1
|
Mishra M, Ahmed R, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater Sci Eng 2024; 10:4740-4756. [PMID: 38950521 PMCID: PMC11322919 DOI: 10.1021/acsbiomaterials.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Early detection of cancer is vital for increasing patient survivability chances. The three major techniques used to diagnose cancers are instrumental examination, tissue biopsy, and tumor biomarker detection. Circulating tumor DNA (ctDNA) has gained much attention in recent years due to advantages over traditional technology, such as high sensitivity, high specificity, and noninvasive nature. Through the mechanism of apoptosis, necrosis, and circulating exosome release in tumor cells, ctDNA can spread throughout the circulatory system and carry modifications such as methylations, mutations, gene rearrangements, and microsatellite instability. Traditional gene-detection technology struggles to achieve real-time, low-cost, and portable ctDNA measurement, whereas electrochemical biosensors offer low cost, high specificity alongside sensitivity, and portability for the detection of ctDNA. Therefore, this review focuses on describing the recent advancements in ctDNA biomarkers for various cancer types and biosensor developments for real-time, noninvasive, and rapid ctDNA detection. Further in the review, ctDNA sensors are also discussed in regards to their selections of probes for receptors based on the electrode surface recognition elements.
Collapse
Affiliation(s)
- Mahima Mishra
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, 281406 Uttar Pradesh, India
| | | | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Arindam Pramanik
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
- School of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
2
|
Electrochemical Biosensors for Circulating Tumor DNA Detection. BIOSENSORS 2022; 12:bios12080649. [PMID: 36005048 PMCID: PMC9406149 DOI: 10.3390/bios12080649] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer-screening. Consequently, the detection of ctDNA in liquid biopsy is gaining much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from industry. However, it is difficult to achieve low-cost, real-time, and portable measurement of ctDNA in traditional gene-detection technology. Electrochemical biosensors have become a highly promising solution to ctDNA detection due to their unique advantages such as high sensitivity, high specificity, low cost, and good portability. Therefore, this review aims to discuss the latest developments in biosensors for minimally invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, designs of electrodes, detection strategies, preparation of samples, and figures of merit, sorted by type of electrode surface recognition elements. The development of biosensors for the Internet of Things, point-of-care testing, big data, and big health is analyzed, with a focus on their portable, real-time, and non-destructive characteristics.
Collapse
|
3
|
Zhang W, Zhao S, Xie Z, Chen S, Huang Y, Zhao Z, Yi G. The fluorescence amplification strategy based on 3D DNA walker and CRISPR/Cas12a for the rapid detection of BRAF V600E. ANAL SCI 2022; 38:1057-1066. [DOI: 10.1007/s44211-022-00131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022]
|
4
|
Hou M, He D, Wang H, Huang J, Cheng H, Wan K, Li HW, Tang Z, He X, Wang K. Simultaneous and multiplex detection of exosomal microRNAs based on the asymmetric Au@Au@Ag probes with enhanced Raman signal. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Liu X, Wu Z, Lin X, Bu W, Qin L, Gai H. A homogeneous digital biosensor for circulating tumor DNA by the enumeration of a dual-color quantum dot complex. Analyst 2021; 146:3034-3040. [PMID: 33949439 DOI: 10.1039/d1an00299f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monitoring ctDNA in blood is important for cancer management. Here, a one-step single particle counting approach was developed for directly quantifying ctDNA in plasma. Hairpin DNA containing a triple helix stem was immobilized onto QD 585 as a probe. The hairpin was opened by the target, and therefore hybridized with assistant DNA on QD 655, resulting in an aggregate of QD 585 and QD 655. The two-color QD aggregate was regarded as the target. Observed under a single particle transmission grating-based spectral microscope, the two-color QD aggregate was distinguished by a unique spectral pattern of two first-order streaks, and it was counted. The difference in the responses of the probes to perfect-match DNA, single-base mismatch DNA, and non-match DNA indicated that the probe had sufficient single-base discrimination capabilities. The success in plasma recovery tests demonstrated the feasibility of carrying out the direct detection of ctDNA in plasma.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Wei Bu
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Lei Qin
- Xuzhou Haichuan Institute of Life Science Co. Ltd, Xuzhou, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Y, Lu H, Yang F, Cheng Y, Dai W, Meng X, Dong H, Zhang X. Uniform palladium nanosheets for fluorimetric detection of circulating tumor DNA. Anal Chim Acta 2020; 1139:164-168. [PMID: 33190700 DOI: 10.1016/j.aca.2020.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 01/16/2023]
Abstract
Fluorescence quenching property of two-dimensional (2D) nanosheets (NSs) have received extensively attention in the construction of novel biosensing platform. However, the heterogeneity of the wide-size distribution and inefficient fluorescence quenching capacity limit its wide practical applications. Herein, for the first time, we report a novel fluorescent biosensor based on uniform palladium NSs (Pd NSs) with excellent fluorescence quenching efficiency and differential affinity toward ssDNA versus dsDNA and combination with a pair of DNA detection probes with fluorophore for detecting circulating tumor DNA (ctDNA). The DNA detection probes are facilitated to adsorbed to the surface of Pd NSs, leading to efficient fluorescence quench. In the presence of target DNA, it can be linked by T4 DNA ligase to form long DNA duplex structures, which display weak affinity toward Pd NSs, producing the fluorescence recovery. The remarkable fluorescence quenching efficiency and ssDNA/dsDNA differential affinity of Pd NSs make it have a good detection ability without signal amplification. The result indicates that this facile but cost-effective strategy holds great promise in bioanalysis.
Collapse
Affiliation(s)
- Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Huiting Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Yaru Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
7
|
Zou Z, Liao X, Yang L, Huang Z, Yang H, Yan Q, Zhang Y, Qing Z, Zhang L, Feng F, Yang R. Human Serum Albumin-Occupying-Based Fluorescence Turn-On Analysis of Antiepileptic Drug Tiagabine Hydrochloride. Anal Chem 2020; 92:3555-3562. [DOI: 10.1021/acs.analchem.9b03507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Zou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaodou Liao
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410112, P. R. China
| | - Ziyun Huang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Qi Yan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yufei Zhang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lihua Zhang
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Feng Feng
- College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, Shanxi 037009, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410112, P. R. China
| |
Collapse
|
8
|
Yang L, Zheng J, Zou Z, Cai H, Qi P, Qing Z, Yan Q, Qiu L, Tan W, Yang R. Human serum albumin as an intrinsic signal amplification amplifier for ultrasensitive assays of the prostate-specific antigen in human plasma. Chem Commun (Camb) 2020; 56:1843-1846. [DOI: 10.1039/c9cc08501g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endogenous human serum albumin is used as an intrinsic signal amplification amplifier for ultrasensitive assays of disease biomarkers in blood tests.
Collapse
|
9
|
Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, Yang S, Tan W, Yang R. In Situ Amplification‐Based Imaging of RNA in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812449] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhihe Qing
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jingyuan Xu
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jinlei Hu
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jing Zheng
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Lei He
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Zhen Zou
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Sheng Yang
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Weihong Tan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| | - Ronghua Yang
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha 410114 China
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics Hunan University Changsha 410082 China
| |
Collapse
|
10
|
In Situ Amplification‐Based Imaging of RNA in Living Cells. Angew Chem Int Ed Engl 2019; 58:11574-11585. [DOI: 10.1002/anie.201812449] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Indexed: 12/11/2022]
|
11
|
Clark DP, Pazdernik NJ, McGehee MR. DNA Sequencing. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Li Y, Yang S, Zheng J, Zou Z, Yang R, Tan W. "Trojan Horse" DNA Nanostructure for Personalized Theranostics: Can It Knock on the Door of Preclinical Practice? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15028-15044. [PMID: 30295491 DOI: 10.1021/acs.langmuir.8b02008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotheranostics, combing diagnostic and therapeutic components in an all-in-one nanomaterial, possess exciting potentials for precision nanomedicine. However, a major obstacle for current nanotheranostics to enter preclinical and/or clinical trials is the intrinsic toxicities of these nanomaterials. As an emerging biomaterial, the bioinspired DNA nanostructure shows advantages for constructing better nanotheranostics due to its excellent features, including native biocompatibility, full programmability, and ready accessibility. In this feature article, we highlight recent advances in the design of DNA-nanostructure-based diagnostics and/or therapeutics capable of specifically responding to biological stimuli in a dynamic way, with a particular focus on the design mechanism, responsive performance, and potential for preclinical and/or clinical trials in personalized theranostics.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Sheng Yang
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| | - Zhen Zou
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Ronghua Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
- School of Chemistry and Biological Engineering , Changsha University of Science and Technology , Changsha 410004 , P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
13
|
Chang H, Zhang Y, Yang F, Wang C, Dong H. ctDNA Detection Based on DNA Clutch Probes and Strand Exchange Mechanism. Front Chem 2018; 6:530. [PMID: 30430107 PMCID: PMC6220571 DOI: 10.3389/fchem.2018.00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor DNA (ctDNA), originating directly from the tumor or circulating tumor cells, may reflect the entire tumor genom and has gained considerable attention for its potential clinical diagnosis and prognosis throughout the treatment regimen. However, the reliable and robust ctDNA detection remains a key challenge. Here, this work designs a pair of DNA clutch separation probes and an ideal discrimination probes based on toehold-mediated strand displacement reaction (TSDR) to specifically recognize ctDNA. First, the ctDNAs were denatured to form ssDNAs, the pair of DNA clutch separation probes [one of which modified onto the magnetic nanoparticles (MNPs)] are used to recognize and hybridize with the complemental chains and prevent reassociation of denatured ssDNAs. The complemental chains are removed in magnetic field and left the wild and mutant ssDNA chains in the supernatant. Then, the TSDR specificity recognizes the target mutant sequence to ensure only the mutated strands to be detection. The proposed assay exhibited good sensitivity and selectivity without any signal amplification. The proposed assay displayed a linear range from 2 to100 nM with a limit of detection (LOD) of 0.85 nM, and it was useful for ctDNA biomedical analysis and clinic theranostic.
Collapse
Affiliation(s)
- Huan Chang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Yiyi Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Changtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Haifeng Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.,Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
14
|
A versatile label-free electrochemical biosensor for circulating tumor DNA based on dual enzyme assisted multiple amplification strategy. Biosens Bioelectron 2018; 122:224-230. [PMID: 30265973 DOI: 10.1016/j.bios.2018.09.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 01/12/2023]
Abstract
A versatile label-free electrochemical biosensor based on dual enzyme assisted multiple amplification strategy was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The biosensor consists of a triple-helix molecular switch (THMS) as molecular recognition and signal transduction probe, ribonuclease HII (RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted multiple amplification accelerator. The presence of target ctDNA could open THMS and trigger RNase HII-assisted homogenous target recycling amplification to produce substantial signal transduction probe (STP). The released STP hybridized with the capture probe immobilized on a gold electrode, then TdT and assistant probe were further employed to fulfill TdT-mediated cascade extension and generate stable DNA dendritic nanostructures. The electroactive methyl blue (MB) was finally used as the signal reporter to realize the multiple electrochemical amplification ctDNA detection as the amount of MB is positively correlated with the target ctDNA. Combined with the efficient recognition capacity of the designed THMS and the excellent multiple amplification ability of RNase HII and TdT, the constructed sensing platform could detect KRAS G12DM with a wide detection range from 0.01 fM to 1 pM, and the limit of detection as low as 2.4 aM. Besides, the platform is capable of detecting ctDNA in biological fluid such as plasma. More importantly, by substituting the loop of THMS with different sequences, this strategy could be conveniently expanded into the detection of other ctDNA, showing promising potential applications in clinical cancer screening and prognosis.
Collapse
|
15
|
Yang H, Chen Z, Cao X, Li Z, Stavrakis S, Choo J, deMello AJ, Howes PD, He N. A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids. Anal Bioanal Chem 2018; 410:7019-7030. [PMID: 30155705 DOI: 10.1007/s00216-018-1335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/02/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
A variety of automated sample-in-answer-out systems for in vitro molecular diagnostics have been presented and even commercialized. Although efficient in operation, they are incapable of quantifying targets, since quantitation based on analog analytical methods (via standard curve analysis) is complex, expensive, and challenging. To address this issue, herein, we describe an integrated sample-in-digital-answer-out (SIDAO) diagnostic system incorporating DNA extraction and digital recombinase polymerase amplification, which enables rapid and quantitative nucleic acid analysis from bodily fluids within a disposable cartridge. Inside the cartridge, reagents are pre-stored in sterilized tubes, with an automated pipetting module allowing facile liquid transfer. For digital analysis, we fabricate a simple, single-layer polydimethylsiloxane microfluidic device and develop a novel and simple sample compartmentalization strategy. Sample solution is partitioned into an array of 40,044 fL-volume microwells by sealing the microfluidic device through the application of mechanical pressure. The entire analysis is performed in a portable, fully automated instrument. We evaluate the quantitative capabilities of the system by analyzing Mycobacterium tuberculosis genomic DNA from both spiked saliva and serum samples, and demonstrate excellent analytical accuracy and specificity. This SIDAO system provides a promising diagnostic platform for quantitative nucleic acid testing at the point-of-care. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Haowen Yang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Zhu Chen
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaobao Cao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Jaebum Choo
- Department of Bionano Technology, Hanyang University, Sa-1-dong 1271, Ansan, 15588, South Korea
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093, Zürich, Switzerland
| | - Nongyue He
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
16
|
Dou B, Li J, Jiang B, Yuan R, Xiang Y. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Anal Chim Acta 2018; 1038:166-172. [PMID: 30278899 DOI: 10.1016/j.aca.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023]
Abstract
The detection of single nucleotide polymorphisms (SNPs) is of great clinical significance to the diagnosis of various genetic diseases and cancers. In this work, the development of an ultrasensitive ratiometric electrochemical sensor for screening SNP with a significantly enhanced discrimination factor is reported. The ferrocene (Fc) and methylene blue (MB) dual-tagged triple helix complex (THC) probes are self-assembled on the gold electrode to construct the sensing interface. The addition of the mutant p53 gene causes the disassembly of the THC probes with the release of the Fc-tagged sequence and the folding of the MB-labeled sequence into a hairpin structure, causing the change in the current response ratio of MB to Fc for monitoring the mutant p53 gene. Such ratio is dramatically enhanced by the toehold-mediated displacement reaction-assisted target recycling amplification with the presence of an assistance hairpin sequence. With the significant signal amplification and the advantageous specificity of the THC probes, sub-femtomolar detection limit and a highly enhanced SNP discrimination factor for the mutant p53 gene can be obtained. Besides, the proof-of-demonstration application of the sensor for diluted real samples has been verified, offering such sensor new opportunities for monitoring various genetic related diseases.
Collapse
Affiliation(s)
- Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Zhang W, Dai Z, Liu X, Yang J. High-performance electrochemical sensing of circulating tumor DNA in peripheral blood based on poly-xanthurenic acid functionalized MoS 2 nanosheets. Biosens Bioelectron 2018; 105:116-120. [PMID: 29367008 DOI: 10.1016/j.bios.2018.01.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/01/2018] [Accepted: 01/17/2018] [Indexed: 11/16/2022]
Abstract
A high-performance sensing platform based on poly-xanthurenic acid (PXA) film functionalized MoS2 nanosheets was developed for electrochemical detection of circulating tumor DNA in peripheral blood. The MoS2 nanosheets were obtained using a simple ultrasonic method from bulk MoS2. The physical adsorption between MoS2 and aromatic XA monomers effectively improved the electropolymerization efficiency, accompanied with an increased electrochemical response of PXA. The obtained PXA/MoS2 nanocomposite not only served as a substrate for DNA immobilization but also reflected the electrochemical transduction originating from DNA immobilization and hybridization without any complex labelling processes or outer indicators. The immobilization of the probe ssDNA was achieved via noncovalent assembly due to the π-π interaction between PXA and DNA bases. After the hybridization of the probe ssDNA with the target DNA, the formation of helix structure induced the resulted dsDNA to be released from the surface of the PXA/MoS2 nanocomposite. The detection limit of this constructed DNA biosensor was calculated in the linear target DNA concentrations range from 1.0 × 10-16 mol/L to 1.0 × 10-10 mol/L and it was found to be 1.8 × 10-17 mol/L.
Collapse
Affiliation(s)
- Wei Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Zhichao Dai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xue Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Jimin Yang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
18
|
Yang J, Yin X, Xia M, Zhang W. Tungsten disulfide nanosheets supported poly(xanthurenic acid) as a signal transduction interface for electrochemical genosensing applications. RSC Adv 2018; 8:39703-39709. [PMID: 35558023 PMCID: PMC9091227 DOI: 10.1039/c8ra08669a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022] Open
Abstract
Tungsten disulfide (WS2) nanosheets supported poly(xanthurenic acid) (PXa) was used as the signal transduction interface for electrochemical genosensing. The WS2 nanosheets were obtained from bulk WS2 using a simple ultrasonic method. Due to the unique physical adsorption of Xa monomers to WS2, the electropolymerization efficiency was greatly improved, accompanied with an increased electrochemical response of PXa. The obtained PXa/WS2 nanocomposite not only served as a substrate for DNA immobilization but also reflected the electrochemical transduction originating from DNA immobilization and hybridization without any other indicators or complicated labelling steps. Owing to the presence of abundant carboxyl groups, the probe ssDNA was covalently attached on the carboxyl-terminated PXa/WS2 nanocomposite through the free amines of DNA sequences based on the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydrosulfosuccinimide crosslinking reaction. The covalently immobilized probe ssDNA could selectively hybridize with its target DNA to form dsDNA on the surface of the PXa/WS2 nanocomposite. This developed biosensor achieved a satisfactory detection limit down to 1.6 × 10−16 mol L−1 and a dynamic range of 1.0 × 10−15 to 1.0 × 10−11 mol L−1 for detection of circulating tumor DNA related to gastric carcinoma. Selectivity of the biosensor has been investigated in presence of non-complementary, one-mismatched and two-mismatched DNA sequences. An electrochemical signal transduction sensing interface for detecting PIK3CA gene was developed based on WS2 nanosheets supported PXa.![]()
Collapse
Affiliation(s)
- Jimin Yang
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| | - Xuesong Yin
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| | - Min Xia
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- China
| |
Collapse
|