1
|
Capaldi G, Voss M, Tabasso S, Stefanetti V, Branciari R, Chaji S, Grillo G, Cravotto C, Tagliazucchi D, Fiego DPL, Marinucci MT, Roila R, Natalello A, Pravettoni D, Cravotto G, Forte C. Upgrading hazelnut skins: Green extraction of polyphenols from lab to semi-industrial scale. Food Chem 2025; 463:140999. [PMID: 39316937 DOI: 10.1016/j.foodchem.2024.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Hazelnut skins (HS) are usually managed as waste; however, this by-product is a source of bioactive compounds, with potential applications in feed and food sectors. Phenolic compounds can be extracted using green protocols combining enabling technologies and green solvents. This work investigates subcritical water extraction (SWE) of bioactive compounds from HS. A laboratory-scale study was performed on four different batches, with significant batch-to-batch heterogeneity. The evaluation of polyphenolic profiles and antioxidant activities afforded promising results compared to the benchmark of reflux maceration. To evaluate process effectiveness, the extraction protocol was replicated on a semi-industrial plant that processed 8 kg of matrix. Downstream processes have been optimized for scale-up, demonstrating the effectiveness of SWE in retaining product concentration and bioactivity avoiding excipients in spray-drying phase. Hazelnut extracts exhibited antibacterial properties against animal- and food-borne pathogens, supporting their potential use as sustainable feed ingredients for improved hazelnut production and animal farming practices.
Collapse
Affiliation(s)
- Giorgio Capaldi
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Monica Voss
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| | - Silvia Tabasso
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy.
| | - Valentina Stefanetti
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy; Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, Rome, Italy
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy
| | - Salah Chaji
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Giorgio Grillo
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Christian Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Amendola 2, Reggio Emilia I-42122, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Amendola 2, Reggio Emilia I-42122, Italy
| | | | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, Perugia 06126, Italy
| | - Antonio Natalello
- Department Di3A, University of Catania, via Valdisavoia 5, Catania 95123, Italy
| | - Davide Pravettoni
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Claudio Forte
- Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy
| |
Collapse
|
2
|
Baek SH, Lee JW, Ho TC, Park Y, Ata SM, Yun HJ, Gang G, Getachew AT, Chun BS, Lee SG, Cao L. A comparative study of extraction methods for recovery of bioactive components from brown algae Sargassum serratifolium. Food Sci Biotechnol 2025; 34:237-244. [PMID: 39758719 PMCID: PMC11695544 DOI: 10.1007/s10068-024-01649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 01/07/2025] Open
Abstract
Species of Sargassum genus are known to be rich sources of bioactive compounds. However, there is a lack of studies comparing extraction methods for these bioactive components. This study aimed to compare the total phenolic contents, total antioxidant capacity, tyrosinase inhibitory effect, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), two algal meroterpenoids, of Sargassum serratifolium extracts acquired by different extraction methods. The methods employed in this study included conventional solid-liquid extraction using methanol (SME), supercritical fluid extraction using CO2 with ethanol as a co-solvent (SC-CO2 + ethanol), and pressurized liquid extraction (PLE) at two temperatures (25 and 100 °C). PLE at 100 °C (PLE100) exhibited the highest total yield, total phenolic content, total antioxidant capacity and tyrosinase inhibitory activity. Notably, SME resulted in the highest recovery of both SHQA and SCM. Compared to SME, PLE100 exhibited a two-fold increase in antioxidant capacity but a minimal increase in phenolic content.
Collapse
Affiliation(s)
- Su Hyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., Yangsan-si, Gyeongsangnam-do Korea
| | - Yena Park
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Shymaa M. Ata
- Department of Home Economics, School of Specific Education, Menofia University, Menofia, Egypt
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Korea
| |
Collapse
|
3
|
Lopes A, Correia-Sá L, Vieira M, Delerue-Matos C, Soares C, Grosso C. Sustainable Carotenoid Extraction from Macroalgae: Optimizing Microwave-Assisted Extraction Using Response Surface Methodology. Life (Basel) 2024; 14:1573. [PMID: 39768280 PMCID: PMC11676899 DOI: 10.3390/life14121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study aimed at optimizing carotenoid extraction using the macroalga Himanthalia elongata (L.) S.F.Gray as a model. Firstly, traditional extraction procedures were employed, using various solvents and temperatures to enhance the extraction conditions. Once the most effective extraction conditions were identified, the study transitioned to a more efficient and environmentally friendly approach, microwave-assisted extraction (MAE). By applying a three-parameter (solid-to-solvent ratio, temperature, and time) Box-Behnken design, the optimal extraction conditions were found to be a solid-to-solvent ratio of 1/13.6 g/mL at 60 °C for 15 min. Under these conditions, the predicted and experimental carotenoid contents were 2.94 and 2.12 µg/mL, respectively. Furthermore, an HPLC-DAD method was developed and validated for the characterization of carotenoids. β-Carotene was the predominant carotenoid in H. elongata, alongside fucoxanthin. The optimized MAE method was applied to other seaweeds, including Fucus vesiculosus L., Codium tomentosum Stackhouse, Gracilaria gracilis (Stackhouse) Steentoft, L.M.Irvine & Farnham, and Eiseinia bicyclis (Kjellman) Setchell. Among all, F. vesiculosus exhibited the highest carotenoid content compared to the others. This study concludes that MAE under optimized conditions is an effective and sustainable approach for carotenoid extraction, providing significant yields of bioactive compounds such as β-carotene and fucoxanthin, which have promising applications in enhancing human health and nutrition.
Collapse
Affiliation(s)
- Andreia Lopes
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
| | - Luísa Correia-Sá
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Mónica Vieira
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal;
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Cristina Soares
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.L.); (L.C.-S.); (C.D.-M.)
| |
Collapse
|
4
|
Zhou J, Wang M, Grimi N, Dar BN, Calvo-Lerma J, Barba FJ. Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr 2024; 64:11375-11395. [PMID: 37489924 DOI: 10.1080/10408398.2023.2237586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Microalgae contain a diverse range of high-value compounds that can be utilized directly or fractionated to obtain components with even greater value-added potential. With the use of microalgae for food and medical purposes, there is a growing interest in their digestive properties and impact on human gut health. The extraction, separation, and purification of these components are key processes in the industrial application of microalgae. Innovative technologies used to extract and purify microalgal high-added-value compounds are key for their efficient utilization and evaluation. This review's comprehensive literature review was performed to highlight the main high-added-value microalgal components. The technologies for obtaining bioactive compounds from microalgae are being developed rapidly, various innovative, efficient, green separation and purification technologies are emerging, thus helping in the scaling-up and subsequent commercialization of microalgae products. Finally, the digestive behavior of microalgae nutrients and their health effects on the human gut microbiota were discussed. Microalgal nutrients exhibit favorable digestive properties and certain components have been shown to benefit gut microbes. The reality that must be faced is that multiple processes are still required for microalgae raw materials to final usable products, involving energy, time consumption and loss of ingredients, which still face challenges.
Collapse
Affiliation(s)
- Jianjun Zhou
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Min Wang
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, València, Spain
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, Compiègne, France
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Kashmir, India
| | - Joaquim Calvo-Lerma
- Instituto Universitario de Ingeniería para el Desarrollo (IU-IAD), Universitat Politècnica de València, Valencia, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
5
|
Ali MS, Roy VC, Park JS, Haque AR, Mok JH, Zhang W, Chun BS. Protein and Polysaccharide Recovery from Shrimp Wastes by Natural Deep Eutectic Solvent Mediated Subcritical Water Hydrolysis for Biodegradable Film. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:876-890. [PMID: 38700616 DOI: 10.1007/s10126-024-10321-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2024] [Indexed: 10/17/2024]
Abstract
Environmental pollution is a significant problem due to the improper disposal of plastics and shrimp shells outdoors. Therefore, the synthesis of biodegradable film from waste materials is highly important. The novelty of this research lies in the extraction of protein hydrolysates and chitosan from shrimp shells, as well as the fabrication of biodegradable film from these materials. In this study, the composite films were produced using the solution casting method. Moreover, the combined effect of ultrasound pretreatments (UPT) and natural deep eutectic solvents (NADES) was investigated as extraction media, to determine their potential impact on shrimp waste subcritical water hydrolysis (SWH). Shrimp shells were submitted to UPT in NADES solution, followed by SWH at different temperatures ranging from 150 to 230 °C under 3 MPa for 20 min. Then, the physiochemical properties and bioactivities of the hydrolysates were assessed to determine their suitability for use in biodegradable packaging films. Additionally, the physiochemical properties and bioactivities of the resulting hydrolysates were also analyzed. The highest amount of protein (391.96 ± 0.48 mg BSA/g) was obtained at 190 °C/UPT/NADES, and the average molecular size of the protein molecules was less than 1000 Da with different kinds of peptide. Overall, combined UPT and SWH treatments yielded higher antioxidant activity levels than individual treatments. Finally, the application of composite films was evaluated by wrapping fish samples and assessing their lipid oxidation. The use of higher concentrations of protein hydrolysates significantly delayed changes in the samples, thereby demonstrating the film's applicability.
Collapse
Affiliation(s)
- Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Vikash Chandra Roy
- Institute of Food Science, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
- Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Ahmed Redwan Haque
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
6
|
Mitsikaris PD, Kostas S, Mourtzinos I, Menkissoglu-Spiroudi U, Papadopoulos A, Kalogiouri NP. Investigation of Rosa species by an optimized LC-QTOF-MS/MS method using targeted and non-targeted screening strategies combined with multivariate chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1100-1111. [PMID: 38439140 DOI: 10.1002/pca.3345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Plants of the Rosa genus are renowned for their pronounced and pleasant aroma and colors. OBJECTIVE The aim of this work was to develop a novel liquid chromatographic triple quadrupole time-of-flight tandem mass spectrometric (LC-QTOF-MS/MS) method for the investigation of the bioactive fingerprint of petals of different genotypes belonging to Rosa damascena and Rosa centifolia species. METHODOLOGY Central composite design (CCD) of response surface methodology (RSM) was used for the optimization of the LC-QTOF-MS/MS method. The method was validated and target, suspect, and non-target screening workflows were applied. Statistical analysis and chemometric tools were utilized to explore the metabolic fingerprint of the Rosa species. RESULTS RSM revealed that the optimal extraction parameters involved mixing 11 mg of sample with 1 mL of MeOH:H2O (70:30, v/v). Target analysis confirmed the presence of 11 analytes, all of which demonstrated low limits of quantification (LOQs; as low as 0.048 ng mg-1) and sufficient recoveries (RE: 85%-107%). In total, 28 compounds were tentatively identified through suspect analysis. Non-target analysis enabled the generation of robust OPLS-DA and HCA models that classified the samples according to their species with 100% accuracy. CONCLUSIONS A novel LC-QTOF-MS/MS method was developed and applied in the analysis of 47 R. centifolia and R. damascena flowers belonging to different genotypes.
Collapse
Affiliation(s)
- Petros D Mitsikaris
- Department of Nutritional Sciences and Dietetics, Laboratory of Chemical Biology, International Hellenic University, Thessaloniki, Greece
| | - Stefanos Kostas
- School of Agriculture, Laboratory of Floriculture, Aristotle University, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- School of Agriculture, Laboratory of Food Science and Technology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Faculty of Agriculture Forestry and Natural Environment, School of Agriculture, Pesticide Science Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Papadopoulos
- Department of Nutritional Sciences and Dietetics, Laboratory of Chemical Biology, International Hellenic University, Thessaloniki, Greece
| | - Natasa P Kalogiouri
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Matić M, Stupar A, Pezo L, Đerić Ilić N, Mišan A, Teslić N, Pojić M, Mandić A. Eco-Friendly Extraction: A green approach to maximizing bioactive extraction from pumpkin ( Curcubita moschata L.). Food Chem X 2024; 22:101290. [PMID: 38586223 PMCID: PMC10998083 DOI: 10.1016/j.fochx.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
The research focused on optimizing the accelerated solvent extraction (ASE) of carotenoids and polyphenols from pumpkin powder. The study optimized accelerated solvent extraction (ASE) of carotenoids and polyphenols from pumpkin powder. Using a mix of standard score (SS) and artificial neural network (ANN) methods, the extraction process was fine-tuned. The ANN model assessed extraction parameters' significance, achieving high predictability for total carotenoid content (TCC), total phenolic content (TPC), and free radical scavenging capacity (DPPH and ABTS methods). The analysis highlighted the most effective extraction at 50 % concentration, 120 °C temperature, 5 min duration, and 2 cycles, yielding high carotenoid and phenolic content (TCC 571.49 µg/g, TPC 7.85 mg GAE/g). HPLC-DAD profiles of the optimized ASE extract confirmed major carotenoids and phenolic compounds. Strong correlations were found between bioactive compounds and antioxidant activity, emphasizing potential health benefits.
Collapse
Affiliation(s)
- Milana Matić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Alena Stupar
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12/V, 11000 Belgrade, Serbia
| | - Nataša Đerić Ilić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Aleksandra Mišan
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Anamarija Mandić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Herrero M. Towards green extraction of bioactive natural compounds. Anal Bioanal Chem 2024; 416:2039-2047. [PMID: 37787854 PMCID: PMC10951045 DOI: 10.1007/s00216-023-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The increasing interest in natural bioactive compounds is pushing the development of new extraction processes that may allow their recovery from a variety of different natural matrices and biomasses. These processes are clearly sought to be more environmentally friendly than the conventional alternatives that have traditionally been used and are closely related to the 6 principles of green extraction of natural products. In this trend article, the most critical aspects regarding the current state of this topic are described, showing the different lines followed to make extraction processes greener, illustrated by relevant examples. These include the implementation of new extraction technologies, the research on new bio-based solvents, and the development of new sequential process and biorefinery approaches to produce a full valorization of the natural sources. Moreover, the future outlook in the field is presented, in which the main areas of evolution are identified and discussed.
Collapse
Affiliation(s)
- Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research-CIAL (CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Lijassi I, Arahou F, El Habacha G, Wahby A, Benaich S, Rhazi L, Arahou M, Wahby I. Optimization and Characterization of Spirulina and Chlorella Hydrolysates for Industrial Application. Appl Biochem Biotechnol 2024; 196:1255-1271. [PMID: 37382791 DOI: 10.1007/s12010-023-04596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Chlorella and Spirulina are the most used microalgae mainly as powder, tablets, or capsules. However, the recent change in lifestyle of modern society encouraged the emergence of liquid food supplements. The current work evaluated the efficiency of several hydrolysis methods (ultrasound-assisted hydrolysis UAH, acid hydrolysis AH, autoclave-assisted hydrolysis AAH, and enzymatic hydrolysis EH) in order to develop liquid dietary supplements from Chlorella and Spirulina biomasses. Results showed that, EH gave the highest proteins content (78% and 31% for Spirulina and Chlorella, respectively) and also increased pigments content (4.5 mg/mL of phycocyanin and 12 µg/mL of carotenoids). Hydrolysates obtained with EH showed the highest scavenging activity (95-91%), allowing us, with the other above features, to propose this method as convenient for liquid food supplements development. Nevertheless, it has been shown that the choice of hydrolysis method depended on the vocation of the product to be prepared.
Collapse
Affiliation(s)
- Ibtissam Lijassi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco.
| | - Fadia Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Ghizlane El Habacha
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Anass Wahby
- Laboratory of Water, Studies and Environmental Analysis, FLP, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Souad Benaich
- Physiology and Physiopathology Research Team, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Laila Rhazi
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Moustapha Arahou
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Imane Wahby
- Research Center of Plant & Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| |
Collapse
|
10
|
Strieder MM, Sanches VL, Rostagno MA. Simultaneous extraction, separation, and analysis of 5-caffeoylquinic acid and caffeine from coffee co-product by PLE-SPE × HPLC-PDA two-dimensional system. Food Res Int 2024; 175:113690. [PMID: 38129032 DOI: 10.1016/j.foodres.2023.113690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
This study proposed an integrated and automated procedure to extract, separate, and quantify bioactive compounds from a coffee co-product by pressurized liquid extraction (PLE) coupled inline with solid phase extraction (SPE) and online with HPLC-PDA (PLE-SPE × HPLC-PDA). The efficiency of the two-dimensional system in performing real-time analysis was verified by comparing HPLC-PDA results acquired by the system (online) and carried out after the extract fraction collection (offline). Different flow rates (1.5 mL/min for 336 min, 2 mL/min for 246.4 min, and 2.5 mL/min for 201.6 min) were evaluated to optimize the extraction, separation, and analysis method by PLE-SPE × HPLC-PDA. Subcritical water at 125 °C and 15 min of static time allowed the highest extraction yields of caffeine and 5-caffeoylquinic acid (5-CQA). Caffeine was retained during the aqueous extraction in the SPE adsorbent and eluted from the column by exchanging the solvent for a hydroethanolic mixture. Thus, caffeine was separated from 5-CQA and other phenolic compounds, producing extracts with different compositions. The solvent flow rate did not have a significant effect (p-value ≥ 0.05) on the extraction, separation, and analysis (by online and offline methods) of 5-CQA. However, the online quantification of retained compounds in the SPE (i.e., caffeine) can underestimate concentration compared to offline analysis. Nevertheless, the results suggest that coupling of advanced techniques can be used to efficiently extract, separate, and analyze fractions of phenolic compounds, supplying an integrated method to produce high-added value ingredients for several applications.
Collapse
Affiliation(s)
- Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Vitor Lacerda Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, São Paulo, Brazil
| | - Maurício Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, São Paulo, Brazil.
| |
Collapse
|
11
|
Mohammadnezhad P, Valdés A, Barrientos RE, Ibáñez E, Block JM, Cifuentes A. A Comprehensive Study on the Chemical Characterization and Neuroprotective Evaluation of Pracaxi Nuts Extracts Obtained by a Sustainable Approach. Foods 2023; 12:3879. [PMID: 37893772 PMCID: PMC10606833 DOI: 10.3390/foods12203879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The Amazonian Pentaclethra macroloba (Willd.) Kuntze nuts contain a lipidic fraction with health-promoting effects, but little is known about the bioactivity of other constituents. In this study, the lipidic fraction obtained using supercritical fluid extraction (SFE) with CO2 was chemically characterized by using lipidomics techniques. The SFE-CO2 residue, named as pracaxi cake, was re-extracted by pressurized liquid extraction following a biorefinery approach. Using a response surface methodology and based on the extraction yield and different in vitro assays, two optimum conditions were obtained: 80% and 12.5% of ethanol at 180 °C. Under these conditions, extraction yield and different in vitro measurements related to neuroprotection were assessed. Chemical characterization of these extracts suggested the presence of triterpenoid saponins and spermidine phenolamides, which were not previously reported in pracaxi nuts. These results suggest that pracaxi oil extraction by-products are a valuable source of bioactive compounds with neuroprotective potential.
Collapse
Affiliation(s)
- Pouya Mohammadnezhad
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (P.M.); (E.I.); (A.C.)
| | - Alberto Valdés
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (P.M.); (E.I.); (A.C.)
| | - Ruth E. Barrientos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Elena Ibáñez
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (P.M.); (E.I.); (A.C.)
| | - Jane Mara Block
- Graduate Program in Food Science, Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis 88034-001, Brazil;
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolas Cabrera 9, 28049 Madrid, Spain; (P.M.); (E.I.); (A.C.)
| |
Collapse
|
12
|
Zhang F, Chen S, Zhang J, Thakur K, Battino M, Cao H, Farag MA, Xiao J, Wei Z. Asparagus saponins: effective natural beneficial ingredient in functional foods, from preparation to applications. Crit Rev Food Sci Nutr 2023; 64:12284-12302. [PMID: 37615648 DOI: 10.1080/10408398.2023.2249097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Asparagus species is recognized as a perennial herb with several valuable functional ingredients, and has been widely used as medicine and food since ancient times. Among its main chemical constituents, saponins play a vital role in the health benefits and biological activities including anti-cancer, antioxidant, immunomodulatory, anti-microbial, anti-inflammatory, and hypoglycemic. This review summarizes the preparation methods, structure and classification, biological functions, as well as the food and non-food applications of asparagus saponins, with a special emphasis on its anti-cancer effects in vitro and in vivo. Further, the main challenges and limitations of the current research trends in asparagus saponins are highlighted after a detailed analysis of the recent research information. This review bridges the gap between bioactive components and human health and aids current research on functional and health-promoting foods and medicinal application of Asparagus saponins.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Sciences, Anhui Normal University, Wuhu, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Shengxiong Chen
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Jianguo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, Santander, Spain
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaojun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
13
|
Nardella F, Prothmann J, Sandahl M, Spégel P, Ribechini E, Turner C. Native lignin extraction from soft- and hardwood by green and benign sub/supercritical fluid extraction methodologies. RSC Adv 2023; 13:21945-21953. [PMID: 37483673 PMCID: PMC10357412 DOI: 10.1039/d3ra01873c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
Lignin constitutes an impressive resource of high-value low molecular weight compounds. However, robust methods for isolation of the extractable fraction from lignocellulose are yet to be established. In this study, supercritical fluid extraction (SFE) and CO2-expanded liquid extraction (CXLE) were employed to extract lignin from softwood and hardwood chips. Ethanol, acetone, and ethyl lactate were investigated as green organic co-solvents in the extractions. Additionally, the effects of temperature, CO2 percentage and the water content of the co-solvent were investigated using a design of experiment approach employing full factorial designs. Ethyl lactate and acetone provided the highest gravimetric yields. The water content in the extraction mixture had the main impact on the amount of extractable lignin monomers (LMs) and lignin oligomers (LOs) while the type of organic solvent was of minor importance. The most effective extraction was achieved by using a combination of liquid CO2/acetone/water (10/72/18, v/v/v) at 60 °C, 350 bar, 30 min and 2 mL min-1 flow rate. The optimized method provided detection of 13 LMs and 6 lignin dimers (LDs) from the hardwood chips. The results demonstrate the potential of supercritical fluids and green solvents in the field of mild and bening lignin extraction from wood.
Collapse
Affiliation(s)
- Federica Nardella
- Department of Chemistry and Industrial Chemistry, University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Jens Prothmann
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis Lund Sweden
| | - Margareta Sandahl
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis Lund Sweden
| | - Peter Spégel
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis Lund Sweden
| | - Erika Ribechini
- Department of Chemistry and Industrial Chemistry, University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Charlotta Turner
- Lund University, Department of Chemistry, Centre for Analysis and Synthesis Lund Sweden
| |
Collapse
|
14
|
Abd Hamid IA, Laazizi N, Mustapa AN, Abd Rahman N. Effect of Pre-Treatment Methods on the Extractability of Christia vespertilionis by Supercritical Carbon Dioxide. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023; 31:2311-2328. [DOI: 10.47836/pjst.31.5.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Christia vespertilionis is a medicinal herb traditionally used as a complementary and alternative medicine to treat cancer and malaria. This study investigated the effect of pre-treatments of the Christia vespertilionis plant on supercritical CO2 extraction yield and solubility. Four pre-treatments were studied: drying and grinding, doping with absolute ethanol (99%) and 80% (v/v) of ethanol/water, and microwave pre-treatment. The supercritical CO2 extraction was conducted at a constant 13.8 MPa, 40℃ with 24 mL/min flow rate in 40 min of extraction time. It was found that the dried sample after drying and grinding pre-treatment produced the highest yield of 4.56 mg/g, whereas the lowest yield was obtained for the fresh leaves’ samples treated with microwave irradiation (1.26 mg/g). Doping techniques with absolute ethanol and 80% (v/v) were comparable in the 2.64 to 2.94 mg/g. GCMS results revealed that Christia vespertilionis extract comprises antioxidants, mainly phytol, limonene, and other medicinal compounds such as α-monolaurin and l-ascorbyl 2,6-dipalmitate. This study indicates that adding co-solvent was not the primary technique in supercritical CO2 extraction to increase the extractability of compounds of interest from plant matrices.
Collapse
|
15
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
16
|
Sousa SC, Freitas AC, Gomes AM, Carvalho AP. Extraction of Nannochloropsis Fatty Acids Using Different Green Technologies: The Current Path. Mar Drugs 2023; 21:365. [PMID: 37367690 DOI: 10.3390/md21060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Nannochloropsis is a genus of microalgae widely recognized as potential sources of distinct lipids, particularly polyunsaturated fatty acids (PUFA). These may be obtained through extraction, which has conventionally been performed using hazardous organic solvents. To substitute such solvents with "greener" alternatives, several technologies have been studied to increase their extraction potential. Distinct technologies utilize different principles to achieve such objective; while some aim at disrupting the cell walls of the microalgae, others target the extraction per se. While some methods have been utilized independently, several technologies have also been combined, which has proven to be an effective strategy. The current review focuses on the technologies explored in the last five years to extract or increase extraction yields of fatty acids from Nannochloropsis microalgae. Depending on the extraction efficacy of the different technologies, distinct types of lipids and/or fatty acids are obtained accordingly. Moreover, the extraction efficiency may vary depending on the Nannochloropsis species. Hence, a case-by-case assessment must be conducted in order to ascertain the most suited technology, or tailor a specific one, to be applied to recover a particular fatty acid (or fatty acid class), namely PUFA, including eicosapentaenoic acid.
Collapse
Affiliation(s)
- Sérgio Cruz Sousa
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- REQUIMTE/LAQV-Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Ana Cristina Freitas
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Maria Gomes
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- REQUIMTE/LAQV-Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| |
Collapse
|
17
|
Ahmed H, Rashed MMA, Almoiliqy M, Abdalla M, Bashari M, Zaky MY, Hailin Z, Naji TAA, Eibaid A, Wang J, Jiang L. Antioxidant activity and total phenolic compounds of Commiphora gileadensis extracts obtained by ultrasonic-assisted extraction, with monitoring antiaging and cytotoxicity activities. Food Sci Nutr 2023; 11:3506-3515. [PMID: 37324860 PMCID: PMC10261767 DOI: 10.1002/fsn3.3339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Commiphora gileadensis (C. gileadensis) has been identified and linked with various health benefits and pharmaceutical potential for its phytochemical activities and chemical constituents. This study aimed to evaluate ultrasonic-assisted extraction (USE) technique for total phenols content from C. gileadensis leaf compared to the hydrodistillation extraction (HDE). Our results showed that the USE operating conditions were identified as: MeOH·H2O solvent-to-fresh sample ratio of 80:20 (v/v); ultrasonic power/frequency at 150 W/20 kHz; and a temperature of 40 ± 1°C; subjected to acoustic waves intermittently for a calculated time (5 min) during the total programmed time of 12 min. The USE exhibited (118.71 ± 0.009 mg GAE/g DM) more amounts of all phenols than HDE (101.47 ± 0.005 mg GAE/g DM), and antioxidant (77.78 ± 0.73%, 75.27 ± 0.59% scavenging inhibition of DPPH), respectively. Anti-aging and Cytotoxicity activities were investigated. The results of biological evaluations showed that the crude extracts of C. gileadensis significantly extended the replicative lifespan of K6001 yeast. In addition, in vitro cytotoxicity against the HepG2 cell line showed significant anticancer activity, and approximately 100 μg/mL is required to decrease viability compared with that of the control. This study is proven for a larger scale to extract and isolate compounds of C. gileadensis for potential utilization in the pharmaceutical industry. In conclusion, advanced methods afford an extract with high activity in the biological properties of the extract.
Collapse
Affiliation(s)
- Hani Ahmed
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| | - Marwan M. A. Rashed
- School of Biological and Food EngineeringSuzhou UniversitySuzhou234000AnhuiChina
| | - Marwan Almoiliqy
- Department of Medicine and Health Science, College of Medicine and Health ScienceUniversity of Science and TechnologyAdenYemen
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexas77030USA
| | - Mohammed Abdalla
- Department of Food Processing, Faculty of EngineeringUniversity of El Imam El MahadiKostiWhite Nile209Sudan
| | - Mohanad Bashari
- Department of Food Science and Human NutritionCollege of Applied and Health Sciences, A'Sharqiyah UniversityIbraOman
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Faculty of ScienceBeni‐Suef UniversityEgypt
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of MedicineUniversity of PittsburghPittsburghPennsylvania15213USA
| | - Zhu Hailin
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| | - Taha A. A. Naji
- Department of Medicine and Health Science, College of Medicine and Health ScienceUniversity of Science and TechnologyAdenYemen
| | - Ahmed Eibaid
- Department of Food Science and Technology, Faculty of Engineering and TechnologyUniversity of GeziraWad MadaniSudan
| | - Jinpeng Wang
- School of Food and HealthBeijing Technology and Business UniversityBeijingChina
| | - Li‐Ping Jiang
- School of Pharmaceutical ScienceNanchang UniversityNanchang330006JiangxiChina
| |
Collapse
|
18
|
Ahmad R, Khairul Nizam Mazlan M, Firdaus Abdul Aziz A, Mohd Gazzali A, Amir Rawa MS, Wahab HA. Phaleria macrocarpa (Scheff.) Boerl.: An updated review of pharmacological effects, toxicity studies, and separation techniques. Saudi Pharm J 2023; 31:874-888. [PMID: 37234341 PMCID: PMC10205762 DOI: 10.1016/j.jsps.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Phaleria macrocarpa (Scheff.) Boerl. is geographically distributed around Papua Island, Indonesia. Traditionally, P. macrocarpa is exercised to reduce pain, stomachache, diarrhea, tumor problems, blood glucose, cholesterol, and blood pressure. A growing interest in the medicinal values of P. macrocarpa especially in Asia reflects the usage of diverse extraction techniques, particularly modern approaches. In this review article, the extraction methods and solvents relevant to P. macrocarpa were discussed, with the extent of its pharmacological activities. Recent bibliographic databases such as Google Scholar, PubMed, and Elsevier between 2010 and 2022 were assessed. Based on the findings, the pharmacological studies of P. macrocarpa are still pertinent to its traditional uses but primarily emphasise anti-proliferative activity especially colon and breast cancer cells with low toxicity and fruit as the most studied plant part. The utilization of modern separation techniques has predominantly been aimed at extracting mangiferin and phenolic-rich compounds and evaluating their antioxidant capacity. However, the isolation of bioactive compounds remains a challenge, leading to the extensive utilization of the extracts in in vivo studies. This review endeavors to highlight modern extraction methods that could potentially be used as a point of reference in the future for exploring novel bioactive compounds and drug discovery on a multi-scale extraction level.
Collapse
Affiliation(s)
- Rosliza Ahmad
- Collaborative Laboratory for Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohd Khairul Nizam Mazlan
- Collaborative Laboratory for Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Amir Firdaus Abdul Aziz
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mira Syahfriena Amir Rawa
- Collaborative Laboratory for Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Habibah A. Wahab
- Collaborative Laboratory for Herbal Standardization (CHEST), School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11900 Bayan Lepas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
19
|
Fatima I, Munir M, Qureshi R, Hanif U, Gulzar N, Sheikh AA. Advanced methods of algal pigments extraction: A review. Crit Rev Food Sci Nutr 2023; 64:9771-9788. [PMID: 37233148 DOI: 10.1080/10408398.2023.2216782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Algae are exclusively aquatic photosynthetic organisms that are microscopic or macroscopic, unicellular or multicellular and distributed across the globe. They are a potential source of food, feed, medicine and natural pigments. A variety of natural pigments are available from algae including chlorophyll a, b, c d, phycobiliproteins, carotenes and xanthophylls. The xanthophylls include acyloxyfucoxanthin, alloxanthin, astaxanthin, crocoxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, loroxanthin, monadoxanthin, neoxanthin, nostoxanthin, perdinin, Prasinoxanthin, siphonaxanthin, vaucheriaxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, while carotenes include echinenone, α-carotene, β-carotene, γ-carotene, lycopene, phytoene, phytofluene. These pigments have applications as pharmaceuticals and nutraceuticals and in the food industry for beverages and animal feed production. The conventional methods for the extraction of pigments are solid-liquid extraction, liquid-liquid extraction and soxhlet extraction. All these methods are less efficient, time-consuming and have higher solvent consumption. For a standardized extraction of natural pigments from algal biomass advanced procedures are in practice which includes Supercritical fluid extraction, Pressurized liquid extraction, Microwave-assisted extraction, Pulsed electric field, Moderate electric field, Ultrahigh pressure extraction, Ultrasound-assisted extraction, Subcritical dimethyl ether extraction, Enzyme assisted extraction and Natural deep eutectic solvents. In the present review, these methods for pigment extraction from algae are discussed in detail.
Collapse
Affiliation(s)
- Ishrat Fatima
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Uzma Hanif
- Department of Botany, Government College University, Lahore, Pakistan
| | - Nabila Gulzar
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad Sheikh
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
20
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Perez-Vazquez A, Carpena M, Barciela P, Cassani L, Simal-Gandara J, Prieto MA. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants (Basel) 2023; 12:antiox12030612. [PMID: 36978860 PMCID: PMC10045370 DOI: 10.3390/antiox12030612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Seaweeds are an underutilized food in the Western world, but they are widely consumed in Asia, with China being the world’s larger producer. Seaweeds have gained attention in the food industry in recent years because of their composition, which includes polysaccharides, lipids, proteins, dietary fiber, and various bioactive compounds such as vitamins, essential minerals, phenolic compounds, and pigments. Extraction techniques, ranging from more traditional techniques such as maceration to novel technologies, are required to obtain these components. Pressurized liquid extraction (PLE) is a green technique that uses high temperatures and pressure applied in conjunction with a solvent to extract components from a solid matrix. To improve the efficiency of this technique, different parameters such as the solvent, temperature, pressure, extraction time and number of cycles should be carefully optimized. It is important to note that PLE conditions allow for the extraction of target analytes in a short-time period while using less solvent and maintaining a high yield. Moreover, the combination of PLE with other techniques has been already applied to extract compounds from different matrices, including seaweeds. In this way, the combination of PLE-SFE-CO2 seems to be the best option considering both the higher yields obtained and the economic feasibility of a scaling-up approximation. In addition, the food industry is interested in incorporating the compounds extracted from edible seaweeds into food packaging (including edible coating, bioplastics and bio-nanocomposites incorporated into bioplastics), food products and animal feed to improve their nutritional profile and technological properties. This review attempts to compile and analyze the current data available regarding the application of PLE in seaweeds to determine the use of this extraction technique as a method to obtain active compounds of interest for food industry application.
Collapse
Affiliation(s)
- Ana Perez-Vazquez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
22
|
Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW. Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Res Int 2023; 165:112480. [PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
Collapse
Affiliation(s)
- Yi Ting Neo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62, Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
23
|
Juçara Fruit ( Euterpe Edulis Martius) Valorization Combining Emergent Extraction Technologies and Aqueous Solutions of Alkanediols. Molecules 2023; 28:molecules28041607. [PMID: 36838595 PMCID: PMC9966649 DOI: 10.3390/molecules28041607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Anthocyanins from juçara fruits were extracted by pressurized liquid extraction (PLE) or ultrasound-assisted extraction (UAE), using aqueous solutions of 1,2-alkanediols and glycerol ethers as biobased solvents. The PLE (100 bar, 13 min, 1 mL/min flow rate) in the optimal extraction conditions originated 23.1 mganthocyanins·gdry biomass-1. On the other hand, the UAE was 10 min long, and the optimal conditions using 1,2-propanediol were 42.6 wt%, 160 W, and pH 7.0, leading to 50 mganthocyanins·gdry biomass-1. Extractions at the UAE optimized conditions, with aqueous solutions of five different 1,2-alkanediols and three glycerol ethers were performed, and compared to water and ethanolic extracts. The biobased solvent solutions presented anthocyanin yields up to 33% higher than water, and were shown to be as efficient as ethanol/water, but generated extracts with higher antioxidant capacity. The anthocyanin-rich extract of juçara, obtained with 1,2-propanediol, was used in the production of a natural soap and incorporated into a cream, showing that the addition of the juçara extract resulted in an antioxidant capacity in both products.
Collapse
|
24
|
Al-Khalili M, Al-Habsi N, Rahman MS. Applications of date pits in foods to enhance their functionality and quality: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Graphical AbstractSummary of the abstract
Collapse
|
25
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:1-27. [DOI: 10.1007/978-3-030-81404-5_55-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/01/2022] [Indexed: 09/01/2023]
|
26
|
Doolaanea AA, Alfatama M, Alkhatib H, Mawazi SM. Fucoxanthin. HANDBOOK OF FOOD BIOACTIVE INGREDIENTS 2023:729-755. [DOI: 10.1007/978-3-031-28109-9_55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Mungofa N, Sibanyoni JJ, Mashau ME, Beswa D. Prospective Role of Indigenous Leafy Vegetables as Functional Food Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227995. [PMID: 36432098 PMCID: PMC9696032 DOI: 10.3390/molecules27227995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Indigenous leafy vegetables (ILVs) play a pivotal role in sustaining the lives of many people of low socio-economic status who reside in rural areas of most developing countries. Such ILVs contribute to food security since they withstand harsher weather and soil conditions than their commercial counterparts and supply important nutrients such as dietary fibre, vitamins and minerals. Furthermore, ILVs contain bioactive components such as phenolic compounds, flavonoids, dietary fibre, carotene content and vitamin C that confer health benefits on consumers. Several studies have demonstrated that regular and adequate consumption of vegetables reduces risks of chronic conditions such as diabetes, cancer, metabolic disorders such as obesity in children and adults, as well as cardiovascular disease. However, consumption of ILVs is very low globally as they are associated with unbalanced and poor diets, with being food for the poor and with possibly containing toxic heavy metals. Therefore, this paper reviews the role of ILVs as food security crops, the biodiversity of ILVs, the effects of processing on the bioactivity of ILVs, consumer acceptability of food derived from ILVs, potential toxicity of some ILVs and the potential role ILVs play in the future of eating.
Collapse
Affiliation(s)
- Nyarai Mungofa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
| | - July Johannes Sibanyoni
- School of Hospitality and Tourism, University of Mpumalanga, Mbombela Campus, Mbombela 1200, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Daniso Beswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg 1709, South Africa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg 1709, South Africa
- Correspondence:
| |
Collapse
|
28
|
Brás T, Neves LA, Crespo JG, Duarte MF. Advances in sesquiterpene lactones extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Gharby S, Oubannin S, Ait Bouzid H, Bijla L, Ibourki M, Gagour J, Koubachi J, Sakar EH, Majourhat K, Lee LH, Harhar H, Bouyahya A. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022; 11:3258. [PMID: 37431007 PMCID: PMC9601662 DOI: 10.3390/foods11203258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Oil oxidation is the main factor limiting vegetable oils' quality during storage, as it leads to the deterioration of oil's nutritional quality and gives rise to disagreeable flavors. These changes make fat-containing foods less acceptable to consumers. To deal with this problem and to meet consumer demand for natural foods, vegetable oil fabricators and the food industry are looking for alternatives to synthetic antioxidants to protect oils from oxidation. In this context, natural antioxidant compounds extracted from different parts (leaves, roots, flowers, and seeds) of medicinal and aromatic plants (MAPs) could be used as a promising and sustainable solution to protect consumers' health. The objective of this review was to compile published literature regarding the extraction of bioactive compounds from MAPs as well as different methods of vegetable oils enrichment. In fact, this review uses a multidisciplinary approach and offers an updated overview of the technological, sustainability, chemical and safety aspects related to the protection of oils.
Collapse
Affiliation(s)
- Saïd Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Hasna Ait Bouzid
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Laila Bijla
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ibourki
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco
| | - Jamila Gagour
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Jamal Koubachi
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology and Health, FS, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Khalid Majourhat
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Genomic Center of Human Pathologies, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
| |
Collapse
|
30
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
31
|
Venugopal V, Sasidharan A. Functional proteins through green refining of seafood side streams. Front Nutr 2022; 9:974447. [PMID: 36091241 PMCID: PMC9454818 DOI: 10.3389/fnut.2022.974447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Scarcity of nutritive protein is a major global problem, the severity of which is bound to increase with the rising population. The situation demands finding additional sources of proteins that can be both safe as well as acceptable to the consumer. Food waste, particularly from seafood is a plausible feedstock of proteins in this respect. Fishing operations result in appreciable amounts of bycatch having poor food value. In addition, commercial processing results in 50 to 60% of seafood as discards, which consist of shell, head, fileting frames, bones, viscera, fin, skin, roe, and others. Furthermore, voluminous amounts of protein-rich effluents are released during commercial seafood processing. While meat from the bycatch can be raw material for proteinous edible products, proteins from the process discards and effluents can be recovered through biorefining employing upcoming, environmental-friendly, low-cost green processes. Microbial or enzyme treatments release proteins bound to the seafood matrices. Physico-chemical processes such as ultrasound, pulse electric field, high hydrostatic pressure, green solvent extractions and others are available to recover proteins from the by-products. Cultivation of photosynthetic microalgae in nutrient media consisting of seafood side streams generates algal cell mass, a rich source of functional proteins. A zero-waste marine bio-refinery approach can help almost total recovery of proteins and other ingredients from the seafood side streams. The recovered proteins can have high nutritive value and valuable applications as nutraceuticals and food additives.
Collapse
|
32
|
Sarkarat R, Mohamadnia S, Tavakoli O. Recent advances in non-conventional techniques for extraction of phycobiliproteins and carotenoids from microalgae. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Mesquita PC, Rodrigues LGG, Mazzutti S, Ribeiro PRV, de Brito ES, Lanza M. Untargeted metabolomic profile of recovered bioactive compounds by subcritical water extraction of acerola (Malpighia emarginata DC.) pomace. Food Chem 2022; 397:133718. [DOI: 10.1016/j.foodchem.2022.133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
|
34
|
Methodological Optimization of Supercritical Fluid Extraction of Valuable Bioactive Compounds from the Acidophilic Microalga Coccomyxa onubensis. Antioxidants (Basel) 2022; 11:antiox11071248. [PMID: 35883739 PMCID: PMC9312109 DOI: 10.3390/antiox11071248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae grow in diverse environments and possess a great biotechnological potential as they contain useful bioactive compounds. These bioactive compounds can be obtained by selective and energy-efficient extraction methods. Various industries are using the supercritical fluid extraction (SFE) method to extract these valuable bioactive compounds. Hence, for the first time, we evaluated the effects of SFE on the recovery of bioactive and antioxidant compounds using Coccomyxa onubensis, a eukaryotic acidophilic microalga of potential relevance which can be used in the field of nutraceutical and functional foods. It was isolated from the Tinto River (Pyritic Belt, Huelva, Spain), a mining region in Spain. Variables such as extraction yield, lutein purity (LP) and recovery (LR), total phenols, and antioxidant capacity (Trolox equivalents antioxidant capacity method) were studied using a Box–Behnken design based on a response surface methodology along with the overall extraction curve fitted to a spline linear model. The effects of temperature (30, 50, and 70 °C), pressure (25, 40, and 55 MPa), and the percentage of co-solvent (0, 25%, and 50% v/v ethanol) on SFE were analyzed, resulting in the co-solvent and temperature as the most significant factors followed by the pressure. Under 70 °C, 40 MPa, and 50% v/v ethanol, C. onubensis reached a maximum of 66.98% of LR. The extracts were richest in total phenols and showed the maximum antioxidant activity (36.08 mg GAEs/g extracts and 2.237 mmol TE/g extracts, respectively) under similar pressure and co-solvent percentage values and different temperatures (30 and 70 °C, respectively). The extracts obtained in this study may have potential applications in the food, nutraceutical, and cosmetic industries. SFE is a highly efficient method to valorize microorganisms living in extreme environments, which are so far unexplored using green extraction methods.
Collapse
|
35
|
Usman I, Hussain M, Imran A, Afzaal M, Saeed F, Javed M, Afzal A, Ashfaq I, Al Jbawi E, A. Saewan S. Traditional and innovative approaches for the extraction of bioactive compounds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ifrah Usman
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mehak Javed
- Medicine and Allied, Faisalabad Medical University, Faisalabad, Pakistan
| | - Atka Afzal
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Iqra Ashfaq
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Shamaail A. Saewan
- Department of Food Sciences, College of Agriculture, University of Basrah, Basrah, Iraq
| |
Collapse
|
36
|
Parkes R, Barone ME, Herbert H, Gillespie E, Touzet N. Antioxidant Activity and Carotenoid Content Responses of Three Haematococcus sp. (Chlorophyta) Strains Exposed to Multiple Stressors. Appl Biochem Biotechnol 2022; 194:4492-4510. [PMID: 35467238 DOI: 10.1007/s12010-022-03926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
There has been increasing demands worldwide for bioactive compounds of natural origins, especially for the nutraceutical and food-supplement sectors. In this context, microalgae are viewed as sustainable sources of molecules with an array of health benefits. For instance, astaxanthin is a xanthophyll pigment with powerful antioxidant capacity produced by microalgae such as the chlorophyte Haematococcus sp., which is regarded as the most suitable organism for the mass production of this pigment. In this study, three Haematococcus sp. strains were cultivated using a batch mode under favourable conditions to promote vegetative growth. Their environment was altered in a second phase using a higher and constant illumination regime combined with either exposure to blue LED light, an osmotic shock (with NaCl addition) or supplementation with a phytohormone (gibberellic acid, GA3), a plant extract (ginger), an herbicide (molinate) or an oxidant reagent (hydrogen peroxide). The effects of these stressors were evaluated in terms of antioxidant response and astaxanthin and β-carotene accumulation. Overall, strain CCAP 34/7 returned the highest Trolox Equivalent Antioxidant Capacity (TEAC) response (14.1-49.1 µmoL Trolox eq. g- 1 of DW), while the highest antioxidant response with the Folin-Ciocalteu (FC) was obtained for strain RPFW01 (62.5-155 µmoL Trolox eq. g- 1 of DW). The highest β-β-carotene content was found in strain LAFW15 when supplemented with the ginger extract (4.8 mg. g- 1). Strain RPFW01 exposed to blue light returned the highest astaxanthin yield (2.8 mg. g- 1), 5-fold that of strain CCAP 34/7 on average. This study documents the importance of screening several strains when prospecting for species with potential to produce high-value metabolites. It highlights that strain-specific responses can ensue from exposure of cells to a variety of stressors, which is important for the adequate tailoring of a biorefinery pipeline.
Collapse
Affiliation(s)
- Rachel Parkes
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland.
| | - Maria Elena Barone
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Helen Herbert
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Eoin Gillespie
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| | - Nicolas Touzet
- School of Science, Department of Environmental Science, Centre for Environmental Research, Sustainability and Innovation, Atlantic Technological University, Sligo, Ireland
| |
Collapse
|
37
|
High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Large amounts of food waste are produced each year. These residues require appropriate management to reduce their environmental impact and, at the same time, economic loss. However, this waste is still rich in compounds (e.g., colorants, antioxidants, polyphenols, fatty acids, vitamins, and proteins) that can find potential applications in food, pharmaceutical, and cosmetic industries. Conventional extraction techniques suffer some drawbacks when applied to the exploitation of food residues, including large amounts of polluting solvents, increased time of extraction, possible degradation of the active molecules during extraction, low yields, and reduced extraction selectivity. For these reasons, advanced extraction techniques have emerged in order to obtain efficient residue exploitation using more sustainable processes. In particular, performing extraction under high-pressure conditions, such as supercritical fluids and pressurized liquid extraction, offers several advantages for the extraction of bioactive molecules. These include the reduced use of toxic solvents, reduced extraction time, high selectivity, and the possibility of being applied in combination in a cascade of progressive extractions. In this review, an overview of high-pressure extraction techniques related to the recovery of high added value compounds from waste generated in food industries is presented and a critical discussion of the advantages and disadvantages of each process is reported. Furthermore, the possibility of combined multi-stage extractions, as well as economic and environmental aspects, are discussed in order to provide a complete overview of the topic.
Collapse
|
38
|
Bioactive compounds from Pleurotus sajor-caju mushroom recovered by sustainable high-pressure methods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Raja K, Kadirvel V, Subramaniyan T. Seaweeds, an aquatic plant-based protein for sustainable nutrition- a review. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
40
|
Chañi-Paucar LO, Johner JC, Hatami T, Meireles MAA. Simultaneous integration of supercritical fluid extraction and mechanical cold pressing for the extraction from Baru seed. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Otero P, Carpena M, Fraga-Corral M, Garcia-Oliveira P, Soria-Lopez A, Barba F, Xiao JB, Simal-Gandara J, Prieto M. Aquaculture and agriculture-by products as sustainable sources of omega-3 fatty acids in the food industry. EFOOD 2022. [DOI: 10.53365/efood.k/144603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.
Collapse
|
42
|
Dauber C, Carreras T, Fernández Fernández A, Irigaray B, Albores S, Gámbaro A, Ibáñez E, Vieitez I. Response surface methodology for the optimization of biophenols recovery from “alperujo” using supercritical fluid extraction. Comparison between Arbequina and Coratina cultivars. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Nunes AN, Borges A, Matias AA, Bronze MR, Oliveira J. Alternative Extraction and Downstream Purification Processes for Anthocyanins. Molecules 2022; 27:368. [PMID: 35056685 PMCID: PMC8779312 DOI: 10.3390/molecules27020368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are natural pigments displaying different attractive colors ranging from red, violet, to blue. These pigments present health benefits that increased their use in food, nutraceuticals, and the cosmetic industry. However, anthocyanins are mainly extracted through conventional methods that are time-consuming and involve the use of organic solvents. Moreover, the chemical diversity of the obtained complex extracts make the downstream purification step challenging. Therefore, the growing demand of these high-value pigments has stimulated the interest in designing new, safe, cost-effective, and tunable strategies for their extraction and purification. The current review focuses on the potential application of compressed fluid-based (such as subcritical and supercritical fluid extraction and pressurized liquid extraction) and deep eutectic solvents-based extraction methods for the recovery of anthocyanins. In addition, an updated review of the application of counter-current chromatography for anthocyanins purification is provided as a faster and cost-effective alternative to preparative-scale HPLC.
Collapse
Affiliation(s)
- Ana N. Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Alexandra Borges
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| | - Ana A. Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal; (A.N.N.); (A.A.M.); (M.R.B.)
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iMed.Ulisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Avenida das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
44
|
Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, González Moreno PA, Navarro López E, Esteban Cerdán L, Molina Grima E. Supercritical fluid extraction and pressurized liquid extraction processes applied to eicosapentaenoic acid-rich polar lipid recovery from the microalga Nannochloropsis sp. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
BARRIGA-SÁNCHEZ M, HIPARRAGUIRRE HC, ROSALES-HARTSHORN M. Chemical composition and mineral content of Black Borgoña (Vitis labrusca L.) grapes, pomace and seeds, and effects of conventional and non-conventional extraction methods on their antioxidant properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.120021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Intensified green-based extraction process as a circular economy approach to recover bioactive compounds from soursop seeds ( Annona muricata L.). Food Chem X 2021; 12:100164. [PMID: 35024607 PMCID: PMC8724856 DOI: 10.1016/j.fochx.2021.100164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022] Open
Abstract
SFE and SWE in single or combined mode allow extraction of value-added compounds. SFE modifies the cell wall, and the oil fraction is rich in fatty acids. PCA is used to correlate phenolic compounds with extraction methods. Vanillic acid is the major phenolic compound quantified in all extracts. First report of detection of 29 new phenolic compounds from soursop seed extracts.
Soursop (Annona muricata L.) seeds, which is a residue obtained from juice agro-industries, were subjected to supercritical fluid extraction (SFE) and subcritical water extraction (SWE) in single or combined mode to extract the potential value-added compounds. Different extraction methods were evaluated in terms of the extraction yield, phenolics content, antioxidant activity (DPPH, ABTS, and FRAP), and Maillard reaction products. The extracts were analyzed using SEM, GC-MS, and LC-MS/MS techniques. The temperature and a combination of high-pressure techniques positively affected the overall results (SFE + SWE), affording nonpolar and polar extracts rich in phenolics and antioxidant compounds. SEM analysis showed that the use of SFE caused modifications in the cell wall, and the oil fraction was rich in fatty acids. Twenty-nine compounds associated with soursop seed extracts were detected for the first time using LC-MS/MS, showing the potential of the raw material as well as promoting resource re-utilization in circular economy.
Collapse
|
47
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
48
|
Meng W, Mu T, Sun H, Garcia-Vaquero M. Phlorotannins: A review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
High-pressure fluid technologies: Recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Janova A, Kolackova M, Bytesnikova Z, Capal P, Chaloupsky P, Svec P, Ridoskova A, Cernei N, Klejdus B, Richtera L, Adam V, Huska D. New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|