1
|
Rodrigues CHP, Mariotto LS, Castro JS, Peruquetti PH, Silva-Junior NC, Bruni AT. Acute, chronic, and post-mortem toxicity: a review focused on three different classes of new psychoactive substances. Forensic Toxicol 2023; 41:187-212. [PMID: 36604359 DOI: 10.1007/s11419-022-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE New psychoactive substances (NPS) are not controlled under the Single Convention on Narcotic Drugs of 1961 or the 1971 Convention, but they may pose a public health threat. Knowledge of the main properties and toxicological effects of these substances is lacking. According to the current Drugs Law (Law n. 11.343/2006), the Brazilian Surveillance Agency issues directives for forbidden substances in Brazil, and structural classes of synthetic cannabinoids, cathinones, and phenylethylamines are considered illicit drugs. Considering that data on these controlled substances are scattered, the main objective of this work was to collect and organize data to generate relevant information on the toxicological properties of NPS. METHODS We carried out a literature review collecting information on the acute, chronic, and post-mortem toxicity of these classes of NSP. We searched info in five scientific databases considering works from 2017 to 2021 and performed a statistical evaluation of the data. RESULTS Results have shown a general lack of studies in this field given that many NPS have not had their toxicity evaluated. We observed a significant difference in the volume of data concerning acute and chronic/post-mortem toxicity. Moreover, studies on the adverse effects of polydrug use are scarce. CONCLUSIONS More in-depth information about the main threats involving NPS use are needed.
Collapse
Affiliation(s)
- Caio H P Rodrigues
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Lívia S Mariotto
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Jade S Castro
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paulo H Peruquetti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Newton C Silva-Junior
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Aline T Bruni
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
2
|
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162613. [PMID: 36871726 DOI: 10.1016/j.scitotenv.2023.162613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
New psychoactive substances (NPS) are a type of abused drug designed to mimic the effects of the currently known illicit drugs, whose structures are constantly changing to escape surveillance. The quick identification of NPS use in the community therefore demands immediate action. This study aimed to develop a target and suspect screening method using LC-HRMS to identify NPS in wastewater samples. An in-house database of 95 traditional and NPS was built using the reference standards, and an analytical method was developed. Wastewater samples were collected from 29 wastewater treatment plants (WWTP) across South Korea, representing 50 % of the total population. The psychoactive substances in waste water samples were screened using in-house database and developed analytical methods. A total of 14 substances were detected in the target analysis, including three NPS (N-methyl-2-AI, 25E-NBOMe, and 25D-NBOMe) and 11 traditional psychoactive substances and their metabolites (zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, phendimetrazine, phentermine, methamphetamine, codeine, morphine, and ketamine). Out of these, N-methyl-2-AI, zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, and phendimetrazine were detected with a detection frequency of over 50 %. Primarily, N-methyl-2-Al was detected in all the wastewater samples. Additionally, four NPSs (amphetamine-N-propyl, benzydamine, isoethcathinone, methoxyphenamine) were tentatively identified at level 2b in a suspect screening analysis. This is the most comprehensive study to investigate NPS using target and suspect analysis methods at the national level. This study raises a need for continuous monitoring of NPS in South Korea.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environmental and Energy, Pusan National University, Busan, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
3
|
Lesne E, Muñoz-Bartual M, Esteve-Turrillas FA. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04751-2. [PMID: 37219582 DOI: 10.1007/s00216-023-04751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
A fast and simple procedure based on microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the simultaneous quantification of 28 synthetic hallucinogens in oral fluids, including lysergic acid diethylamide and substances from NBOMe, NBOH, NBF, 2C, and substituted amphetamine categories. Extraction conditions such as type of sorbent, sample pH, number of charge/discharge cycles, and elution volume were studied. Hallucinogenic compounds were extracted from oral fluid samples using C18 MEPS, loading with 100 μL sample (adjusted to pH 7) in 3 cycles, washing with 100 μL deionized water, and eluting with 50 μL methanol in 1 cycle, giving quantitative recoveries and no significant matrix effects. Limits of detection from 0.09 to 1.22 μg L-1; recoveries from 80 to 129% performed in spiked oral fluid samples at 20, 50, and 100 μg L-1; and high precision with relative standard deviations lower than 9% were obtained. The proposed methodology was demonstrated to be appropriate for the simple and sensitive determination of NBOMe derivates and other synthetic hallucinogenic substances in oral fluid samples.
Collapse
Affiliation(s)
- Evan Lesne
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | - Miguel Muñoz-Bartual
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | | |
Collapse
|
4
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
5
|
Kupriyanova OV, Shevyrin VA, Shafran YM. Potential of chromatography and mass spectrometry for the differentiation of three series of positional isomers of 2-(dimethoxyphenyl)-N-(2-halogenobenzyl)ethanamines. Drug Test Anal 2022; 14:1102-1115. [PMID: 35106940 DOI: 10.1002/dta.3232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
N-(2-Substituted benzyl)-2,5-dimethoxyphenethylamines often cause severe poisonings which has led to their legal prohibition in many countries. At the same time, their positional isomers can be studied as potential therapeutic drugs. In this regard, the search for various approaches to differentiate these isomers is an important practical task, the solution of which would guarantee from identification errors during laboratory analysis. In this paper, the possibilities of differentiation of isomers varying in the position of two methoxy groups in the phenylethyl part of the molecule are considered on the example of compounds of NBF, NBCl and NBBr series by chromatography-mass spectrometry methods. Gas or liquid reverse-phase chromatography in the proposed chromatographic separation modes has demonstrated their ability to resolve this problem reliably. Data on retention indices of isomeric compounds and their derivatives can serve as an additional identification criterion for gas chromatography-mass spectrometry (GC-MS) analysis. Differentiation of NBF and NBCl isomers using electron ionization (EI) mass spectra is feasible only if both the spectrum of the compound and its N-trifluoroacetyl derivative are registered; differentiation of NBBr positional isomers under these conditions does not require obtaining the derivatives. Using electrospray ion source, the compounds can easily be differentiated based on the distinctive features of their collision induced dissociation (CID) spectra recorded at low energy values, which also does not require the synthesis of derivatives. The data presented in current paper will be useful for analysis in laboratories providing the determination of narcotic drugs.
Collapse
Affiliation(s)
- Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation.,Kazan State Medical University, Kazan, Russian Federation
| | - Vadim A Shevyrin
- Ural Federal University, Institute of Chemistry and Technology, Ekaterinburg, Russian Federation
| | - Yuri M Shafran
- Ural Federal University, Institute of Chemistry and Technology, Ekaterinburg, Russian Federation
| |
Collapse
|
6
|
Scheid C, Eller S, Oenning AL, Carasek E, Merib J, de Oliveira TF. Application of Homogeneous Liquid-Liquid Microextraction with Switchable Hydrophilicity Solvents to the Determination of MDMA, MDA and NBOMes in Postmortem Blood Samples. J Anal Toxicol 2021; 46:776-782. [PMID: 34518876 DOI: 10.1093/jat/bkab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/23/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Synthetic drugs for recreational purposes are in constant evolution and their consumption promote a significant increase in intoxication cases, resulting in damaging public health. The development of analytical methodologies to confirm the consumption of illicit drugs in biological matrices are required for control of these substances. This work exploited the development of an extraction method based on homogenous liquid-liquid microextraction with switchable hydrophilicity solvent as extraction phase (SHS-HLLME) for the determination of the synthetic drugs MDMA, MDA and NBOMes (25B, 25C and 25I) in postmortem blood, followed by liquid chromatography coupled to mass spectrometry in tandem (LC-MS/MS). The optimized sample preparation conditions consisted of using 250 µL of ZnSO4 10% and 50 µL of NaOH 1 mol/L in the protein precipitation step; N,N-dimethylcyclohexylamine (DMCHA) was used as switchable hydrophilicity solvent (SHS), 650 μL of a mixture of SHS:HCl 6 mol/L (1:1 v/v), 500 μL of whole blood, 500 μL of NaOH 10 mol/L and 1 min of extraction time. The proposed method was validated, providing determination coefficients higher than 0.99 for all analytes; LOD and LOQ ranged from 0.1 to 10 ng/mL; intra-run precision from 2.16 to 9.19%; inter-run precision from 2.39 to 9.59%; bias from 93.57 to 115.71%; and matrix effects from 28.94 to 51.54%. The developed method was successfully applied to four authentic postmortem blood samples from synthetic drugs users, and it was found to be reliable with good selectivity.
Collapse
Affiliation(s)
- Camila Scheid
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Sarah Eller
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Anderson Luiz Oenning
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Eduardo Carasek
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Josias Merib
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Pharmacosciences Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
7
|
Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods. Forensic Toxicol 2021. [DOI: 10.1007/s11419-021-00582-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Breusova K, Ernstsen KG, Palner M, Linnet K, Kristensen JL, Kretschmann AC. A quantitative method for the selective 5-HT2A agonist 25CN-NBOH in rat plasma and brain. J Pharm Biomed Anal 2021; 199:114016. [PMID: 33784574 DOI: 10.1016/j.jpba.2021.114016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/28/2023]
Abstract
In recent years, agonists of the 5-HT2A receptor have gained increasing attention for their potential therapeutic use to treat psychological disorders such as anxiety and depression. Here, we report the development and validation of an LC-MSMS based analytical method for the quantification of the novel selective 5-HT2A agonist 25CN-NBOH in rat plasma and brain. As simple and efficient sample clean-up we applied the Phree Phospholipid Removal approach from Phenomenex, which is particularly novel for brain samples. In order to investigate the metabolic stability of 25CN-NBOH in vitro biotransformation studies with recombinant enzymes and human liver microsomes were conducted. Several biotransformation products and pathways could be identified. Based on the in vitro study one of the putative metabolites (2C-CN) was included in the analytical method development. To test the methods applicability 25CN-NBOH was quantified in plasma and brain samples from a pharmacokinetic in vivo study with Wildtype Long Evans rats. Both the in vitro metabolism data as well as the in vivo PK data suggest that 25CN-NBOH is susceptible to metabolism, but is degraded slower and is more stable compared to other NBOMe's investigated to date. The developed analytical method might serve as basis to include further 25CN-NBOH metabolites. It is expected to facilitate further preclinical and clinical investigations of 25CN-NBOH in biological matrices.
Collapse
Affiliation(s)
- Kateryna Breusova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kristian Goldeman Ernstsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Coapenhagen, Frederik V's vej 11, 2100, Copenhagen, Denmark
| | - Jesper Langgaard Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Andreas Christopher Kretschmann
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
9
|
Recent bionalytical methods for the determination of new psychoactive substances in biological specimens. Bioanalysis 2020; 12:1557-1595. [PMID: 33078960 DOI: 10.4155/bio-2020-0148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the problems associated with the consumption of new psychoactive substances is that in most scenarios of acute toxicity the possibility of quick clinical action may be impaired because many screening methods are not responsive to them, and laboratories are not able to keep pace with the appearance of new substances. For these reasons, developing and validating new analytical methods is mandatory in order to efficiently face those problems, allowing laboratories to be one step ahead. The goal of this work is to perform a critical review regarding bionalytical methods that can be used for the determination of new psychoactive substances (phenylethylamines, cathinones, synthetic cannabinoids, opioids, benzodiazepines, etc), particularly concerning sample preparation techniques and associated analytical methods.
Collapse
|
10
|
Dos Santos NA, Macrino CJ, Allochio Filho JF, Gonçalves FF, Almeida CM, Agostini F, Guizolfi T, Moura S, Lacerda V, Filgueiras PR, Ortiz RS, Romão W. Exploring the chemical profile of designer drugs by ESI(+) and PSI(+) mass spectrometry-An approach on the fragmentation mechanisms and chemometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4596. [PMID: 32729201 DOI: 10.1002/jms.4596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The consumption of design drugs, frequently known as new psychoactive substances (NPS), has increased considerably worldwide, becoming a severe issue for the responsible governmental agencies. These illicit substances can be defined as synthetic compounds produced in clandestine laboratories in order to act as analogs of schedule drugs mimetizing its chemical structure and improving its pharmacological effects while hampering the control and making regulation more complicated. In this way, the development of new methodologies for chemical analysis of NPS drugs is indispensable to determine a novel class of drugs arising from the underground market. Therefore, this work shows the use of high-resolution mass spectrometry Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applying different ionization sources such as paper spray ionization (PSI) and electrospray ionization (ESI) in the evaluation of miscellaneous of seized drugs samples as blotter paper (n = 79) and tablet (n = 100). Also, an elucidative analysis was performed by ESI(+)MS/MS experiments, and fragmentation mechanisms were proposed to confirm the chemical structure of compounds identified. Besides, the results of ESI(+) and PSI(+)-FT-ICR MS were compared with those of GC-MS, revealing that ESI(+)MS showed greater detection efficiency among the methodologies employed in this study. Moreover, this study stands out as a guide for the chemical analysis of NPS drugs, highlighting the differences between the techniques of ESI(+)-FT-ICR MS, PSI(+)-FT-ICR MS, and GC-MS.
Collapse
Affiliation(s)
- Nayara A Dos Santos
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
| | - Clebson J Macrino
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
| | - João Francisco Allochio Filho
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Instituto Federal do Espírito Santo (IFES), Rodovia BR-101 Norte, Km 58, Litorâneo, São Mateus, Espírito Santo, 29932-540, Brazil
| | - Fernanda F Gonçalves
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
| | - Camila M Almeida
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
| | - Fabiana Agostini
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, 95020260, Brazil
| | - Tainara Guizolfi
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, 95020260, Brazil
| | - Sidnei Moura
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, 95020260, Brazil
| | - Valdemar Lacerda
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
| | - Paulo R Filgueiras
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
| | - Rafael S Ortiz
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Superintendência da Polícia Federal no Rio Grande Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wanderson Romão
- Laboratório de Petroleômica e Forense, Universidade Federal do Espírito Santo (UFES), Avenida Fernando Ferrari, 514, Goiabeiras, Vitória, ES, CEP: 29075-910, Brazil
- Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Vitoria, Brazil
- Instituto Federal do Espírito Santo (IFES), Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo, 29106-010, Brazil
| |
Collapse
|
11
|
Kupriyanova OV, Shevyrin VA, Shafran YM, Lebedev AT, Milyukov VA, Rusinov VL. Synthesis and determination of analytical characteristics and differentiation of positional isomers in the series of
N
‐(2‐methoxybenzyl)‐2‐(dimethoxyphenyl)ethanamine using chromatography–mass spectrometry. Drug Test Anal 2020; 12:1154-1170. [DOI: 10.1002/dta.2859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Olga V. Kupriyanova
- A.E. Arbuzov Institute of Organic and Physical Chemistry FRC Russian Academy of Sciences, Kazan Scientific Center Kazan Russian Federation
- Kazan State Medical University Kazan Russian Federation
| | - Vadim A. Shevyrin
- Ural Federal University Institute of Chemistry and Technology Ekaterinburg Russian Federation
| | - Yuri M. Shafran
- Ural Federal University Institute of Chemistry and Technology Ekaterinburg Russian Federation
| | - Albert T. Lebedev
- Organic Chemistry Department Lomonosov Moscow State University Moscow Russian Federation
| | - Vasili A. Milyukov
- A.E. Arbuzov Institute of Organic and Physical Chemistry FRC Russian Academy of Sciences, Kazan Scientific Center Kazan Russian Federation
| | - Vladimir L. Rusinov
- Ural Federal University Institute of Chemistry and Technology Ekaterinburg Russian Federation
- Postovsky Institute of Organic Synthesis Ural Branch of the Russian Academy of Sciences Yekaterinburg Russian Federation
| |
Collapse
|
12
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
13
|
Almalki AJ, Smith L, Clark CR, DeRuiter J. Vapor phase GC-IR identification of regioisomeric N-methoxybenzyl-4-substituted-2,5-dimethoxyphenethylamines (NBOMe). Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|