1
|
Ali I, Perrucci M, Ciriolo L, D'Ovidio C, de Grazia U, Ulusoy HI, Kabir A, Savini F, Locatelli M. Applications of electrophoresis for small enantiomeric drugs in real-world samples: Recent trends and future perspectives. Electrophoresis 2024; 45:55-68. [PMID: 37495859 DOI: 10.1002/elps.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Separation and identification of chiral molecules is a topic widely discussed in the literature and of fundamental importance, especially in the pharmaceutical and food fields, both from industrial and laboratory points of view. Several techniques are used to carry out these analyses, but high-performance liquid chromatography is often the "gold standard." The high costs of chiral columns, necessary for this technique, led researchers to look for an alternative, and capillary electrophoresis (CE) is a technique capable of overcoming some of the disadvantages of liquid chromatography, often providing comparable results in terms of sensitivity and robustness. We addressed this topic, already widely discussed in the literature, providing an overview of the last 6 years of the most frequent and recent applications of CE. To make the manuscript more effective, we decided to divide it into paragraphs that represent the main field of application, from enantioseparation in complex matrices (pharmacokinetic studies or toxicological dosage of drugs, analysis of environmental pollutants, and analyses of foods) to quality control analyses on pharmaceutical formulas. About these, which are the fields of most meaningful use, we mentioned some of the most innovative and performing methods, with a look to the future on the application of new materials used, such as chiral selectors, that can make these types of analyses accessible to all, reducing cost, time, and excessive use of toxic solvents.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| | - Miryam Perrucci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Luigi Ciriolo
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Ugo de Grazia
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Halil Ibrahim Ulusoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", Pescara, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
2
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Liu R, Gu B, Chen M, Ye J, Chu Q. Deep eutectic solvents combined with beta-cyclodextrin derivatives for chiral separation of typical adrenergic receptor agonists by capillary electrophoresis with amperometric detection. J Pharm Biomed Anal 2023; 236:115748. [PMID: 37757546 DOI: 10.1016/j.jpba.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Enantioseparation has always been one of the research hotspots and difficulties in the field of modern separation science. In this work, a binary chiral electrophoretic separation system was constructed using deep eutectic solvents (DESs) coupled with beta-cyclodextrin derivatives based on capillary electrophoresis with amperometric detection system, and five groups of typical adrenergic receptor agonists (adrenaline, salbutamol, isoproterenol, norepinephrine and terbutaline) were selected as the model enantiomers. The effects of additive types and contents of DESs and cyclodextrins, and the pH value and concentration of the running buffer on the resolution of the selected chiral compounds were investigated in detail. The mechanism of DESs improving separation was explored preliminarily by means of UV spectrophotometry, which was further verified based on the comparison of single and mixed components of choline chlorine-urea DES. Under the optimum conditions, the relative standard deviations for inter-day and intra-day repeatability of the migration time, peak area and resolution for adrenaline and salbutamol were within 8.7%, and the limits of detection reached 0.030 μg mL-1 (S/N = 3). The recovery data were in the range of 96.3-118.7%. The developed methods have been applied for the analyses of (+)-adrenaline hydrochloride injection and (±)-salbutamol aerosol. This binary chiral electrophoretic separation system by CE-AD has high detection sensitivity and low analytical cost, providing an alternative for the separation and analysis of chiral drugs.
Collapse
Affiliation(s)
- Ru Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Boning Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meijun Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Yue JY, Song LP, Shi YH, Zhang L, Pan ZX, Yang P, Ma Y, Tang B. Chiral Ionic Covalent Organic Framework as an Enantioselective Fluorescent Sensor for Phenylalaninol Determination. Anal Chem 2023. [PMID: 37454333 DOI: 10.1021/acs.analchem.3c01637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phenylalaninol (PAL) is a significant chemical intermediate widely utilized in drug development and chiral synthesis, for instance, as a reactant for bicyclic lactams and oxazoloisoindolinones. Since the absolute stereochemical configuration significantly impacts biological action, it is crucial to evaluate the concentration and enantiomeric content of PAL in a quick and convenient manner. Herein, an effective PAL enantiomer recognition method was reported based on a chiral ionic covalent organic framework (COF) fluorescent sensor, which was fabricated via one-step postquaternization modification of an achiral COF by (1R, 2S, 5R)-2-isopropyl-5-methylcyclohexyl-carbonochloridate (L-MTE). The formed chiral L-TB-COF can be applied as a chiral fluorescent sensor to recognize the stereochemical configuration of PAL, which displayed a turn-on fluorescent response for R-PAL over that of S-PAL with an enantioselectivity factor of 16.96. Nonetheless, the single L-MTE molecule had no chiral recognition ability for PAL. Moreover, the ee value of PAL can be identified by L-TB-COF. Furthermore, density functional theory (DFT) calculations demonstrated that the chiral selectivity came from the stronger binding affinity between L-TB-COF and R-PAL in comparison to that with S-PAL. L-TB-COF is the first chiral ionic COF employed to identify chiral isomers by fluorescence. The current work expands the range of applications for ionic COFs and offers fresh suggestions for creating novel chiral fluorescent sensors.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying-Hao Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Zi-Xian Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266200, P.R. China
| |
Collapse
|
5
|
Li A, Xue S, Xu Y, Ding S, Wen D, Zhang Q. A feasibility study on the use of hydrophobic eutectic solvents as pseudo-stationary phases in capillary electrophoresis for chiral separations. Anal Chim Acta 2023; 1239:340693. [PMID: 36628761 DOI: 10.1016/j.aca.2022.340693] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A critical challenge in using deep eutectic solvents (DESs) in capillary electrophoresis (CE) is to develop separation systems in which a DES can really work as a single entity. To achieve this, the authors recently demonstrated a novel strategy that takes advantage of the aqueous dispersibility of hydrophobic DESs (or more accurately hydrophobic eutectic solvents (HESs)). However, the previous work was limited only to the separation of achiral analytes, e.g., analogues, homologues, and isomers. The present study was designed as a follow-up study in order to explore the feasibility of employing HES-type pseudo-stationary phases (PSPs) in CE for chiral separations. By using carboxymethyl-β-cyclodextrin (CM-β-CD) as a model chiral selector, we provide the first evidence that there is a potential synergistic effect between HESs and traditional chiral selectors. Specifically, the combined use of HES (-)-menthol:octanoic acid and CM-β-CD allowed excellent enantioseparations of several basic drugs which were not able to be resolved in the single CM-β-CD system. The enantioresolutions were significantly improved while the migration times of the enantiomers were also shortened due to the hydrophobic mechanism of the HES-type PSP. Critical factors influencing the novel chiral CE system were systematically investigated. Since HESs are considered as "designer" solvents with highly tunable properties, this study demonstrates the potential of employing HESs (or HDES)-type PSPs in CE for chiral separations.
Collapse
Affiliation(s)
- Ang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Song Xue
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, PR China
| | - Yu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sihui Ding
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Di Wen
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
6
|
Liu J, Zhang J, Zhu D, Zhu X, Du Y, Ma X, Feng Z, Sun X, Xu H. Establishment and Molecular Modeling Study of Cyclodextrin-Based Synergistic Enantioseparation Systems with Three New Amino Acid Chiral Ionic Liquids as Additives in Capillary Electrophoresis. J Chromatogr Sci 2022; 60:984-990. [PMID: 35662327 DOI: 10.1093/chromsci/bmac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/30/2022]
Abstract
Chiral ionic liquids (CILs) have attracted more and more attention due to their superior performance as chiral additives in capillary electrophoresis. In this work, based on the cyclodextrin (CD) derivatives and three new amino acid CILs (trifluoroacetate-L-Hydroxyproline, nitric acid-L-Hydroxyproline and trifluoroacetate-L-threonine), the new synergistic systems were established for chiral drug separation. In contrast to the traditional single glucosyl-β-CD (Glu-β-CD) separation system, the CIL/Glu-β-CD synergistic systems achieved improved resolution of three model drug racemates. Some experimental variables, such as CIL concentration, Glu-β-CD concentration, buffer pH, applied voltage, and the type and proportion of organic modifier, were optimized in the trifluoroacetate-L-Hydroxyproline/Glu-β-CD synergistic system. In addition, the recognition process in the synergistic system was studied through the molecular modeling method.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dongyang Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaodong Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hui Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China.,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Orlandini S, Hancu G, Szabó ZI, Modroiu A, Papp LA, Gotti R, Furlanetto S. New Trends in the Quality Control of Enantiomeric Drugs: Quality by Design-Compliant Development of Chiral Capillary Electrophoresis Methods. Molecules 2022; 27:7058. [PMID: 36296650 PMCID: PMC9607418 DOI: 10.3390/molecules27207058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Capillary electrophoresis (CE) is a potent method for analyzing chiral substances and is commonly used in the enantioseparation and chiral purity control of pharmaceuticals from different matrices. The adoption of Quality by Design (QbD) concepts in analytical method development, optimization and validation is a widespread trend observed in various analytical approaches including chiral CE. The application of Analytical QbD (AQbD) leads to the development of analytical methods based on sound science combined with risk management, and to a well understood process clarifying the influence of method parameters on the analytical output. The Design of Experiments (DoE) method employing chemometric tools is an essential part of QbD-based method development, allowing for the simultaneous evaluation of experimental parameters as well as their interaction. In 2022 the International Council for Harmonization (ICH) released two draft guidelines (ICH Q14 and ICH Q2(R2)) that are intended to encourage more robust analytical procedures. The ICH Q14 guideline intends to harmonize the scientific approaches for analytical procedures' development, while the Q2(R2) document covers the validation principles for the use of analytical procedures including the recent applications that require multivariate statistical analyses. The aim of this review is to provide an overview of the new prospects for chiral CE method development applied for the enantiomeric purity control of pharmaceuticals using AQbD principles. The review also provides an overview of recent research (2012-2022) on the applicability of CE methods in chiral drug impurity profiling.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| | - Gabriel Hancu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Zoltán-István Szabó
- Department of Pharmaceutical Industry and Management, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Adriana Modroiu
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Lajos-Attila Papp
- Department of Pharmaceutical and Therapeutic Chemistry, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry “U. Schiff”, University of Florence, 50019 Florence, Italy
| |
Collapse
|
8
|
The role of deep eutectic solvents in chiral capillary electrokinetic chromatography: A comparative study based on α-cyclodextrin chiral selector. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Qi L, Qiao J. Progress of chiral ligand-exchange capillary electrophoresis for enantioseparation. J Chromatogr A 2022; 1679:463381. [DOI: 10.1016/j.chroma.2022.463381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
10
|
Role of Ionic Liquids in Capillary Electrophoresis. ANALYTICA 2022. [DOI: 10.3390/analytica3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids are a very important class of compounds due to their remarkable properties and wide range of applications. On the other hand, capillary electrophoresis is also gaining importance in separation science because of its fast speed and inexpensive nature. The use of ionic liquids in capillary electrophoresis is gaining importance continuously. The present review article describes the applications of ionic liquids in capillary electrophoresis. This article also describes the general aspects of ionic liquids and capillary electrophoresis. The use of ionic liquids in capillary electrophoresis, optimization of separation, mechanism of separation, and toxicity of ionic liquids, as well as their future perspectives, have also been discussed. It was observed that not much work has been performed in capillary electrophoresis using ionic liquids. It was also realized that the use of ionic liquids in capillary electrophoresis could revolutionize analytical science. Briefly, there is a great need for the use of ionic liquids in capillary electrophoresis for better and more effective separation.
Collapse
|
11
|
Salido-Fortuna S, Fernández-Bachiller MI, Marina ML, Castro-Puyana M. Synthesis and characterization of carnitine-based ionic liquids and their evaluation as additives in cyclodextrin-electrokinetic chromatography for the chiral separation of thiol amino acids. J Chromatogr A 2022; 1670:462955. [DOI: 10.1016/j.chroma.2022.462955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
12
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
13
|
Zhang Q, Ren S, Li A, Zhang J, Xue S, Sun X. Tartaric acid-based ionic liquid-type chiral selectors: Effect of cation species on their enantioseparation performance in capillary electrophoresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
|
15
|
Greño M, Marina ML, Castro-Puyana M. Use of single and dual systems of γ-cyclodextrin or γ -cyclodextrin/L-Carnitine derived ionic liquid for the enantiomeric determination of cysteine by electrokinetic chromatography. A comparative study. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yi G, Ji B, Du J, Zhou J, Chen Z, Mao Y, Wei Y, Xia Z, Fu Q. Enhanced enantioseparation performance in cyclodextrin-electrokinetic chromatography using quinine modified polydopamine coated capillary column. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Effects of amino acid-derived chiral ionic liquids on cyclodextrin-mediated capillary electrophoresis enantioseparations of dipeptides. J Chromatogr A 2021; 1652:462342. [PMID: 34174715 DOI: 10.1016/j.chroma.2021.462342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
The synergistic effect of chiral ionic liquids composed of tetraalkylammonium ions and the amino acids Asn, Asp or Pro on the enantioseparations of dipeptides mediated by β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin in capillary electrophoresis was studied. Addition of a chiral ionic liquid resulted in a concentration-dependent increase in the enantioresolutions compared to the sole presence of a cyclodextrin in the background electrolyte. The extent varied with the tetraalkylammonium cation (tetramethylammonium versus tetrabutylammonium) as well as the amino acid component of the ionic liquid. The presence of a chiral ionic liquid did not counteract the pH-dependent reversal of the enantiomer migration order of the dipeptides Ala-Phe, Ala-Tyr and Phe-Phe when increasing the pH of the background electrolyte from 2.5 to 3.5. Comparing the effect of a chiral ionic liquid based on Asp with the addition of equimolar concentrations of the individual components of the ionic liquid, a diverse picture was observed. In some cases, higher resolution values were obtained with the chiral ionic liquid, while for other cases superior enantioseparations were obtained upon separate addition of the amino acid component and a tetraalkylammonium chloride. With regard to the stereochemistry of the amino acid, a superior effect was typically observed using the l-configured amino acid, but in some cases higher resolution values were found in the presence of d-Asp. The rationale for the diverse observations is not obvious and may be due to the zwitterionic nature of analytes as well as the amino acid component of the chiral ionic liquid.
Collapse
|
18
|
Wu D, Ma C, Fan GC, Pan F, Tao Y, Kong Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J Sep Sci 2021; 45:325-337. [PMID: 34117714 DOI: 10.1002/jssc.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023]
Abstract
Ionic chiral selectors have been received much attention in the field of asymmetric catalysis, chiral recognition, and preparative separation. It has been shown that the addition of ionic chiral selectors can enhance the recognition efficiency dramatically due to the presence of multiple intermolecular interactions, including hydrogen bond, π-π interaction, van der Waals force, electrostatic ion-pairing interaction, and ionic-hydrogen bond. In the initial research stage of the ionic chiral selectors, most of work center on the application in chromatographic separation (capillary electrophoresis, high-performance liquid chromatography, and gas chromatography). Differently, more and more attention has been paid on the spectroscopy (nuclear magnetic resonance, fluorescence, ultraviolet and visible absorption spectrum, and circular dichroism spectrum) and electrochemistry in recent years. In this tutorial review as regards the ionic chiral selectors, we discuss in detail the structural features, properties, and their application in chromatography, spectroscopy, and electrochemistry.
Collapse
Affiliation(s)
- Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Cong Ma
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, P. R. China
| | - Fei Pan
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yongxin Tao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, P. R. China
| |
Collapse
|
19
|
Enhanced enantioselectivity of tartaric acid in capillary electrophoresis: From tartaric acid to tartaric acid-based ionic liquid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Lin Z, Tai HC, Zhu G, Fabiano A, Borges-Muñoz A, Ye YK, He BL. Evaluation of a polysaccharide-based chiral reversed-phase liquid chromatography screen strategy in pharmaceutical analysis. J Chromatogr A 2021; 1645:462085. [PMID: 33848654 DOI: 10.1016/j.chroma.2021.462085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
Chirality control plays a critical role in developing stereoisomeric drugs. Due to the complexity and lack of predictability in chiral separations, column screening remains the gold standard to initiate chiral method development for active pharmaceutical ingredients (APIs) and synthetic intermediates. Chiral reversed-phase (RP) liquid chromatography (LC) has gained favor over other modes due to its versatility and compatibility in analyzing a wide range of chiral compounds in various matrices. Herein, we established a tier-based chiral RPLC screen strategy by constructing and analyzing a database of 101 chiral screens with a total of 3,401 entries (unique LC runs) for proprietary APIs or intermediates at Bristol Myers Squibb. Up to 17 polysaccharide-based chiral stationary phases (CSPs) and four mobile phases (MPs) have been screened with gradient elution. A selection of ten CSPs with two MPs was found sufficient to achieve successful separation for 82% of the total screens. Two RPLC screen tiers (Tier 1: AZ, OD, ID, and IG) and (Tier 2: AY, OJ, OZ, IA, IC, and IH) were proposed along with two MPs (acidic and neutral) to target ~70% hit rate for Tier 1, and ~80% for the combined set. We also implemented a user-friendly workflow to enable walk-up chiral RPLC screening with automated reports and system suitability tests.
Collapse
Affiliation(s)
- Ziqing Lin
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Hua-Chia Tai
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Guanghui Zhu
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Abigail Fabiano
- Chemical & Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Amaris Borges-Muñoz
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Yun K Ye
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Brian Lingfeng He
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA.
| |
Collapse
|
21
|
Zhao Y, Zhu X, Jiang W, Liu H, Sun B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules 2021; 26:1145. [PMID: 33669919 PMCID: PMC7924630 DOI: 10.3390/molecules26041145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of global industry and increasingly frequent product circulation, the separation and detection of chiral drugs/pesticides are becoming increasingly important. The chiral nature of substances can result in harm to the human body, and the selective endocrine-disrupting effect of drug enantiomers is caused by differential enantiospecific binding to receptors. This review is devoted to the specific recognition and resolution of chiral molecules by chromatography and membrane-based enantioseparation techniques. Chromatographic enantiomer separations with chiral stationary phase (CSP)-based columns and membrane-based enantiomer filtration are detailed. In addition, the unique properties of these chiral resolution methods have been summarized for practical applications in the chemistry, environment, biology, medicine, and food industries. We further discussed the recognition mechanism in analytical enantioseparations and analyzed recent developments and future prospects of chromatographic and membrane-based enantioseparations.
Collapse
Affiliation(s)
| | | | | | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China; (Y.Z.); (X.Z.); (W.J.); (B.S.)
| | | |
Collapse
|
22
|
Tetraalkylammonium-l-tartrate ionic liquids as sole chiral selectors in capillary electrophoresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Krait S, Konjaria ML, Scriba GKE. Advances of capillary electrophoresis enantioseparations in pharmaceutical analysis (2017-2020). Electrophoresis 2021; 42:1709-1725. [PMID: 33433919 DOI: 10.1002/elps.202000359] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Capillary electrophoresis is a powerful technique for the analysis of polar chiral compounds and has been widely accepted for analytical enantioseparations of drug compounds in pharmaceuticals and biological media. In addition, many mechanistic studies have been conducted in an attempt to rationalize enantioseparations in combination with spectroscopic and computational techniques. The present review will focus on recent examples of mechanistic aspects and summarize recent applications of stereoselective pharmaceutical and biomedical analysis published between January 2017 and November 2020. Various separation modes including electrokinetic chromatography in combination with several detection modes including laser-induced fluorescence, mass spectrometry and contactless conductivity detection will be discussed. A general trend also observed in other analytical techniques is the application of quality by design principles in method development and optimization.
Collapse
Affiliation(s)
- Sulaiman Krait
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Mari-Luiza Konjaria
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| | - Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
24
|
Salido-Fortuna S, Casado N, Castro-Puyana M, Marina ML. Use of choline chloride-D-sorbitol deep eutectic solvent as additive in cyclodextrin-electrokinetic chromatography for the enantiomeric separation of lacosamide. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105669] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Yu RB, Quirino JP. Ionic liquids in electrokinetic chromatography. J Chromatogr A 2020; 1637:461801. [PMID: 33385743 DOI: 10.1016/j.chroma.2020.461801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/22/2023]
Abstract
There is an interest in the application of ionic liquids as additives into the separation media to improve achiral and chiral separations in electrokinetic chromatography (EKC). This review will critically discuss the developments on the use of ionic liquids in the different modes of EKC during the last five years (2015-mid 2020). A healthy number of 48 research articles searched through Scopus were categorised into two: ionic liquids as sole pseudophase (micelles, microemulsions, ligand exchange pseudophase or molecular pseudophase) and ionic liquids with pseudophase (achiral or chiral). More than half of the papers dealt with chiral separations that were mostly facilitated by another additive or pseudophase. The role of ionic liquids for improvement of separations were analysed, and we provided some recommendations for further investigations. Finally, the use of ionic liquids in different on-line sample concentration or stacking methods (i.e., field enhancement and sweeping) was briefly discussed.
Collapse
Affiliation(s)
- Raymond B Yu
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
27
|
Jáč P, Bubáková Z, Moreno-González D, Kováčová G, Špulák M, Polášek M. Stability study of α-bromophenylacetic acid: Does it represent an appropriate model analyte for chiral separations? Electrophoresis 2020; 41:1557-1563. [PMID: 33180330 DOI: 10.1002/elps.202000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022]
Abstract
The stability of α-bromophenylacetic acid (BPAA) in 50% aqueous methanol solution has been tested. CE in different running buffers was used to separate BPAA from the decomposition reaction products α-hydroxyphenylacetic (mandelic) acid and α-methoxyphenylacetic acid. Suitable CE separation of all three compounds and other product, bromide, was achieved in 60 mmol/L formate buffer (pH 3.0) at -30 kV in 50 μm (i.d.) poly(vinyl alcohol)-coated fused silica capillary (30 cm/24.5 cm) with UV detection at 200 nm. The CE method was applied to determine the reaction order of the decomposition of BPAA (0.47 mmol/L) via nucleophilic substitution in 50% aqueous methanol. The first-order reaction kinetics was confirmed by linear and non-linear regression, giving the rate constants 1.52 × 10-4 ± 2.76 × 10-5 s-1 and 7.89 × 10-5 ± 5.02 × 10-6 s-1, respectively. Additionally, the degradation products were identified by CE coupled to mass spectrometric (MS) detection. The CE-MS experiments carried out in 60 mmol/L formate buffer (pH 3.0) and in 60 mmol/L acetate buffer (pH 5.0) confirmed the results obtained by CE-UV. Furthermore, the stability of BPAA in polar solvents was tested by 1H NMR experiments. Our results provide strong evidence of the instability and fast degradation of BPAA in 50% aqueous methanol indicating that BPAA is not suitable as the model analyte for chiral separations.
Collapse
Affiliation(s)
- Pavel Jáč
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Zuzana Bubáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - David Moreno-González
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Gabriela Kováčová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Miroslav Polášek
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
28
|
Yin Z, Zhang Y, Guan F, Yu H, Ma Y. Simultaneous separation and indirect ultraviolet detection of chlorate and perchlorate by pyridinium ionic liquids in reversed‐phase liquid chromatography. J Sep Sci 2020; 43:3868-3875. [DOI: 10.1002/jssc.202000690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen‐jie Yin
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Ya‐nan Zhang
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Fu‐jing Guan
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Hong Yu
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| | - Ya‐jie Ma
- College of Chemistry and Chemical Engineering Harbin Normal University Harbin P. R. China
| |
Collapse
|
29
|
Greño M, Castro-Puyana M, Marina ML. Enantiomeric separation of homocysteine and cysteine by electrokinetic chromatography using mixtures of γ-cyclodextrin and carnitine-based ionic liquids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Nie L, Yohannes A, Yao S. Recent advances in the enantioseparation promoted by ionic liquids and their resolution mechanisms. J Chromatogr A 2020; 1626:461384. [PMID: 32797857 DOI: 10.1016/j.chroma.2020.461384] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
More and more various chemical media are being applied in enantioseparation; among them, ionic liquids (ILs) have attracted the long-term attention in this decade as green designable solvents. This paper provides comprehensive overview for the applications of ILs in chiral extraction, gas chromatography, liquid chromatography, capillary electrophoresis and other techniques for enantioseparation. Additionally, the important resolution mechanisms based on ILs have also been summarized and discussed. This review focuses on the latest development of enantioseparation methods by using ILs in various modes, leading to meaningful and valuable information to related fields and thus promotes further research and application of reported methods.
Collapse
Affiliation(s)
- Lirong Nie
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Alula Yohannes
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, China.
| |
Collapse
|
31
|
|
32
|
Witos J, Karjalainen E, Tenhu H, Wiedmer SK. CE and asymmetrical flow-field flow fractionation studies of polymer interactions with surfaces and solutes reveal conformation changes of polymers. J Sep Sci 2020; 43:2495-2505. [PMID: 32227669 DOI: 10.1002/jssc.201901301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Amphiphilic diblock copolymers consisting of a hydrophobic core containing a polymerized ionic liquid and an outer shell composed of poly(N-isoprolylacrylamide) were investigated by capillary electrophoresis and asymmetrical flow-field flow fractionation. The polymerized ionic liquid comprised poly(2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate) with a constant block length (n = 24), while the length of the poly(N-isoprolylacrylamide) block varied (n = 14; 26; 59; 88). Possible adsorption of the block copolymer on the fused silica capillary, due to alterations in the polymeric conformation upon a change in the temperature (25 and 45 °C), was initially studied. For comparison, the effect of temperature on the copolymer conformation/hydrodynamic size was determined with the aid of asymmetrical flow-field flow fractionation and light scattering. To get more information about the hydrophilic/hydrophobic properties of the synthesized block copolymers, they were used as a pseudostationary phase in electrokinetic chromatography for the separation of some model compounds, that is, benzoates and steroids. Of particular interest was to find out whether a change in the length or concentration of the poly(N-isoprolylacrylamide) block would affect the separation of the model compounds. Overall, our results show that capillary electrophoresis and asymmetrical flow-field flow fractionation are suitable methods for characterizing conformational changes of such diblock copolymers.
Collapse
Affiliation(s)
- Joanna Witos
- Department of Chemistry, University of Helsinki, Helsinki, Finland.,Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Erno Karjalainen
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
33
|
Enantiomeric determination of econazole and sulconazole by electrokinetic chromatography using hydroxypropyl-β-cyclodextrin combined with ionic liquids based on L-lysine and L-glutamic acid. J Chromatogr A 2020; 1621:461085. [PMID: 32376018 DOI: 10.1016/j.chroma.2020.461085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
Two analytical methodologies based on the combined use of hydroxypropyl-β-cyclodextrin and two different amino acid-based chiral ionic liquids (tetrabutylammonium-L-lysine or tetrabutylammonium-L-glutamic acid) in electrokinetic chromatography were developed in this work to perform the enantioselective determination of econazole and sulconazole in pharmaceutical formulations. The influence of different experimental variables such as buffer concentration, applied voltage, nature and concentration of the ionic liquid, temperature and injection time, on the enantiomeric separation was investigated. The combination of hydroxypropyl-β-cyclodextrin and tetrabutylammonium-L-lysine under the optimized conditions enabled to achieve the enantiomeric determination of both drugs with high enantiomeric resolution (3.5 for econazole and 2.4 for sulconazole). The analytical characteristics of the developed methodologies were evaluated in terms of linearity, precision, LOD, LOQ and recovery showing good performance for the determination of both drugs which were successfully quantitated in pharmaceutical formulations. This work reports the first analytical methodology enabling the enantiomeric determination of sulconazole in pharmaceutical formulations.
Collapse
|
34
|
Use of Gamithromycin as a Chiral Selector in Capillary Electrophoresis. J Chromatogr A 2020; 1624:461099. [PMID: 32327223 DOI: 10.1016/j.chroma.2020.461099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
In this short communication, we report the use of a second-generation macrolide antibiotic, gamithromycin (Gam), as a novel chiral selector for enantioseparation in capillary electrophoresis (CE). A preliminary analysis of the experiment results shows that Gam is especially suitable for the separation of chiral primary amines. Factors influencing enantioseparations were systematically investigated including the composition of the background electrolyte (BGE), concentration of Gam, the type and proportion of organic solvents, applied voltage, etc. In particular, N-Methylformamide (NMF) was successfully used as a non-aqueous solvent for Gam, and shown to be extremely effective for the separation of primaquine (PMQ) and 1-aminoindan (AMI) when used alone or mixed with other commonly used non-aqueous solvents (e.g. methanol). To our knowledge this was also the first application of NMF as a non-aqueous solvent for antibiotic chiral selectors in CE. The best separations were obtained with 100 mM Tris, 125 mM H3BO3 and 80 mM Gam in methanol/NMF (25:75) solvent for PMQ and AMI, or 80-100 mM Gam in methanol for the other model analytes. Among the analytes, the resolution (Rs) of amlodipine (AML) reached up to 15.65, which is to our knowledge the highest value ever reported in CE studies for this compound (except for using molecularly imprinted polymers technique).
Collapse
|
35
|
Bernardo-Bermejo S, Sánchez-López E, Castro-Puyana M, Marina ML. Chiral capillary electrophoresis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115807] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Wang T, Liu Q, Wang M, Zhou J, Yang M, Chen G, Tang F, Hatzakis E, Zhang L. Quantitative Measurement of a Chiral Drug in a Complex Matrix: A J-Compensated Quantitative HSQC NMR Method. Anal Chem 2020; 92:3636-3642. [DOI: 10.1021/acs.analchem.9b04591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Quanhui Liu
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Mengrui Yang
- Institute of Quality Standard and Testing Technology for Agri-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, P.R. China
- Key Laboratory of Agro-food Safety and Quality, Ministry of Agricultures, Beijing 100081, P.R. China
| | - Gui Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P.R. China
| | - Fenfen Tang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan National Research Center for Optoelectronics, Wuhan 430071, P.R. China
| |
Collapse
|
37
|
Synthesis and application of tetramethylammonium-carboxymethylated-β-cyclodextrin: A novel ionic liquid in capillary electrophoresis enantioseparation. J Pharm Biomed Anal 2020; 180:113030. [DOI: 10.1016/j.jpba.2019.113030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
|
38
|
Kravchenko A, Kolobova E, Kartsova L. Multifunction covalent coatings for separation of amino acids, biogenic amines, steroid hormones, and ketoprofen enantiomers by capillary electrophoresis and capillary electrochromatography. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasia Kravchenko
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
| | - Ekaterina Kolobova
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
- The Federal State Institute of Public Health ‘The Nikiforov Russian Center of Emergency and Radiation Medicine’The Ministry of Russian Federation for Civil DefenceEmergencies and Elimination of Consequences of Natural Disasters 54, Optikov st. St. Petersburg 197082 Russia
| | - Liudmila Kartsova
- Saint Petersburg State UniversityInstitute of Chemistry 26 Universitetskii prospect St. Petersburg Peterhof 198504 Russia
| |
Collapse
|
39
|
Ren S, Xue S, Sun X, Rui M, Wang L, Zhang Q. Investigation of the synergistic effect of chiral ionic liquids as additives in non-aqueous capillary electrophoresis for enantioseparation. J Chromatogr A 2020; 1609:460519. [DOI: 10.1016/j.chroma.2019.460519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
40
|
Xue S, Ren S, Wang L, Zhang Q. Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis. J Chromatogr A 2020; 1611:460579. [DOI: 10.1016/j.chroma.2019.460579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
|
41
|
Wang SY, Li L, Xiao Y, Wang Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Ramos M, Jiménez A, Garrigós MC. Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Salido-Fortuna S, Greño M, Castro-Puyana M, Marina ML. Amino acid chiral ionic liquids combined with hydroxypropyl-β-cyclodextrin for drug enantioseparation by capillary electrophoresis. J Chromatogr A 2019; 1607:460375. [PMID: 31353071 DOI: 10.1016/j.chroma.2019.460375] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Four amino acid chiral ionic liquids were evaluated in dual systems with hydroxypropyl-β-cyclodextrin to investigate the enantioseparation by CE of a group of seven drugs as model compounds (duloxetine, verapamil, terbutaline, econazole, sulconazole, metoprolol, and nadolol). The use of two of these chiral ionic liquids (tetramethylammonium L-Lysine ([TMA][L-Lys]) and tetramethylammonium L-glutamic acid ([TMA][L-Glu])) as modifiers in CE is reported for the first time in this work whereas tetrabutylammonium L-lysine ([TBA][L-Lys]) and tetrabutylammonium L-glutamic acid ([TBA][L-Glu]) were employed previously in CE although very scarcely. The effect of the nature and the concentration of each ionic liquid added to the separation buffer containing the neutral cyclodextrin on the enantiomeric resolution and the migration time obtained for each drug, was investigated. A synergistic effect was observed when combining each chiral ionic liquid with hydroxypropyl-β-cyclodextrin in the case of the five compounds for which the cyclodextrin showed enantiomeric discrimination power when used as sole chiral selector (duloxetine, verapamil, terbutaline, econazole, sulconazole). Buffer concentration and pH, temperature and separation voltage were varied in order to optimize the enantiomeric separation of these five compounds using dual systems giving rise to resolutions ranging from 1.1 to 6.6.
Collapse
Affiliation(s)
- Sandra Salido-Fortuna
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Maider Greño
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain; Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
44
|
Hu S, Zhang M, Li F, Breadmore MC. β-Cyclodextrin-copper (II) complex as chiral selector in capillary electrophoresis for the enantioseparation of β-blockers. J Chromatogr A 2019; 1596:233-240. [DOI: 10.1016/j.chroma.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022]
|
45
|
Greño M, Salgado A, Castro‐Puyana M, Marina ML. Nuclear magnetic resonance to study the interactions acting in the enantiomeric separation of homocysteine by capillary electrophoresis with a dual system of γ‐cyclodextrin and the chiral ionic liquid EtCholNTf2. Electrophoresis 2019; 40:1913-1920. [DOI: 10.1002/elps.201800483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Maider Greño
- Departamento de Química AnalíticaQuímica Física e Ingeniería Química. Facultad de CienciasUniversidad de Alcalá. Ctra. Alcalá de Henares Madrid Spain
| | - Antonio Salgado
- Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN)Centro de Apoyo a la Investigación en QuímicaUniversidad de Alcalá Ctra. Madrid Spain
| | - María Castro‐Puyana
- Departamento de Química AnalíticaQuímica Física e Ingeniería Química. Facultad de CienciasUniversidad de Alcalá. Ctra. Alcalá de Henares Madrid Spain
- Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá. Ctra. Madrid‐Barcelona Alcalá de Henares Madrid Spain
| | - María Luisa Marina
- Departamento de Química AnalíticaQuímica Física e Ingeniería Química. Facultad de CienciasUniversidad de Alcalá. Ctra. Alcalá de Henares Madrid Spain
- Instituto de Investigación Química Andrés M. del Río. Universidad de Alcalá. Ctra. Madrid‐Barcelona Alcalá de Henares Madrid Spain
| |
Collapse
|
46
|
Chiral Selectors in Capillary Electrophoresis: Trends During 2017⁻2018. Molecules 2019; 24:molecules24061135. [PMID: 30901973 PMCID: PMC6471358 DOI: 10.3390/molecules24061135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates.
Collapse
|
47
|
Sun X, Liu K, Du Y, Liu J, Ma X. Investigation of the enantioselectivity of tetramethylammonium-lactobionate chiral ionic liquid based dual selector systems toward basic drugs in capillary electrophoresis. Electrophoresis 2019; 40:1921-1930. [DOI: 10.1002/elps.201800422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaodong Sun
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing P. R. China
| | - Kang Liu
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing P. R. China
| | - Yingxiang Du
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education); China Pharmaceutical University; Nanjing P. R. China
- State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing P. R. China
| | - Jie Liu
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing P. R. China
| | - Xiaofei Ma
- Department of Analytical Chemistry; China Pharmaceutical University; Nanjing P. R. China
| |
Collapse
|
48
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
49
|
Hussain A, AlAjmi MF, Hussain I, Ali I. Future of Ionic Liquids for Chiral Separations in High-Performance Liquid Chromatography and Capillary Electrophoresis. Crit Rev Anal Chem 2018; 49:289-305. [DOI: 10.1080/10408347.2018.1523706] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal Hussain
- Department of General Studies, Jubail Industrial College, Jubail Industrial City, Saudi Arabia
| | - Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina, Al-Munawara, Saudi Arabia
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, India
| |
Collapse
|
50
|
Zhang Q, Zhang J, Xue S, Rui M, Gao B, Li A, Bai J, yin Z, Anochie EM. Enhanced enantioselectivity of native α-cyclodextrins by the synergy of chiral ionic liquids in capillary electrophoresis. J Sep Sci 2018; 41:4525-4532. [DOI: 10.1002/jssc.201800792] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Qi Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jian Zhang
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Song Xue
- Department of Pharmacy; Affiliated Hospital of Jiangsu University; Zhenjiang 212013 P. R. China
| | - Mengjie Rui
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Bin Gao
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Ang Li
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Jiashuai Bai
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | - Zhichao yin
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 P. R. China
| | | |
Collapse
|