1
|
Borsatto JVB, Lanças FM. Recent Trends in Graphene-Based Sorbents for LC Analysis of Food and Environmental Water Samples. Molecules 2023; 28:5134. [PMID: 37446796 DOI: 10.3390/molecules28135134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This review provides an overview of recent advancements in applying graphene-based materials as sorbents for liquid chromatography (LC) analysis. Graphene-based materials are promising for analytical chemistry, including applications as sorbents in liquid chromatography. These sorbents can be functionalized to produce unique extraction or stationary phases. Additionally, graphene-based sorbents can be supported in various materials and have consequently been applied to produce various devices for sample preparation. Graphene-based sorbents are employed in diverse applications, including food and environmental LC analysis. This review summarizes the application of graphene-based materials in food and environmental water analysis in the last five years (2019 to 2023). Offline and online sample preparation methods, such as dispersive solid phase microextraction, stir bar sorptive extraction, pipette tip solid phase extraction, in-tube solid-phase microextraction, and others, are reviewed. The review also summarizes the application of the columns produced with graphene-based materials in separating food and water components and contaminants. Graphene-based materials have been reported as stationary phases for LC columns. Graphene-based stationary phases have been reported in packed, monolithic, and open tubular columns and have been used in LC and capillary electrochromatography modes.
Collapse
Affiliation(s)
- João V B Borsatto
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| | - Fernando M Lanças
- Laboratory of Chromatography, Institute of Chemistry at Sao Carlos, University of Sao Paulo, P.O. Box 780, São Carlos 13566-590, Brazil
| |
Collapse
|
2
|
Chen L, Yan X, Zhou X, Peng P, Sun Q, Zhao F. Advances in the on-line solid-phase extraction-liquid chromatography-mass spectrometry analysis of emerging organic contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Bai J, Zhu Q, Tang C, Liu J, Yi Y, Bai Q. Synthesis and application of 5 μm monodisperse porous silica microspheres with controllable pore size using polymeric microspheres as templates for the separation of small solutes and proteins by high-performance liquid chromatography. J Chromatogr A 2022; 1675:463165. [PMID: 35623189 DOI: 10.1016/j.chroma.2022.463165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
High-performance liquid chromatography (HPLC) is a powerful tool to separate and analyze complex samples. Monodiseperse porous silica microspheres (MPSMs) have been widely used as column packings in HPLC. However, synthesis of MPSMs with controllable sizes of both particles and pores for the separation of small solutes and proteins in HPLC still remains a challenge. In this paper, an effective and facile approach to prepare MPSMs with controllable particle size and pore size by using porous polymer microspheres as templates is presented. By employing porous PGMA/EDMA microspheres as templates and tetraethyl orthosilicate (TEOS) as the silica source, 5 μm MPSMs with tunable pore sizes were synthesized successfully. The as-prepared MPSMs were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), dynamic laser scattering, and mercury intrusion porosimetry. The results indicated that the MPSMs obtained retained the original size of the polymer templating particles and calcination caused almost no shrinkage. Furthermore, the effects of the pore size of polymer template microspheres, different amino-functionalizations of PGMA/EDMA microspheres and the mass ratio of PGMA/EDMA microspheres/TEOS on the pore size of MPSMs were carefully studied. The results indicated that the pore size of MPSMs was adjusted from 20 to 69 nm by controlling the pore size of the polymer microspheres and the mass ratio of PGMA/EDMA microspheres/TEOS in the sol-gel process. In addition, the amino-functionalization of PGMA/EDMA microspheres with different structure-directing agents, such as (3-aminopropyl)triethoxysilane (APTES), trimethylamine hydrochloride (TMA) and tetraethylenepentamine (TEPA), also resulted in MPSMs with the different pore sizes. MPSMs with large pore sizes of more than 30 nm were fabricated by using TEPA-functionalized PGMA/EDMA microspheres as templates, while with TMA-functionalized PGMA/EDMA microspheres as templates, MPSMs with pore sizes of approximately 10 nm were obtained. The as-prepared MPSMs were further modified with different silanes, such as C4, C8 and C18, to explore as stationary phases for the separation of proteins and small solutes in reversed phase liquidi chromatography (RPLC). The results illustrated that the baseline separation of 7 kinds of proteins could be achieved based on MPSMs with pore sizes of 30 nm, and 6 kinds of alkyl benzenes and 5 kinds of aromatic alcohol homologs could be separated completely based on MPSMs with pore sizes of 11 nm. This work demonstrated that MPSMs prepared by applying the polymer templating method showed a promising potential applicability in HPLC.
Collapse
Affiliation(s)
- Jiangqi Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Qiuyan Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Changwei Tang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China.
| | - Yukun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Laboratory of Modern Separation Science in Shaanxi Province, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Du X, Yuan J, Cao H, Ye L, Ma A, Du J, Pan J. Ultrasound-assisted micellar cleanup coupled with large-volume-injection enrichment for the analysis of polar drugs in blood and zebrafish samples. ULTRASONICS SONOCHEMISTRY 2022; 85:105998. [PMID: 35378462 PMCID: PMC8980499 DOI: 10.1016/j.ultsonch.2022.105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 05/30/2023]
Abstract
A novel ultrasound-assisted micellar cleanup strategy (UAMC) coupled with large volume injection (LVI) high performance liquid chromatography (HPLC) method was proposed and successfully applied to the analysis of cefathiamidine in complex biological samples such as whole blood, plasma, serum and even zebrafish, a challenging positive real sample. Based on the micelle-biomacromolecule interaction, the phase-separation feature of surfactant micelles and ultrasound cavitation, UAMC possessed an impressive matrix cleanup capability and could rapidly reach distribution equilibrium (approximately 2 min), which enabled simultaneous sample cleanup and analyte extraction within 8 min. Due to the high cleanup efficiency of UAMC, large volume of pretreated samples could be injected for analysis without peak broadening, impurity interference and column degradation. Thus, online analyte enrichment could be automatically performed to significantly improve method sensitivity by the column-switching LVI-HPLC system, a commercial HPLC system with small modifications. The UAMC-LVI-HPLC method creatively integrated sample cleanup, analyte extraction and on-column enrichment into simple operation. In addition, the UAMC-LVI-HPLC method enabled non-matrix-matched analysis of cefathiamidine in complex biological samples. This feature was helpful to address the problems caused by conventional matrix-matched or internal standard calibration methods, such as matrix bias, increased workload, limited availability of suitable blank matrices and the use of expensive internal standards. The method had low limits of detections (e.g., 0.0051 mg/L and 0.038 μg/g), wide linear ranges (0.030-100 mg/L and 0.15-489 μg/g), good linear correlation (R2 = 0.9999), satisfactory accuracy (97.6-109.7%) and excellent intra- and interday precision (0.5-4.9%). Thus, UAMC-LVI-HPLC is expected to be a promising candidate for bioanalysis in therapeutic drug monitoring or pharmacokinetic and toxicology studies in the future.
Collapse
Affiliation(s)
- Xiaotong Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Jiahao Yuan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Hongjie Cao
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Li Ye
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Ande Ma
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China
| | - Juan Du
- Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong, China.
| | - Jialiang Pan
- Hygiene Detection Center, School of Public Health, Southern Medical University (NMPA Key Laboratory for Safety Evaluation of Cosmetics), Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Erben J, Klicova M, Klapstova A, Háková M, Lhotská I, Zatrochová S, Šatínský D, Chvojka J. New polyamide 6 nanofibrous sorbents produced via alternating current electrospinning for the on-line solid phase extraction of small molecules in chromatography systems. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
El-Sharif H, Patel S, Ndunda E, Reddy S. Electrochemical detection of dioctyl phthalate using molecularly imprinted polymer modified screen-printed electrodes. Anal Chim Acta 2022; 1196:339547. [DOI: 10.1016/j.aca.2022.339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/01/2022]
|
7
|
Chabalala MB, Gumbi NN, Mamba BB, Al-Abri MZ, Nxumalo EN. Photocatalytic Nanofiber Membranes for the Degradation of Micropollutants and Their Antimicrobial Activity: Recent Advances and Future Prospects. MEMBRANES 2021; 11:membranes11090678. [PMID: 34564496 PMCID: PMC8467043 DOI: 10.3390/membranes11090678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/04/2022]
Abstract
This review paper systematically evaluates current progress on the development and performance of photocatalytic nanofiber membranes often used in the removal of micropollutants from water systems. It is demonstrated that nanofiber membranes serve as excellent support materials for photocatalytic nanoparticles, leading to nanofiber membranes with enhanced optical properties, as well as improved recovery, recyclability, and reusability. The tremendous performance of photocatalytic membranes is attributed to the photogenerated reactive oxygen species such as hydroxyl radicals, singlet oxygen, and superoxide anion radicals introduced by catalytic nanoparticles such as TiO2 and ZnO upon light irradiation. Hydroxyl radicals are the most reactive species responsible for most of the photodegradation processes of these unwanted pollutants. The review also demonstrates that self-cleaning and antimicrobial nanofiber membranes are useful in the removal of microbial species in water. These unique materials are also applicable in other fields such as wound dressing since the membrane allows for oxygen flow in wounds to heal while antimicrobial agents protect wounds against infections. It is demonstrated that antimicrobial activities against bacteria and photocatalytic degradation of micropollutants significantly reduce membrane fouling. Therefore, the review demonstrates that electrospun photocatalytic nanofiber membranes with antimicrobial activity form efficient cost-effective multifunctional composite materials for the removal of unwanted species in water and for use in various other applications such as filtration, adsorption and electrocatalysis.
Collapse
Affiliation(s)
- Mandla B. Chabalala
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
| | - Nozipho N. Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
- State Key Laboratory of Separation Membranes and Membrane Processes, National Centre for International Joint Research on Membrane Science and Technology, Tianjin 300387, China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Mohammed Z. Al-Abri
- Nanotechnology Research Centre, Sultan Qaboos University, P.O. Box 17, Al-Khoudh 123, Oman;
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh 123, Oman
| | - Edward N. Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Roodepoort 1709, South Africa; (M.B.C.); (N.N.G.); (B.B.M.)
- Correspondence: ; Tel.: +27-11-670-9498
| |
Collapse
|
8
|
Xu Y, Wang H, Li X, Zeng X, Du Z, Cao J, Jiang W. Metal-organic framework for the extraction and detection of pesticides from food commodities. Compr Rev Food Sci Food Saf 2020; 20:1009-1035. [PMID: 33443797 DOI: 10.1111/1541-4337.12675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Pesticide residues in food matrices, threatening the survival and development of humanity, is one of the critical challenges worldwide. Metal-organic frameworks (MOFs) possess excellent properties, which include excellent adsorption capacity, tailorable shape and size, hierarchical structure, numerous surface-active sites, high specific surface areas, high chemical stabilities, and ease of modification and functionalization. These promising properties render MOFs as advantageous porous materials for the extraction and detection of pesticides in food samples. This review is based on a brief introduction of MOFs and highlights recent advances in pesticide extraction and detection through MOFs. Furthermore, the challenges and prospects in this field are also described.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Hui Wang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Xiangquan Zeng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Zhenjiao Du
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| |
Collapse
|
9
|
Lai H, Li G, Zhang Z. Advanced materials on sample preparation for safety analysis of aquatic products. J Sep Sci 2020; 44:1174-1194. [DOI: 10.1002/jssc.202000955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Huasheng Lai
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Zhuomin Zhang
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
10
|
Wang Q, Wang X, Wang J, Liu W, Hao L, Zhou J, Wang C, Wu Q, Wang Z. Facile construction of magnetic azobenzene-based framework materials for enrichment and sensitive determination of phenylurea herbicides. J Chromatogr A 2020; 1626:461362. [DOI: 10.1016/j.chroma.2020.461362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
|
11
|
Háková M, Havlíková LC, Švec F, Solich P, Šatínský D. Nanofibers as advanced sorbents for on-line solid phase extraction in liquid chromatography: A tutorial. Anal Chim Acta 2020; 1121:83-96. [PMID: 32493593 DOI: 10.1016/j.aca.2020.04.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Polymers in nanofiber format promise a great potential as sorbents for extraction techniques. This tutorial provides an overview of direct coupling of extraction techniques based on nanofibers to liquid chromatography. Arrangements of the fibers in conventional extraction cartridges are demonstrated. Selection of suitable nanomaterials according to their surface density, wettability, and mechanical stability is proposed and personal experience of the authors commented. Optimization of on-line extraction procedure, practical aspects, technical problems, pitfalls, pros, and cons of using nanofibers for extraction in high-pressure chromatography systems are also discussed and several examples presented. The following text comprehensively summarizes numerous reports that dealt with the topic. Future perspectives of advanced nanofiber materials and approaches that concern polymer fibers modifications are also included.
Collapse
Affiliation(s)
- Martina Háková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Chocholoušová Havlíková
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy, The Department of Analytical Chemistry, Ak. Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
12
|
Saraji M, Mohammadipour L, Mehrafza N. An effective configuration for automated magnetic micro solid-phase extraction of phenylurea herbicides from water samples followed by high-performance liquid chromatography. J Chromatogr A 2020; 1617:460829. [DOI: 10.1016/j.chroma.2019.460829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022]
|
13
|
Polycaprolactone nanofibers functionalized with a dopamine coating for on-line solid phase extraction of bisphenols, betablockers, nonsteroidal drugs, and phenolic acids. Mikrochim Acta 2019; 186:710. [DOI: 10.1007/s00604-019-3846-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
|
14
|
Multichannel separation device with parallel electrochemical detection. J Chromatogr A 2019; 1610:460537. [PMID: 31537305 DOI: 10.1016/j.chroma.2019.460537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
Abstract
A device with four parallel channels was designed and manufactured by 3D printing in titanium. A simple experimental setup allowed splitting of the mobile phase in four parallel streams, such that a single sample could be analysed four times simultaneously. The four capillary channels were filled with a monolithic stationary phase, prepared using a zwitterionic functional monomer in combination with various dimethacrylate cross-linkers. The resulting stationary phases were applicable in both reversed-phase and hydrophilic-interaction retention mechanisms. The mobile-phase composition was optimized by means of a window diagram so as to obtain the highest possible resolution of dopamine precursors and metabolites on all columns. Miniaturized electrochemical detectors with carbon fibres as working electrodes and silver micro-wires as reference electrodes were integrated in the device at the end of each column. Experimental separations were successfully compared with those predicted by a three-parameter retention model. Finally, dopamine was determined in human urine to further confirm applicability of the developed device.
Collapse
|
15
|
Wang PL, Xie LH, Joseph EA, Li JR, Su XO, Zhou HC. Metal-Organic Frameworks for Food Safety. Chem Rev 2019; 119:10638-10690. [PMID: 31361477 DOI: 10.1021/acs.chemrev.9b00257] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Food safety is a prevalent concern around the world. As such, detection, removal, and control of risks and hazardous substances present from harvest to consumption will always be necessary. Metal-organic frameworks (MOFs), a class of functional materials, possess unique physical and chemical properties, demonstrating promise in food safety applications. In this review, the synthesis and porosity of MOFs are first introduced by some representative examples that pertain to the field of food safety. Following that, the application of MOFs and MOF-based materials in food safety monitoring, food processing, covering preservation, sanitation, and packaging is overviewed. Future perspectives, as well as potential opportunities and challenges faced by MOFs in this field will also be discussed. This review aims to promote the development and progress of MOF chemistry and application research in the field of food safety, potentially leading to novel solutions.
Collapse
Affiliation(s)
- Pei-Long Wang
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China.,Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Elizabeth A Joseph
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , P. R. China
| | - Xiao-Ou Su
- Institute of Quality Standards and Testing Technology for Agro-products , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry , Texas A&M University , P.O. Box 30012, College Station , Texas 77842-3012 , United States
| |
Collapse
|
16
|
Lu YY, Chen JF, Song JY, Du ZY, Wang JL, Qian Y, Jiang Y, Guo XY, Tu PF. Pharmacokinetics study of 16 representative components from Baoyuan Decoction in rat plasma by LC-MS/MS with a large-volume direct injection method. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:148-157. [PMID: 30668317 DOI: 10.1016/j.phymed.2018.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/22/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Baoyuan decoction (BYD), a well-known traditional Chinese medicine (TCM) formula, is clinically used for the treatment of aplastic anemia, chronic renal failure, coronary heart disease, etc. PURPOSE: The purpose of this study was to develop a large-volume direct injection liquid chromatography-mass spectrometry (LC-MS) method for simultaneous determination of 16 representative flavonoids and saponins in rat plasma after oral administration of BYD. METHODS The rat plasma sample was injected directly into a pre-column, which was eluted firstly by 0.05% formic acid in water. Then, the accumulated components were eluted from the pre-column and transferred into a Waters BEH C18 column with acetonitrile and water system (contain 0.05% formic acid) as the mobile phase at a rate of 0.3 ml/min. The detection was accomplished in a negative mode using the schedule multiple-reaction monitoring (sMRM). RESULTS The correlation coefficients for calibration curves were all higher than 0.9920 for formononetin, ononin, calycosin, liquiritigenin, isoliquiritigenin, glycyrrhizic acid, glycyrrhetinic acid, liquiritin, isoliquiritin, liquiritin apioside, isoliquiritin apioside, ginsenoside Rb1, ginsenoside Re, ginsenoside Rd, ginsenoside Rg1 and astragaloside. The intra- and inter-day precisions (RSD) and accuracy (RE) for the investigated components were in the range of -10.9 to 13.7%. The average recoveries were in the range of 75.7-108.6%. This method was successfully applied to investigate the pharmacokinetics of 16 compounds of BYD in rats. The absorption and elimination rates of the representative saponins were significantly slower than most of the targeted-flavonoids after oral administration of BYD in rats. CONCLUSION The results demonstrated that the large-volume direct injection LC-MS method provided a rapid and efficient approach for multi-components pharmacokinetics of TCM.
Collapse
Affiliation(s)
- Ying-Yuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jin-Yang Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhi-Yong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jin-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yi Qian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|
17
|
Electrospun nanofiber polymers as extraction phases in analytical chemistry – The advances of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Application of magnetic N-doped carbon nanotubes in solid-phase extraction of trace bisphenols from fruit juices. Food Chem 2018; 269:413-418. [DOI: 10.1016/j.foodchem.2018.07.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 01/19/2023]
|
19
|
Háková M, Havlíková LC, Chvojka J, Švec F, Solich P, Šatínský D. Nanofiber polymers as novel sorbents for on-line solid phase extraction in chromatographic system: A comparison with monolithic reversed phase C18 sorbent. Anal Chim Acta 2018; 1018:26-34. [DOI: 10.1016/j.aca.2018.02.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
|
20
|
Háková M, Chocholoušová Havlíková L, Chvojka J, Solich P, Šatínský D. An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography – A case study on the determination of bisphenol A in environmental water samples. Talanta 2018; 178:141-146. [DOI: 10.1016/j.talanta.2017.08.098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
21
|
Lhotská I, Holznerová A, Solich P, Šatínský D. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography. J Sep Sci 2017; 40:4599-4609. [DOI: 10.1002/jssc.201700940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ivona Lhotská
- The Department of Analytical Chemistry, Faculty of Pharmacy; Charles University; Heyrovského Czech Republic
| | - Anežka Holznerová
- The Department of Analytical Chemistry, Faculty of Pharmacy; Charles University; Heyrovského Czech Republic
| | - Petr Solich
- The Department of Analytical Chemistry, Faculty of Pharmacy; Charles University; Heyrovského Czech Republic
| | - Dalibor Šatínský
- The Department of Analytical Chemistry, Faculty of Pharmacy; Charles University; Heyrovského Czech Republic
| |
Collapse
|
22
|
de Faria HD, Rosa MA, Silveira AT, Figueiredo EC. Direct extraction of tetracyclines from bovine milk using restricted access carbon nanotubes in a column switching liquid chromatography system. Food Chem 2017; 225:98-106. [DOI: 10.1016/j.foodchem.2017.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 11/16/2022]
|
23
|
García de Llasera MP, García-Cicourel AR. On-line SPE chromatography with spectrophotometric diode array detection as a simple and advantageous choice for the selective trace analysis of benzo(a)anthracene degradation products from microalgae. Talanta 2017; 165:584-592. [DOI: 10.1016/j.talanta.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/13/2022]
|
24
|
Column switching UHPLC–MS/MS with restricted access material for the determination of CNS drugs in plasma samples. Bioanalysis 2017; 9:555-568. [DOI: 10.4155/bio-2016-0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Polypharmacy is a common practice in schizophrenia. Consequently, therapeutic drug monitoring is usually adopted to maintain the concentrations of the drugs in the plasma within a targeted therapeutic range, to maximize therapeutic efficiency and to diminish adverse side effects. Methodology: This study reports on a column switching UHPLC–MS/MS method to determine psychotropic drugs in plasma samples simultaneously. Results: The method was linear from 0.025 to 1.25 ng ml-1 with R2 above 0.9950 and the lack of fit test (p > 0.05). The precision values presented coefficients of variation lower than 12%, and the relative standard error of the accuracy were lower than 14%. Conclusion: The column switching UHPLC–MS/MS method developed herein successfully determined drugs in schizophrenic patients’ plasma samples for therapeutic drug monitoring.
Collapse
|
25
|
Schulze T, Ahel M, Ahlheim J, Aït-Aïssa S, Brion F, Di Paolo C, Froment J, Hidasi AO, Hollender J, Hollert H, Hu M, Kloß A, Koprivica S, Krauss M, Muz M, Oswald P, Petre M, Schollée JE, Seiler TB, Shao Y, Slobodnik J, Sonavane M, Suter MJF, Tollefsen KE, Tousova Z, Walz KH, Brack W. Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:350-358. [PMID: 28062104 DOI: 10.1016/j.scitotenv.2016.12.140] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 05/10/2023]
Abstract
The implementation of targeted and nontargeted chemical screening analysis in combination with in vitro and organism-level bioassays is a prerequisite for a more holistic monitoring of water quality in the future. For chemical analysis, little or no sample enrichment is often sufficient, while bioanalysis often requires larger sample volumes at a certain enrichment factor for conducting comprehensive bioassays on different endpoints or further effect-directed analysis (EDA). To avoid logistic and technical issues related to the storage and transport of large volumes of water, sampling would benefit greatly from onsite extraction. This study presents a novel onsite large volume solid phase extraction (LVSPE) device tailored to fulfill the requirements for the successful effect-based and chemical screening of water resources and complies with available international standards for automated sampling devices. Laboratory recovery experiments using 251 organic compounds in the log D range from -3.6 to 9.4 (at pH7.0) spiked into pristine water resulted in acceptable recoveries and from 60 to 123% for 159 out of 251 substances. Within a European-wide demonstration program, the LVSPE was able to enrich compounds in concentration ranges over three orders of magnitude (1ngL-1 to 2400ngL-1). It was possible to discriminate responsive samples from samples with no or only low effects in a set of six different bioassays (i.e. acetylcholinesterase and algal growth inhibition, androgenicity, estrogenicity, fish embryo toxicity, glucocorticoid activity). The LVSPE thus proved applicable for onsite extraction of sufficient amounts of water to investigate water quality thoroughly by means of chemical analysis and effect-based tools without the common limitations due to small sample volumes.
Collapse
Affiliation(s)
- Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Marijan Ahel
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Jörg Ahlheim
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Carolina Di Paolo
- RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Jean Froment
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway; Department of Chemistry, University of Oslo (UiO), PO Box 1033, Blindern, N-0316 Oslo, Norway
| | - Anita O Hidasi
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - Juliane Hollender
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, 8600 Dubendorf, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zurich, Switzerland
| | - Henner Hollert
- RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Meng Hu
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Anett Kloß
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sanja Koprivica
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Melis Muz
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Peter Oswald
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Margit Petre
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jennifer E Schollée
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, 8600 Dubendorf, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zurich, Switzerland
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Ying Shao
- RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| | - Jaroslav Slobodnik
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Manoj Sonavane
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Marc J-F Suter
- Eawag: Swiss Federal Institute for Aquatic Science and Technology, 8600 Dubendorf, Switzerland
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), PO Box 5003, N-1432 Ås, Norway
| | - Zuzana Tousova
- MAXX Mess- u. Probenahmetechnik GmbH, Hechinger Straße 41, 72414 Rangendingen, Germany; Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Karl-Heinz Walz
- MAXX Mess- u. Probenahmetechnik GmbH, Hechinger Straße 41, 72414 Rangendingen, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Department of Ecosystem Analyses, Institute for Environmental Research, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
26
|
Lin S, Zhang Y, Huang W, Dong X. Preparation of a monolithic cation-exchange material with hydrophilic external layers by two-step reversible addition-fragmentation chain transfer polymerization. J Sep Sci 2017; 40:1694-1702. [PMID: 28217862 DOI: 10.1002/jssc.201601372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/07/2022]
Abstract
In recent years, the efficient analysis of biological samples has become more important due to the advances of life science and pharmaceutical research and practice. Because biological sample pretreatment is the bottleneck for fast process, material development for efficient sample process in the high-performance liquid chromatography analysis is highly desirable. In this research, a cation-exchange restricted access monolithic column was synthesized by a reversible addition-fragmentation chain transfer polymerization method. Utilizing the controlled/living property of the reversible addition-fragmentation chain transfer method, a monolithic column of cross-linked poly(sulfopropyl methacrylate) was prepared first and then linear poly(glycerol mono-methacrylate) was immobilized covalently on the surface of the polymer. The monolithic material has both functionalities of cation-exchange and protein exclusion. Protein recovery of 94.6% was obtained after grafting of poly(glycerol mono-methacrylate) while the cation-exchange property of the column is still retained. In the study, the relation between the synthetic conditions and properties of the materials was studied. The synthesis conditions including the porogen, monomer concentration, and ratio of monomers/initiator/reversible addition-fragmentation chain transfer agent were optimized. The study provided a method for the preparation of restricted access monolithic columns: a bifunctional material by reversible addition-fragmentation chain transfer polymerization method.
Collapse
Affiliation(s)
- Shen Lin
- Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Yingying Zhang
- Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Wei Huang
- Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| | - Xiangchao Dong
- Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Fumes BH, Andrade MA, Franco MS, Lanças FM. On-line approaches for the determination of residues and contaminants in complex samples. J Sep Sci 2016; 40:183-202. [DOI: 10.1002/jssc.201600867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Bruno Henrique Fumes
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Mariane Aissa Andrade
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Maraíssa Silva Franco
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| | - Fernando Mauro Lanças
- Institute of Chemistry of São Carlos; University of São Paulo, São Carlos; SP Brasil
| |
Collapse
|
28
|
Magnetic metal–organic framework–titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. J Chromatogr A 2016; 1466:21-8. [DOI: 10.1016/j.chroma.2016.08.066] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 01/04/2023]
|
29
|
Serio N, Roque J, Badwal A, Levine M. Rapid and efficient pesticide detection via cyclodextrin-promoted energy transfer. Analyst 2016; 140:7503-7. [PMID: 26436147 DOI: 10.1039/c5an01471a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclodextrins facilitate non-covalent fluorescence energy transfer from a variety of pesticides to high quantum-yield fluorophores, resulting in a rapid, sensitive detection scheme for these compounds with detection limits as low as two micromolar. Such a facile detection tool has significant potential applications in agriculture and public health research.
Collapse
Affiliation(s)
- Nicole Serio
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - John Roque
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - Andrew Badwal
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 51 Lower College Road, Kingston, RI 02881, USA.
| |
Collapse
|
30
|
Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages. J Chromatogr A 2016; 1442:53-61. [DOI: 10.1016/j.chroma.2016.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 01/14/2023]
|
31
|
A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE–HPLC for determination of ochratoxin A and citrinin in lager beers. Anal Bioanal Chem 2016; 408:3319-29. [DOI: 10.1007/s00216-016-9402-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
32
|
Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene. Talanta 2015; 144:559-68. [DOI: 10.1016/j.talanta.2015.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
|
33
|
On-line coupling of Micro-Extraction by Packed Sorbent with Sequential Injection Chromatography system for direct extraction and determination of betaxolol in human urine. Talanta 2015; 143:132-137. [DOI: 10.1016/j.talanta.2015.05.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
|
34
|
Šatínský D, Naibrtová L, Fernández-Ramos C, Solich P. An on-line SPE–HPLC method for effective sample preconcentration and determination of fenoxycarb and cis, trans-permethrin in surface waters. Talanta 2015; 142:124-30. [DOI: 10.1016/j.talanta.2015.04.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
|
35
|
Biocompatible chiral monolithic stationary phase synthesized via atom transfer radical polymerization for high performance liquid chromatographic analysis. J Chromatogr A 2015. [DOI: 10.1016/j.chroma.2015.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Zhao J, Liao W, Yang Y. Magnetic solid-phase extraction for determination of sulpiride in human urine and blood using high-performance liquid chromatography. Biomed Chromatogr 2015; 29:1871-7. [DOI: 10.1002/bmc.3509] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Jiao Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
- Faculty of Environmental Science and Engineering; Kunming University of Science and Technology; Kunming 650500 China
| | - Wenlong Liao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| | - Yaling Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming 650500 China
| |
Collapse
|