)
- Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Omar H. Ismail
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Michela Antonelli
- Department of Drug Chemistry and Technology
- “Sapienza” Università di Roma
- 00185 Roma
- Italy
| | - Luisa Pasti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Nicola Marchetti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences
- University of Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
34
|
Nováková L, Douša M. General screening and optimization strategy for fast chiral separations in modern supercritical fluid chromatography. Anal Chim Acta 2017; 950:199-210. [DOI: 10.1016/j.aca.2016.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/22/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
35
|
Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2016; 1482:32-38. [PMID: 28049582 DOI: 10.1016/j.chroma.2016.12.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Our earlier studies on the preparation of chiral stationary phases (CSP) based on superficially porous (or core-shell) silica (SPS) particles for the separation of enantiomers in HPLC have provided proof to the advantages of such sorbents. In particular, higher enantioselectivity was observed with the columns packed with superficially porous CSP compared to the columns packed with fully-porous (FP) silica-based CSPs at comparable content of chiral selector (polysaccharide derivative) in CSP. Also, less dependence of plate height on mobile phase flow rate and higher plate numbers and resolution calculated per unit time (i.e. speed of separation) were observed with SPS-based CSPs. Thirty years of CSP development have demonstrated that wide-pore silica has to be used as a support for large molecular weight chiral selectors such as the ones based on polysaccharides. In this study the effect of pore size of the core-shell silica support and of other experimental factors on column performance is demonstrated. Reduced plate heights in the range 1.4-1.5 were obtained, as well as highly effective baseline separations of enantiomers were observed with analysis times of less than 15s.
Collapse
|
36
|
Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2016; 1467:163-168. [DOI: 10.1016/j.chroma.2016.08.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022]
|
37
|
Zhang Q, Qi X, Feng C, Tong S, Rui M. Three chiral ionic liquids as additives for enantioseparation in capillary electrophoresis and their comparison with conventional modifiers. J Chromatogr A 2016; 1462:146-52. [DOI: 10.1016/j.chroma.2016.07.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
|
38
|
Ismail OH, Pasti L, Ciogli A, Villani C, Kocergin J, Anderson S, Gasparrini F, Cavazzini A, Catani M. Pirkle-type chiral stationary phase on core–shell and fully porous particles: Are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations? J Chromatogr A 2016; 1466:96-104. [DOI: 10.1016/j.chroma.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
|
39
|
Abstract
The great impact of cardiovascular diseases in human health has led to the development of a huge number of drugs and therapies to improve the treatment of these diseases. Cardiovascular drug analysis in biological fluids constitutes an important challenge for analytical scientists. There is a clear need for reliable methods to carry out both qualitative and quantitative analysis in a short time of analysis. Different problems such as drug monitoring, analysis of metabolites, study of drugs interactions, drugs residues or degradation products, chiral separation, and screening and confirmation of drugs of abuse in doping control must be solved. New trends in sample preparation, instrumental and column technology advances in LC and innovations in MS are described in this work.
Collapse
|
40
|
Patel DC, Breitbach ZS, Wahab MF, Barhate CL, Armstrong DW. Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal Chem 2015; 87:9137-48. [PMID: 25945416 DOI: 10.1021/acs.analchem.5b00715] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A variety of brush-type chiral stationary phases (CSPs) were developed using superficially porous particles (SPPs). Given their high efficiencies and relatively low back pressures, columns containing these particles were particularly advantageous for ultrafast "chiral" separations in the 4-40 s range. Further, they were used in all mobile phase modes and with high flow rates and pressures to separate over 60 pairs of enantiomers. When operating under these conditions, both instrumentation and column packing must be modified or optimized so as not to limit separation performance and quality. Further, frictional heating results in axial thermal gradients of up to 16 °C and radial temperature gradients up to 8 °C, which can produce interesting secondary effects in enantiomeric separations. It is shown that the kinetic behavior of various CSPs can differ from one another as much as they differ from the well-studied C18 reversed phase media. Three additional interesting aspects of this work are (a) the first kinetic evidence of two different chiral recognition mechanisms, (b) a demonstration of increased efficiencies at higher flow rates for specific separations, and
Collapse
Affiliation(s)
- Darshan C Patel
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Zachary S Breitbach
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Chandan L Barhate
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States.,AZYP LLC , 700 Planetarium Place, Arlington, Texas 76019, United States
| |
Collapse
|