1
|
Chen J, Li Y, Chen J, Wang R, Lu M, Yu C. Miniature mass spectrometer-based point-of-care assay for quantification of metformin and sitagliptin in human blood and urine. Anal Bioanal Chem 2024; 416:3305-3312. [PMID: 38642098 DOI: 10.1007/s00216-024-05281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Metformin (MET) and sitagliptin (STG) are widely used as the first-line and long-term oral hypoglycemic agents for managing type 2 diabetes mellitus (T2DM). However, the current lack of convenient and rapid measurement methods poses a challenge for individualized management. This study developed a point-of-care (POC) assay method utilizing a miniature mass spectrometer, enabling rapid and accurate quantification of MET and STG concentrations in human blood and urine. By combining the miniature mass spectrometer with paper spray ionization, this method simplifies the process into three to four steps, requires minimal amounts of bodily fluids (50 μL of blood and 2 μL of urine), and is able to obtain quantification results within approximately 2 min. Stable isotope-labeled internal standards were employed to enhance the accuracy and stability of measurement. The MS/MS responses exhibited good linear relationship with concentration, with relative standard deviations (RSDs) below 25%. It has the potential to provide immediate treatment feedback and decision support for patients and healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Jingying Chen
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China
| | - Yaohan Li
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China
| | - Jingjing Chen
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China
| | - Ruimin Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China
| | - Miaoshan Lu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China
| | - Changbin Yu
- Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, Shandong Province, China.
| |
Collapse
|
2
|
Bressan C, Seró R, Alechaga É, Monfort N, Moyano E, Ventura R. Potential of desorption electrospray ionization and paper spray ionization with high-resolution mass spectrometry for the screening of sports doping agents in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:462-471. [PMID: 36602104 DOI: 10.1039/d2ay01687g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, desorption electrospray ionization and paper spray ionization both with high-resolution mass spectrometry (DESI-HRMS and PSI-HRMS) were explored for the fast and direct analysis of stimulants and diuretics in urine samples. The analysis was performed at a resolution of 70 000 FWHM (m/z 200) using a quadrupole-Orbitrap mass spectrometer in full scan acquisition mode, detecting stimulants and diuretics in positive and negative ion modes, respectively. The most critical parameters affecting the desorption and ionization efficiencies of compounds were optimized, paying particular attention to the optimization of the spray solvent for PSI-HRMS analysis and to the selection of the DESI sample substrate. For stimulants, the PSI-HRMS method performed better than DESI-HRMS, allowing the direct analysis of raw urine samples with better signal-to-noise ratios than DESI. However, results obtained for diuretics were not as satisfactory as we expected. The PSI-HRMS method was applied to the screening of 52 stimulants for doping control purposes, providing satisfactory detectability for most of them at the Minimum Reporting Level (MRL) in less than 2 minutes for each single analysis. Despite the advantages offered by the PSI-HRMS method, in this study is also included a discussion on the limitations observed because of the presence of interference for some compounds.
Collapse
Affiliation(s)
- Claudia Bressan
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Raquel Seró
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Xu S, Liu H, Bai Y. Highly sensitive and multiplexed mass spectrometric immunoassay techniques and clinical applications. Anal Bioanal Chem 2022; 414:5121-5138. [PMID: 35165779 DOI: 10.1007/s00216-022-03945-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Immunoassay is one of the most important clinical techniques for disease/pathological diagnosis. Mass spectrometry (MS) has been a popular and powerful readout technique for immunoassays, generating the mass spectrometric immunoassays (MSIAs) with unbeatable channels for multiplexed detection. The sensitivity of MSIAs has been greatly improved with the development of mass labels from element labels to small-molecular labels. MSIAs are also expended from the representative element MS-based methods to the laser-based organic MS and latest ambient MS, improving in both technology and methodology. Various MSIAs present high potential for clinical applications, including the biomarker screening, the immunohistochemistry, and the advanced single-cell analysis. Here, we give an overall review of the development of MSIAs in recent years, highlighting the latest improvement of mass labels and MS techniques for clinical immunoassays.
Collapse
Affiliation(s)
- Shuting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Borisov R, Kanateva A, Zhilyaev D. Recent Advances in Combinations of TLC With MALDI and Other Desorption/Ionization Mass-Spectrometry Techniques. Front Chem 2022; 9:771801. [PMID: 34976947 PMCID: PMC8719418 DOI: 10.3389/fchem.2021.771801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 01/09/2023] Open
Abstract
The combination of planar chromatography with desorption/ionization mass-spectrometry (MS) techniques provides chemists with unique tools for fast and simple separation of mixtures followed by the detection of analytes by the most powerful analytical method. Since its introduction in the early 1990s, thin-layer chromatography (TLC)/matrix-assisted mass spectrometry (MALDI) has been used for the analysis of a wide range of analytes, including natural and synthetic organic compounds. Nowadays, new desorption/ionization approaches have been developed and applied in conjunction with planar chromatography competing with MALDI. This review covers recent developments in the combination of TLC with various desorption/ionization MS methods which were made in recent several years.
Collapse
Affiliation(s)
- Roman Borisov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiia Kanateva
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Zhilyaev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
5
|
Chen J, Hu Y, Shao C, Zhou H, Lv Z. The Imprinted PARAFILM as a New Carrier Material for Dried Plasma Spots (DPSs) Utilizing Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) in Phospholipidomics. Front Chem 2021; 9:801043. [PMID: 34957053 PMCID: PMC8702624 DOI: 10.3389/fchem.2021.801043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The application of desorption electrospray ionization mass spectrometry (DESI-MS) and dried blood spot (DBS) sampling has been successfully implemented several times. However, the difficulty of combining DBS sampling with DESI-MS is still the carrier material used for the blood samples. In this study, a new, easily obtained, and cost-effective carrier substrate for dried plasma spot (DPS) sampling and DESI-MS analysis and its application in phospholipidomics studies was described. First, the effects of several carrier materials, including cellulose-based materials (31 ET paper and filter paper) and non-cellulose-based materials (PARAFILM and its shape-modified material, PTFE-printed glass slide and polyvinylidene fluoride film), were tested. Second, a method combining DPS sampling with DESI-MS for phospholipidomics analysis was established, and parameters affecting compound signal intensities, such as sample volume and sprayer solvent system, were optimized. In conclusion, the total signal intensity obtained from shape-modified PARAFILM was the strongest. The suitable plasma sample volume deposited on PARAFILM carriers was 5 μl, and acetonitrile (ACN) was recommended as the optimal spray solvent for phospholipid (PL) profiling. Repeatability (87.5% of compounds with CV < 30%) and stability for data acquisition (48 h) were confirmed. Finally, the developed method was applied in phospholipidomics analysis of schistosomiasis, and a distinguished classification between control mice and infected mice was observed by using multivariate pattern recognition analysis, confirming the practical application of this new carrier material for DPS sampling and DESI-MS analysis. Compared with a previously reported method, the rapid metabolomics screening approach based on the implementation of DPS sampling coupled with the DESI-MS instrument developed in this study has increased analyte sensitivity, which may promote its further application in clinical studies.
Collapse
Affiliation(s)
- Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Congxiang Shao
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Chen S, Gong X, Tan H, Liu Y, He L, Ouyang J. Study of the noncovalent interactions between phenolic acid and lysozyme by cold spray ionization mass spectrometry (CSI-MS), multi-spectroscopic and molecular docking approaches. Talanta 2020; 211:120762. [PMID: 32070628 DOI: 10.1016/j.talanta.2020.120762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Elucidating the recognition mechanisms of the noncovalent interactions between pharmaceutical molecules and proteins is important for understanding drug delivery in vivo, and for the further rapid screening of clinical drug candidates and biomarkers. In this work, a strategy based on cold spray ionization mass spectrometry (CSI-MS), combined with fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and molecular docking methods, was developed and applied to the study of the noncovalent interactions between phenolic acid and lysozyme (Lys). Based on the real characterization of noncovalent complex, the detailed binding parameters, as well as the protein conformational changes and specific binding sites could be obtained. CSI-MS and tandem mass spectrometry (MS/MS) technique were used to investigate the phenolic acid-Lys complexes and the structure-affinity relationship, and to assess their structural composition and gas phase stability. The binding affinity was obtained by direct and indirect MS methods. The fluorescence spectra showed that the intrinsic fluorescence quenching of Lys in solution was a static quenching mechanism caused by complex formation, which supported the MS results. The CD and FTIR spectra revealed that phenolic acid changed the secondary structure of Lys and increased the α-helix content, indicating an increase in the tryptophan (W) hydrophobicity near the protein binding site resulting in a conformational alteration of the protein. In addition, molecular docking studies were performed to investigate the binding sites and binding modes of phenolic acid on Lys. This strategy can more comprehensively and truly characterize the noncovalent interactions and can guide further research on the interactions of phenolic acid with other proteins.
Collapse
Affiliation(s)
- Su Chen
- National Institutes for Food and Drug Control, Beijing, 102629, China; College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin Gong
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Liu
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Lan He
- National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Jin Ouyang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
7
|
Sherma J, Rabel F. Review of advances in planar chromatography-mass spectrometry published in the period 2015–2019. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
8
|
Kuo TH, Dutkiewicz EP, Pei J, Hsu CC. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal Chem 2019; 92:2353-2363. [DOI: 10.1021/acs.analchem.9b05454] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ewelina P. Dutkiewicz
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiying Pei
- School of Marine Sciences, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Jiang R, Zhang J, Zou S, Jia S, Leng X, Qi Y, Zou X, Shen B, Li W, Lu W, Zhong H. Electron Acceptive Mass Tag for Mass Spectrometric Imaging-Guided Synergistic Targeting to Mice Brain Glutamate Receptors. ACS Chem Neurosci 2019; 10:757-767. [PMID: 30576595 DOI: 10.1021/acschemneuro.8b00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dysfunctional glutamate receptors (GluRs) have been implicated in neurological disorders and injuries. Hetero-tetrameric assemblies of different GluR subunits or splicing variants have distinct spatiotemporal expression patterns and pharmacological properties. Mass spectrometric imaging of GluRs-targeted small molecules is important for determining the regional preferences of these compounds. We report herein the development of a mass tag covalently bonded with glutamate or N-methyl-d-aspartate that functions as both an electron acceptor to generate mass spectrometric signals on irradiated (Bi2O3)0.07(CoO)0.03(ZnO)0.9 nanoparticles with the third harmonic (355 nm) of Nd3+:YAG laser and as the core component to target bilobed clamshell-like structures of GluRs. In this approach, different molecules produce the same tag ion. It provides a new avenue for quantitative assessment of spatial densities of different compounds, which cannot be achieved with well-established stable isotope labeling technique due to different ionization efficiency of different compounds. Various coexisting endogenous molecules are also simultaneously detected for investigation of overall physiological changes induced by these compounds. Because semiconductors do not generate background peaks, this method eliminates interferences from organic matrix materials that are used in regular MALDI (matrix assisted laser desorption ionization). The localized ionization provides high spatial resolution that can be down to sub-micrometers.
Collapse
Affiliation(s)
- Ruowei Jiang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Juan Zhang
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Si Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Shanshan Jia
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiebin Leng
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yinghua Qi
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xuekun Zou
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Baojie Shen
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Weidan Li
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Wenting Lu
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Hongying Zhong
- Mass Spectrometry Center for Structural Identification of Biological Molecules and Precision Medicine Institute of Public Health and Molecular Medicine Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
10
|
Tong C, Guo K, Xu J, Tong X, Shi S. Online extraction and cleanup–quadrupole time-of-flight tandem mass spectrometry for rapid analysis of bioactive components in natural products. Anal Bioanal Chem 2018; 411:679-687. [DOI: 10.1007/s00216-018-1491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
11
|
Muthu M, Deenadayalan A, Ramachandran D, Paul D, Gopal J, Chun S. A state-of-art review on the agility of quantitative proteomics in tuberculosis research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Internal Extractive Electrospray Ionization Mass Spectrometry for Quantitative Determination of Fluoroquinolones Captured by Magnetic Molecularly Imprinted Polymers from Raw Milk. Sci Rep 2017; 7:14714. [PMID: 29116200 PMCID: PMC5676746 DOI: 10.1038/s41598-017-15202-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Antibiotics contamination in food products is of increasing concern due to their potential threat on human health. Herein solid-phase extraction based on magnetic molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry (MMIPs-SPE-iEESI-MS) was designed for the quantitative analysis of trace fluoroquinolones (FQs) in raw milk samples. FQs in the raw milk sample (2 mL) were selectively captured by the easily-lab-made magnetic molecularly imprinted polymers (MMIPs), and then directly eluted by 100 µL electrospraying solvent biased with +3.0 kV to produce protonated FQs ions for mass spectrometric characterization. Satisfactory analytical performance was obtained in the quantitative analysis of three kinds of FQs (i.e., norfloxacin, enoxacin, and fleroxacin). For all the samples tested, the established method showed a low limit of detection (LOD ≤ 0.03 µg L−1) and a high analysis speed (≤4 min per sample). The analytical performance for real sample analysis was validated by a nationally standardized protocol using LC-MS, resulting in acceptable relative error values from −5.8% to +6.9% for 6 tested samples. Our results demonstrate that MMIPs-SPE-iEESI-MS is a new strategy for the quantitative analysis of FQs in complex biological mixtures such as raw milk, showing promising applications in food safety control and biofluid sample analysis.
Collapse
|
13
|
Mainero Rocca L, Cecca J, L'Episcopo N, Fabrizi G. Ambient mass spectrometry: Direct analysis of dimethoate, tebuconazole, and trifloxystrobin on olive and vine leaves by desorption electrospray ionization interface. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:709-719. [PMID: 28762560 DOI: 10.1002/jms.3978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 05/19/2023]
Abstract
A new field of application for a relatively new mass-spectrometric interface such as desorption electrospray ionization was evaluated. For this purpose, its behavior was tested versus quantitative analysis of dimethoate, trifloxystrobin, and tebuconazole directly on olive and vine leaves surface. The goal was workers exposure assessment during field re-entry operations since evidence suggests an association between chronic occupational exposure to some agrochemicals and severe adverse effects. Desorption electrospray ionization gave good response working in positive ionization mode, while numerous test were necessary for the choice of a unique blend of spray solvents suitable for all 3 substances. The best compromise, in terms of signal to noise ratios, was obtained with the CH3 OH/H2 O (80:20) mixture. The obvious difficulties related to the impossibility to use the internal standard were overcome through an accurate validation. Limits of detection and quantitation, dynamic ranges, matrix effects, and intraday precisions were calculated, and a small monitoring campaign was arranged to test method applicability and to evaluate potential dermal exposure. This protocol was developed in work safety field, but after a brief investigation, it was find to be suitable also for food residue evaluation.
Collapse
Affiliation(s)
- Lucia Mainero Rocca
- Italian Workers' Compensation Authority (INAIL)-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory, Via Fontana Candida 1, 00040, Monte Porzio Catone, Rome, Italy
| | - Juri Cecca
- Italian Workers' Compensation Authority (INAIL)-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory, Via Fontana Candida 1, 00040, Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- Italian Workers' Compensation Authority (INAIL)-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory, Via Fontana Candida 1, 00040, Monte Porzio Catone, Rome, Italy
| | - Giovanni Fabrizi
- Italian Workers' Compensation Authority (INAIL)-Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Chemical Agents Laboratory, Via Fontana Candida 1, 00040, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
14
|
Yin J, Zhao Z, Zhan X, Duan Y. Exploration and performance evaluation of microwave-induced plasma with different discharge gases for ambient desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:919-927. [PMID: 28401996 DOI: 10.1002/rcm.7861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Microwave-induced plasma (MIP) with different discharge gases of argon or helium provides significant plasma-based ambient desorption/ionization sources, which have potential applicability in direct analysis of complex samples without any sample pre-treatment. In this study, experiments were conducted to better understand microwave-induced plasma desorption/ionization (MIPDI) sources and the corresponding ionization mechanisms. METHODS Emission spectra of microwave-induced argon (MIP-Ar) and helium (MIP-He) plasmas were obtained from the plasma tail flame of a MIP source. Compounds including L-phenylalanine, L-serine, L-valine, urea, 4-acetaminophen, gallic acid and L-ascorbic acid were analyzed using both sources. Polyethylene glycol 400 (PEG400) oligomers were detected by MIP-Ar and MIP-He mass spectrometry at different microwave powers. Mass spectra of higher molecular weight PEGs (including PEG800, PEG1000 and PEG2000) were also acquired using both sources. RESULTS In the emission spectra, N2 , H-I and O-I species were observed by MIP-Ar/He. In addition, SiO2 , Na-I, Si-I and Si-II species were generated by MIP-He. In the mass spectra of compounds, [M+H]+ , [2M+H]+ , [M+O+H]+ , [M+2O-H]+ and fragment ions were observed. In the mass spectra of PEG400 obtained by MIP-Ar/He at different microwave powers, higher molecular weight oligomers could only be observed with higher microwave power. PEGs with molecular weights as high as 1000 Da were also successfully analyzed by MIPDI. CONCLUSIONS According to the different natures of the samples, either MIP-Ar or MIP-He can be chosen as a working ion source for mass spectrometry. The MIPDI source is potentially applicable to the analysis of compounds with high molecular weights, especially polymers with high degree of polymerization (such as PEG2000), which is a challenging issue for the traditional ambient ionization sources. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinwei Yin
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Zhongjun Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, 610064, P.R. China
| | - Xuefang Zhan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| |
Collapse
|
15
|
Meher AK, Chen YC. Electrospray Modifications for Advancing Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2017; 6:S0057. [PMID: 28573082 DOI: 10.5702/massspectrometry.s0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
16
|
Li LH, Hsieh HY, Hsu CC. Clinical Application of Ambient Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2017; 6:S0060. [PMID: 28337399 PMCID: PMC5359754 DOI: 10.5702/massspectrometry.s0060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/07/2017] [Indexed: 11/23/2022] Open
Abstract
Ambient ionization allows mass spectrometry analysis directly on the sample surface under atmospheric pressure with almost zero sample pretreatment. Since the development of desorption electrospray ionization (DESI) in 2004, many other ambient ionization techniques were developed. Due to their simplicity and low operation cost, rapid and on-site clinical mass spectrometry analysis becomes real. In this review, we will highlight some of the most widely used ambient ionization mass spectrometry approaches and their applications in clinical study.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | - Hua-Yi Hsieh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital
| | | |
Collapse
|
17
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|