1
|
Salomón-Flores MK, Valdes-García J, Viviano-Posadas AO, Martínez-Otero D, Barroso-Flores J, Bazany-Rodríguez IJ, Dorazco-González A. Molecular two-point recognition of fructosyl valine and fructosyl glycyl histidine in water by fluorescent Zn(II)-terpyridine complexes bearing boronic acids. Dalton Trans 2024; 53:8692-8708. [PMID: 38700377 DOI: 10.1039/d4dt00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Iván J Bazany-Rodríguez
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| |
Collapse
|
2
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
3
|
Pang W, Xing Y, Morais CLM, Lao Q, Li S, Qiao Z, Li Y, Singh MN, Barauna VG, Martin FL, Zhang Z. Serum-based ATR-FTIR spectroscopy combined with multivariate analysis for the diagnosis of pre-diabetes and diabetes. Analyst 2024; 149:497-506. [PMID: 38063458 DOI: 10.1039/d3an01519j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disease with an increasing prevalence that is causing worldwide concern. The pre-diabetes stage is the only reversible stage in the patho-physiological process towards DM. Due to the limitations of traditional methods, the diagnosis and detection of DM and pre-diabetes are complicated, expensive, and time-consuming. Therefore, it would be of great benefit to develop a simple, rapid and inexpensive diagnostic test. Herein, the infrared (IR) spectra of serum samples from 111 DM patients, 111 pre-diabetes patients and 333 healthy volunteers were collected using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy and this was combined with the multivariate analysis of principal component analysis linear discriminant analysis (PCA-LDA) to develop a discriminant model to verify the diagnostic potential of this approach. The study found that the accuracy of the test model established by ATR-FTIR spectroscopy combined with PCA-LDA was 97%, and the sensitivity and specificity were 100% and 100% in the control group, 94% and 98% in the pre-diabetes group, and 91% and 98% in the DM group, respectively. This indicates that this method can effectively diagnose DM and pre-diabetes, which has far-reaching clinical significance.
Collapse
Affiliation(s)
- Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
- School of Humanities and Management, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Yu Xing
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Camilo L M Morais
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
| | - Qiufeng Lao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Shengle Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Zipeng Qiao
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - You Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Maneesh N Singh
- Biocel UK Ltd, Hull HU10 6TS, UK.
- Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitoria, Brazil
| | - Francis L Martin
- Biocel UK Ltd, Hull HU10 6TS, UK.
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Zhiyong Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, 541199, Guangxi, China.
- School of Public Health, Guilin Medical University, Guilin, 541199, Guangxi, China
| |
Collapse
|
4
|
Sittiwanichai S, Niramitranon J, Japrung D, Pongprayoon P. Binding of Apo and Glycated Human Serum Albumins to an Albumin-Selective Aptamer-Bound Graphene Quantum Dot Complex. ACS OMEGA 2023; 8:21862-21870. [PMID: 37360475 PMCID: PMC10286295 DOI: 10.1021/acsomega.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Diabetes mellitus is a chronic metabolic disease involving continued elevated blood glucose levels. It is a leading cause of mortality and reduced life expectancy. Glycated human serum albumin (GHSA) has been reported to be a potential diabetes biomarker. A nanomaterial-based aptasensor is one of the effective techniques to detect GHSA. Graphene quantum dots (GQDs) have been widely used in aptasensors as an aptamer fluorescence quencher due to their high biocompatibility and sensitivity. GHSA-selective fluorescent aptamers are first quenched upon binding to GQDs. The presence of albumin targets results in the release of aptamers to albumin and consequently fluorescence recovery. To date, the molecular details on how GQDs interact with GHSA-selective aptamers and albumin remain limited, especially the interactions of an aptamer-bound GQD (GQDA) with an albumin. Thus, in this work, molecular dynamics simulations were used to reveal the binding mechanism of human serum albumin (HSA) and GHSA to GQDA. The results show the rapid and spontaneous assembly of albumin and GQDA. Multiple sites of albumins can accommodate both aptamers and GQDs. This suggests that the saturation of aptamers on GQDs is required for accurate albumin detection. Guanine and thymine are keys for albumin-aptamer clustering. GHSA gets denatured more than HSA. The presence of bound GQDA on GHSA widens the entrance of drug site I, resulting in the release of open-chain glucose. The insight obtained here will serve as a base for accurate GQD-based aptasensor design and development.
Collapse
Affiliation(s)
- Sirin Sittiwanichai
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
| | - Jitti Niramitranon
- Department
of Computer Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Deanpen Japrung
- National
Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Prapasiri Pongprayoon
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Chatuchak, Bangkok 10900, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Zhan Z, Li Y, Zhao Y, Zhang H, Wang Z, Fu B, Li WJ. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin. BIOSENSORS 2022; 12:bios12040221. [PMID: 35448281 PMCID: PMC9024622 DOI: 10.3390/bios12040221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 05/17/2023]
Abstract
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. This review aims to highlight current methods and trends in electrochemistry for HbA1c monitoring. The target analytes of electrochemical HbA1c sensors are usually HbA1c or fructosyl valine/fructosyl valine histidine (FV/FVH, the hydrolyzed product of HbA1c). When HbA1c is the target analyte, a sensor works to selectively bind to specific HbA1c regions and then determines the concentration of HbA1c through the quantitative transformation of weak electrical signals such as current, potential, and impedance. When FV/FVH is the target analyte, a sensor is used to indirectly determine HbA1c by detecting FV/FVH when it is hydrolyzed by fructosyl amino acid oxidase (FAO), fructosyl peptide oxidase (FPOX), or a molecularly imprinted catalyst (MIC). Then, a current proportional to the concentration of HbA1c can be produced. In this paper, we review a variety of representative electrochemical HbA1c sensors developed in recent years and elaborate on their operational principles, performance, and promising future clinical applications.
Collapse
Affiliation(s)
- Zhikun Zhan
- School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yang Li
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Yuliang Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
- Correspondence: (Y.Z.); (W.J.L.)
| | - Hongyu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
| | - Zhen Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Boya Fu
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; (Y.L.); (Z.W.); (B.F.)
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China;
- Correspondence: (Y.Z.); (W.J.L.)
| |
Collapse
|
6
|
Noviana E, Siswanto S, Budi Hastuti AAM. Advances in Nanomaterial-based Biosensors for Determination of Glycated Hemoglobin. Curr Top Med Chem 2022; 22:2261-2281. [PMID: 36111762 DOI: 10.2174/1568026622666220915114646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
Diabetes is a major public health burden whose prevalence has been steadily increasing over the past decades. Glycated hemoglobin (HbA1c) is currently the gold standard for diagnostics and monitoring of glycemic control in diabetes patients. HbA1c biosensors are often considered to be cost-effective alternatives for smaller testing laboratories or clinics unable to access other reference methods. Many of these sensors deploy nanomaterials as recognition elements, detection labels, and/or transducers for achieving sensitive and selective detection of HbA1c. Nanomaterials have emerged as important sensor components due to their excellent optical and electrical properties, tunable morphologies, and easy integration into multiple sensing platforms. In this review, we discuss the advantages of using nanomaterials to construct HbA1c sensors and various sensing strategies for HbA1c measurements. Key gaps between the current technologies with what is needed moving forward are also summarized.
Collapse
Affiliation(s)
- Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Soni Siswanto
- Research Center for Drug Targeting and Personalized Medicine, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Agustina Ari Murti Budi Hastuti
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence Institute for Halal Industry and Systems (PUI-PT IHIS), Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Farahani A, Zarei-Hanzaki A, Abedi HR, Tayebi L, Mostafavi E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. J Funct Biomater 2021; 12:71. [PMID: 34940550 PMCID: PMC8704870 DOI: 10.3390/jfb12040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Polylactide acid (PLA), as an FDA-approved biomaterial, has been widely applied due to its unique merits, such as its biocompatibility, biodegradability, and piezoelectricity. Numerous utilizations, including sensors, actuators, and bio-application-its most exciting application to promote cell migration, differentiation, growth, and protein-surface interaction-originate from the piezoelectricity effect. Since PLA exhibits piezoelectricity in both crystalline structure and an amorphous state, it is crucial to study it closely to understand the source of such a phenomenon. In this respect, in the current study, we first reviewed the methods promoting piezoelectricity. The present work is a comprehensive review that was conducted to promote the low piezoelectric constant of PLA in numerous procedures. In this respect, its chemistry and structural origins have been explored in detail. Combining any other variables to induce a specific application or to improve any PLA barriers, namely, its hydrophobicity, poor electrical conductivity, or the tuning of its mechanical properties, especially in the application of cardiovascular tissue engineering, is also discussed wherever relevant.
Collapse
Affiliation(s)
- Amirhossein Farahani
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Abbas Zarei-Hanzaki
- Hot Deformation & Thermomechanical Processing Laboratory of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Hamid Reza Abedi
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53233, USA;
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Özge Karaşallı M, Derya Koyuncu Zeybek. A Novel Label-Free Immunosensor Based on Electrochemically Reduced Graphene Oxide for Determination of Hemoglobin A1c. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520090037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
10
|
Sasya M, Devi KSS, Babu JK, Balaguru Rayappan JB, Krishnan UM. Metabolic Syndrome-An Emerging Constellation of Risk Factors: Electrochemical Detection Strategies. SENSORS (BASEL, SWITZERLAND) 2019; 20:E103. [PMID: 31878023 PMCID: PMC6982738 DOI: 10.3390/s20010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome is a condition that results from dysfunction of different metabolic pathways leading to increased risk of disorders such as hyperglycemia, atherosclerosis, cardiovascular diseases, cancer, neurodegenerative disorders etc. As this condition cannot be diagnosed based on a single marker, multiple markers need to be detected and quantified to assess the risk facing an individual of metabolic syndrome. In this context, chemical- and bio-sensors capable of detecting multiple analytes may provide an appropriate diagnostic strategy. Research in this field has resulted in the evolution of sensors from the first generation to a fourth generation of 'smart' sensors. A shift in the sensing paradigm involving the sensing element and transduction strategy has also resulted in remarkable advancements in biomedical diagnostics particularly in terms of higher sensitivity and selectivity towards analyte molecule and rapid response time. This review encapsulates the significant advancements reported so far in the field of sensors developed for biomarkers of metabolic syndrome.
Collapse
Affiliation(s)
- Madhurantakam Sasya
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata-9518510, Japan;
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - K. S. Shalini Devi
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - Jayanth K. Babu
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Electrical & Electronics Engineering, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur 613401, India; (K.S.S.D.); (J.K.B.); (J.B.B.R.)
- School of Electrical & Electronics Engineering, SASTRA Deemed-to-be University, Thanjavur 613401, India
| | - Uma Maheswari Krishnan
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata-9518510, Japan;
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed-to-be University, Thanjavur 613401, India
| |
Collapse
|
11
|
Rudnicki K, Brycht M, Leniart A, Domagała S, Kaczmarek K, Kalcher K, Skrzypek S. A Sensitive Sensor Based on Single‐walled Carbon Nanotubes: Its Preparation, Characterization and Application in the Electrochemical Determination of Drug Clorsulon in Milk Samples. ELECTROANAL 2019. [DOI: 10.1002/elan.201900387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Konrad Rudnicki
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Mariola Brycht
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
- Charles University, Faculty of ScienceDepartment of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry Albertov 6 CZ-12843 Prague 2 Czech Republic
| | - Andrzej Leniart
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Sławomir Domagała
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Katarzyna Kaczmarek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| | - Kurt Kalcher
- Karl-Franzens University GrazInstitute of Chemistry-Analytical Chemistry Universitaetsplatz 1 Graz 8010 Austria
| | - Sławomira Skrzypek
- University of Lodz, Faculty of ChemistryDepartment of Inorganic and Analytical Chemistry Tamka 12 91-403 Lodz Poland
| |
Collapse
|
12
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Shajaripour Jaberi SY, Ghaffarinejad A, Omidinia E. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood. Anal Chim Acta 2019; 1078:42-52. [PMID: 31358227 DOI: 10.1016/j.aca.2019.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 01/02/2023]
Abstract
Hemoglobin A1c (HbA1c) is a standard biomarker to measure long-term average glucose concentration for diagnosis and monitoring of diabetes. Various methods have been reported for measuring HbA1c, however, portable and precise determination is still challenging. Herein, a new highly sensitive electrochemical nanobiosensor is developed for the specific determination of HbA1c. A nanocomposite of reduced graphene oxide (rGO) and gold with hierarchical architecture structure was electrochemically deposited on a cheap and flexible graphite sheet (GS) electrode. The nanocomposite increased the surface area, improved the electron transfer on the electrode surface and augmented the signal. It also provided a suitable substrate for linkage of thiolated DNA aptamer as a bioreceptor on the electrode surface by strong covalent bonding. The quantitative label free detection was carried out by differential pulse voltammetry (DPV) in a phosphate-buffered saline (PBS) solution containing redox probe Fe(CN)63-/4-. The detection is based on insulating the surface in presence of HbA1c and decreasing the current, which is directly related to the HbA1c concentration. The nanobiosensor demonstrated high sensitivity of 269.2 μA. cm-2, wide linear range of 1 nM-13.83 μM with a low detection limit of 1 nM. The biosensor was successfully used for measuring HbA1c in blood real sample. Furthermore, it is promising to use it as a part of a point of care device for low-invasive screening and management of diabetes.
Collapse
Affiliation(s)
- Seyedeh Yasaman Shajaripour Jaberi
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Eskandar Omidinia
- Department of Biochemistry, Genetic and Metabolism Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Shi Q, Teng Y, Hu Z, Zhang Y, Liu W. One‐step Electrodeposition of Tris(hydroxymethyl) Aminomethane – Prussian Blue on Screen‐printed electrode for Highly Efficient Detection of Glycosylated Hemoglobin. ELECTROANAL 2018. [DOI: 10.1002/elan.201800644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianwei Shi
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's HospitalZhejiang University School of Medicine Hangzhou 310052 China
| | - Yuchao Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| | - Wenhan Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 China
| |
Collapse
|
15
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
16
|
Abbasi S, Gharaghani S, Benvidi A, Rezaeinasab M. New insights into the efficiency of thymol synergistic effect with p -cymene in inhibiting advanced glycation end products: A multi-way analysis based on spectroscopic and electrochemical methods in combination with molecular docking study. J Pharm Biomed Anal 2018; 150:436-451. [DOI: 10.1016/j.jpba.2017.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
|
17
|
Poursadeghian S, Rabiee M, Moshayedi HR, Karimi M, Tahriri M, Tayebi L. Development of electrochemical noninvasive glucose nanobiosensor using antioxidants as a novel mediator. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sepideh Poursadeghian
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Mohammad Rabiee
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Hamid Reza Moshayedi
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Meysam Karimi
- Biomaterials Group, Faculty of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences; Marquette University; Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences; Marquette University; Milwaukee WI 53233 USA
- Department of Engineering Science; University of Oxford; Oxford OX1 3PJ UK
| |
Collapse
|
18
|
Current Status of HbA1c Biosensors. SENSORS 2017; 17:s17081798. [PMID: 28777351 PMCID: PMC5579747 DOI: 10.3390/s17081798] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/24/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
Glycated hemoglobin (HbA1c) is formed via non-enzymatic glycosylation reactions at the α–amino group of βVal1 residues in the tetrameric Hb, and it can reflect the ambient glycemic level over the past two to three months. A variety of HbA1c detection methods, including chromatography, immunoassay, enzymatic measurement, electrochemical sensor and capillary electrophoresis have been developed and used in research laboratories and in clinics as well. In this review, we summarize the current status of HbA1c biosensors based on the recognition of the sugar moiety on the protein and also their applications in the whole blood sample measurements.
Collapse
|
19
|
Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2219-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Yazdanpanah S, Rabiee M, Tahriri M, Abdolrahim M, Rajab A, Jazayeri HE, Tayebi L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit Rev Clin Lab Sci 2017; 54:219-232. [PMID: 28393586 DOI: 10.1080/10408363.2017.1299684] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes Mellitus (DM) is a group of metabolic diseases characterized by chronic high blood glucose concentrations (hyperglycemia). When it is left untreated or improperly managed, it can lead to acute complications including diabetic ketoacidosis and non-ketotic hyperosmolar coma. In addition, possible long-term complications include impotence, nerve damage, stroke, chronic kidney failure, cardiovascular disease, foot ulcers, and retinopathy. Historically, universal methods to measure glycemic control for the diagnosis of diabetes included fasting plasma glucose level (FPG), 2-h plasma glucose (2HP), and random plasma glucose. However, these measurements did not provide information about glycemic control over a long period of time. To address this problem, there has been a switch in the past decade to diagnosing diabetes and its severity through measurement of blood glycated proteins such as Hemoglobin A1c (HbA1c) and glycated albumin (GA). Diagnosis and evaluation of diabetes using glycated proteins has many advantages including high accuracy of glycemic control over a period of time. Currently, common laboratory methods used to measure glycated proteins are high-performance liquid chromatography (HPLC), immunoassay, and electrophoresis. HbA1c is one of the most important diagnostic factors for diabetes. However, some reports indicate that HbA1c is not a suitable marker to determine glycemic control in all diabetic patients. GA, which is not influenced by changes in the lifespan of erythrocytes, is thought to be a good alternative indicator of glycemic control in diabetic patients. Here, we review the literature that has investigated the suitability of HbA1c, GA and GA:HbA1c as indicators of long-term glycemic control and demonstrate the importance of selecting the appropriate glycated protein based on the patient's health status in order to provide useful and modern point-of-care monitoring and treatment.
Collapse
Affiliation(s)
- Sara Yazdanpanah
- a Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Mohammad Rabiee
- a Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Mohammadreza Tahriri
- a Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran.,b Marquette University School of Dentistry , Milwaukee , WI , USA.,c Dental Biomaterials Department , School of Dentistry, Tehran University of Medical Sciences , Tehran , Iran
| | - Mojgan Abdolrahim
- a Biomaterials Group, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | | | | | - Lobat Tayebi
- b Marquette University School of Dentistry , Milwaukee , WI , USA
| |
Collapse
|
21
|
Han YD, Kim KR, Park YM, Song SY, Yang YJ, Lee K, Ku Y, Yoon HC. Boronate-functionalized hydrogel as a novel biosensing interface for the glycated hemoglobin A1c (HbA 1c) based on the competitive binding with signaling glycoprotein. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1160-1169. [PMID: 28531992 DOI: 10.1016/j.msec.2017.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/22/2023]
Abstract
According to recent increases in public healthcare costs associated with diabetes mellitus, the development of new glycemic monitoring techniques based on the biosensing of glycated hemoglobin A1c (HbA1c), a promising long-term glycemic biomarker, has become a major challenge. In the development of HbA1c biosensors for point-of-care applications, the selection of an effective biorecognition layer that provides a high reaction yield and specificity toward HbA1c is regarded as the most significant issue. To address this, we developed a novel HbA1c biosensing interfacial material by the integration of boronate hydrogel with glass fiber membrane. In the present study, a new boronate-functionalized hydrogel was designed and spatio-selectively photopolymerized on a hydrophilic glass fiber membrane by using N-hydroxyethyl acrylamide, 3-(acrylamido)phenylboronic acid, and bis(N,N'-methylene-bis-acrylamide). Using this approach, the boronic acid group, which specifically recognizes the cis-diol residue of glucose on the HbA1c molecule, can be three-dimensionally coated on the surface of the glass fiber network with a high density. Because this network structure of boronate hydrogel-grafted fibers enables capillary-driven fluid control, facile HbA1c biosensing in a lateral flow assay concept could be accomplished. On the proposed HbA1c biosensing interface, various concentrations of HbA1c (5-15%) in blood-originated samples were sensitively measured by a colorimetric assay using horseradish peroxidase, a glycoenzyme can generate chromogenic signal after the competitive binding against HbA1c to the boronic acid residues. Based on the demonstrated advantages of boronate hydrogel-modified membrane including high analytical performance, easy operation, and cost-effectiveness, we expect that the proposed biorecognition interfacial material can be applied not only to point-of-care HbA1c biosensors, but also to the quantitative analysis of other glycoprotein biomarkers.
Collapse
Affiliation(s)
- Yong Duk Han
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Ka Ram Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Yoo Min Park
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea
| | - Seung Yeon Song
- Materials & Production Engineering Research Institute, LG Electronics, Seoul 137724, Republic of Korea
| | - Yong Ju Yang
- Materials & Production Engineering Research Institute, LG Electronics, Seoul 137724, Republic of Korea
| | - Kangsun Lee
- Materials & Production Engineering Research Institute, LG Electronics, Seoul 137724, Republic of Korea
| | - Yunhee Ku
- Materials & Production Engineering Research Institute, LG Electronics, Seoul 137724, Republic of Korea
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 443749, Republic of Korea.
| |
Collapse
|
22
|
A novel electrochemical biosensor based on Fe 3 O 4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal Biochem 2017; 519:19-26. [DOI: 10.1016/j.ab.2016.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
|
23
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
24
|
Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Zhao Q, Tang S, Fang C, Tu YF. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin. Anal Chim Acta 2016; 936:83-90. [DOI: 10.1016/j.aca.2016.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 01/04/2023]
|
26
|
Kumar M, Ghosh S, Nayak S, Das A. Recent advances in biosensor based diagnosis of urinary tract infection. Biosens Bioelectron 2016; 80:497-510. [DOI: 10.1016/j.bios.2016.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
|