1
|
McCaughan KJ, Scott Z, Rock C, Kniel KE. Evaluation of aqueous chlorine and peracetic acid sanitizers to inactivate protozoa and bacteria of concern in agricultural water. Appl Environ Microbiol 2024:e0165324. [PMID: 39641604 DOI: 10.1128/aem.01653-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Agricultural water is a potential source of microbial contamination whereby Escherichia coli, Salmonella, Cryptosporidium, and Cyclospora cayetenensis can enter the food supply. To reduce this risk, effective sanitization of agricultural water may be critical to food safety. As such, it is important to investigate the effects of aqueous peracetic acid (PAA) and chlorine (Cl) on bacteria and protozoa at different treatment times and temperatures in agricultural water with respect to key water characteristics. Multiple concentrations of each sanitizer, ranging from 3 to 200 ppm, were prepared in recently collected agricultural water, the solution was brought to the desired temperature, and the target organisms were added and left for the desired contact time (5 or 10 minutes) when sodium metabisulfite was added to neutralize the sanitizers. Bacterial samples were enumerated on MacConkey or XLT4 agar. Samples with protozoa were added to mammalian cell culture (HCT-8 cells for Cryptosporidium parvum and MDBK cells for Eimeria tenella). After 48 hours, the infected cells were collected, DNA extracted and infectivity assessed by quantitative PCR (qPCR). Low and high concentrations of sanitizer were effective at eliminating bacteria with Cl being significantly (P < 0.05) more effective. The greatest reductions in E. coli and Salmonella (3.48 log and 2.5 log cfu/mL, respectively) were observed after 10 minutes of exposure to 10 ppm Cl. Concentrations of sanitizer 50 ppm and lower resulted in insignificant (P > 0.05) reductions in parasite infectivity of less than 1 log for both organisms. A 200 ppm PAA treatment reduced infectious oocyst populations by 3.8 log for C. parvum and 2.6 log for E. tenella, with Cl being significantly (P < 0.05) less effective against these organisms. IMPORTANCE This research is critical to inform decisions regarding the application and use of sanitizers in pre-harvest agricultural water settings to enhance food safety. Understanding the effectiveness of chlorine (Cl) and peracetic acid (PAA) on bacteria and protozoa will allow for the more efficient and practical use of these sanitizers, thus improving agricultural practices in ways that are beneficial to both growers and consumers.
Collapse
Affiliation(s)
- Kyle J McCaughan
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Zoe Scott
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Channah Rock
- Department of Environmental Science, University of Arizona, Maricopa, Arizona, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Visentini CB. Estimation and evaluation of the risks of protozoa infections associated to the water from a treatment plant in southern Brazil using the Quantitative Microbiological Risk Assessment Methodology (QMRA). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:439. [PMID: 38592554 DOI: 10.1007/s10661-024-12577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.
Collapse
Affiliation(s)
- Claudia Bauer Visentini
- Municipal Department of Water and Sewage (DMAE), St. 24 de Outubro, nº 200, Moinhos de Vento, Porto Alegre, Rio Grande Do Sul, 90510-000, Brazil.
| |
Collapse
|
3
|
Rozo-Montoya N, Bedoya-Urrego K, Alzate JF. Monitoring potentially pathogenic protists in sewage sludge using Metataxonomics. Food Waterborne Parasitol 2023; 33:e00210. [PMID: 37808003 PMCID: PMC10558727 DOI: 10.1016/j.fawpar.2023.e00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Intestinal parasites continue to pose a significant threat to human health worldwide, particularly among children. Contaminated water and soil serve as major transmission vehicles for these parasites and intestinal protists are among the most prevalent parasites in both developed and developing nations. Traditionally, parasites have been studied using human or animal fecal samples, while studying them in environmental samples has been challenging due to technical limitations. However, advancements in Next-Generation Sequencing (NGS) and bioinformatic approaches now enable the detection of parasite DNA in environmental samples. In this study, we applied a metataxonomic and phylogenetic strategy to detect and classify DNA of protists present in sewage sludge from two major cities in Colombia: Medellin and Cali. We successfully detected several human pathogenic parasites including Giardia intestinalis, Entamoeba histolytica, and Blastocystis sp., among other protists, in all sludge samples examined. We also investigated the entry and exit of parasite DNA from the San Fernando wastewater treatment plant (WWTP). We observed a higher number of parasite DNA sequences in the plant's influent wastewater, but we also detected the discharge of DNA from pathogenic parasites in both effluent waters and biosolids.
Collapse
Affiliation(s)
- Nicolas Rozo-Montoya
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Khaleil SR, Mira NM, Ghanem NF, M El-Mehasseb I, Helal IB, El-Shafai NM. Dual mechanism (sunlight/dark) of the self-assembly nitazoxanide drug on cellulose nanocrystal surface for destroying the Cryptosporidium parvum oocysts. Int J Biol Macromol 2023; 247:125823. [PMID: 37453638 DOI: 10.1016/j.ijbiomac.2023.125823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Destruction of the cryptosporidium parvum (C. parvum) Oocysts is the main target of the work via the improvement effect of the nitazoxanide (NTZ) drug by increasing the drug adsorption process without changing the cell viability. The synthesis of a self-assembly nanocomposite (NCP) of cellulose nanocrystals (CNC) and NTZ drug was performed successfully via the chemical precipitation methods without utilizing the temperature. Also, the characterization of the fabricated NCP was achieved by different techniques to confirm the natural formation of the NCP. The efficient loading of the NTZ drug on the CMC surface and the release process of NCP was calculated by a UV-Visible spectroscopy device, and the loading efficiency is 37 %. The release efficiency is displayed at 66.3 % after 6 h, and 97 % after 48 h at pH 7.4 with NTZ pure, while the release efficiency of CNC@NTZ at the same pH is 61 % after 6 h, and 86 % after 48 h at pH 7.4. The cytotoxicity of different concentrations of NCP was conducted on normal mouse liver cells (BNL) via the quick screening cytotoxicity method (SRB). The effect of NCP on C. parvum was detected with an in-vivo study in the dark and under sunlight conditions. Compared to the NTZ and CNC, the fabricated NCP was able to destroy 89.3 % of the oocyst wall after 96 h. Moreover, a sporulation inhibition percentage of 53.97 % ± 0.63 % was achieved by a maximum concentration of 7 mg/mL after 9.5 h. The results are very encouraging to use the modified NCP as an alternative NTZ drug, although further research is required in terms of clinical trials.
Collapse
Affiliation(s)
- Shrouk R Khaleil
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nora F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| |
Collapse
|
5
|
Siwak AM, Baker PG, Dube A. Biosensors as early warning detection systems for waterborne Cryptosporidium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:615-630. [PMID: 37578878 PMCID: wst_2023_229 DOI: 10.2166/wst.2023.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Collapse
Affiliation(s)
- Andrea M Siwak
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa E-mail:
| | - Priscilla G Baker
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| |
Collapse
|
6
|
Chaudhary A, Rana S, Singh R, Gurian PL, Betancourt W, Kumar A, Kumar A. Non-potable water reuse and the public health risks from protozoa and helminths: a case study from a city with a semi-arid climate. JOURNAL OF WATER AND HEALTH 2023; 21:981-994. [PMID: 37632375 PMCID: wh_2023_283 DOI: 10.2166/wh.2023.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The study estimated the risk due to Cryptosporidium, Giardia, and Ascaris, associated with non-potable water reuse in the city of Jaipur, India. The study first determined the exposure dose of Cryptosporidium, Giardia, and Ascaris based on various wastewater treatment technologies for various scenarios of reuse for six wastewater treatment plants (WWTPs) in the city. The exposure scenarios considered were (1) garden irrigation; (2) working and lounging in the garden; and (3) consumption of crops irrigated with recycled water. The estimated annual risk of infection varied between 8.57 × 10-7 and 1.0 for protozoa and helminths, respectively. The order of treatment processes, in decreasing order of annual risk of infection, was found to be: moving-bed bioreactor (MBBR) technology > activated sludge process (ASP) technology > sequencing batch reactor (SBR) technology. The estimated annual risk was found to be in this order: Ascaris > Giardia > Cryptosporidium. The study also estimated the maximum allowable concentration (Cmax) of pathogen in the effluent for a benchmark value of annual infection of risk equal to 1:10,000, the acceptable level of risk used for drinking water. The estimated Cmax values were found to be 6.54 × 10-5, 1.37 × 10-5, and 2.89 × 10-6 (oo) cysts/mL for Cryptosporidium, Giardia, and Ascaris, respectively.
Collapse
Affiliation(s)
- Ayushi Chaudhary
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India E-mail: ;
| | - Shubham Rana
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| | - Rajveer Singh
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Patrick L Gurian
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Walter Betancourt
- Water and Energy Sustainable Technology Centre, University of Arizona, Tucson, AZ, USA
| | - Arun Kumar
- Department of Civil Engineering, IIT Delhi, Delhi, India
| | - Amit Kumar
- Department of Civil Engineering, MNIT Jaipur, Jaipur, India
| |
Collapse
|
7
|
Omidian H, Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics 2023; 15:1583. [PMID: 37376032 DOI: 10.3390/pharmaceutics15061583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The utilization of nanotechnology has brought about notable advancements in the field of pediatric medicine, providing novel approaches for drug delivery, disease diagnosis, and tissue engineering. Nanotechnology involves the manipulation of materials at the nanoscale, resulting in improved drug effectiveness and decreased toxicity. Numerous nanosystems, including nanoparticles, nanocapsules, and nanotubes, have been explored for their therapeutic potential in addressing pediatric diseases such as HIV, leukemia, and neuroblastoma. Nanotechnology has also shown promise in enhancing disease diagnosis accuracy, drug availability, and overcoming the blood-brain barrier obstacle in treating medulloblastoma. It is important to acknowledge that while nanotechnology offers significant opportunities, there are inherent risks and limitations associated with the use of nanoparticles. This review provides a comprehensive summary of the existing literature on nanotechnology in pediatric medicine, highlighting its potential to revolutionize pediatric healthcare while also recognizing the challenges and limitations that need to be addressed.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Kwadwo Mfoafo
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
8
|
AlGabbani Q. Nanotechnology: A promising strategy for the control of parasitic infections. Exp Parasitol 2023:108548. [PMID: 37196702 DOI: 10.1016/j.exppara.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Annually 3.5 billion people are affected by the parasitic infections that results around 200,000 deaths per annum. Major diseases occur due to the neglected tropical parasites. Variety of methods have been used to treat the parasitic infections but now these methods have become ineffective due to the development of resistance in the parasites and some other side effects of traditional treatment methods. Previous methods include use of chemotherapeutic agents and ethnobotanicals for the treatment of parasites. Parasites have developed resistance against the chemotherapeutic agents. A major problem related to Ethnobotanicals is the unequal availability of drug at the target site which is responsible for the low efficacy of drug. Nanotechnology technology involves the manipulation of matter on a nanoscale level and has the potential to enhance the efficacy and safety of existing drugs, develop new treatments, and improve diagnostic methods for parasitic infections. Nanoparticles can be designed to selectively target parasites while minimizing toxicity to the host, and they can also be used to improve drug delivery and increase drug stability. Some important nanotechnology-based tools for parasitic control include nanoparticle-based drug delivery, nanoparticle diagnostics, nanoparticle vaccines, nanoparticle insecticides. Nanotechnology has the potential to revolutionize the field of parasitic control by providing new methods for detection, prevention and treatment of parasitic infections. This review discusses the current state of nanotechnology-based approaches for controlling parasitic infections and highlights their potential to revolutionize the field of parasitology.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| |
Collapse
|
9
|
Ultrasensitive detection of pathogenic bacteria by primer exchange reaction coupled with PGM. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Wu T, Wang C, Wu M, Wang P, Feng Q. Novel integrating polymethylene blue nanoparticles with dumbbell hybridization chain reaction for electrochemical detection of pathogenic bacteria. Food Chem 2022; 382:132501. [PMID: 35245759 DOI: 10.1016/j.foodchem.2022.132501] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
Pathogenic bacteria infections pose a major threat to human health which can be found in contaminated food and infected humans. Herein, an electrochemical sensor was developed for pathogenic bacteria assay using a dual amplification strategy of polymethylene blue nanoparticles (pMB NPs) and dumbbell hybridization chain reaction (DHCR). The strong binding ability of aptamer to targets endowed outstanding performance in identifying Staphylococcus aureus (S. aureus) among other typical bacteria. The released T strands were hybridized with capture DNA on electrode surface which triggered DHCR in the presence of two dumbbell-shaped helper DNA, leading to the formation of extended and tight dsDNA polymers. In combination with pMB NPs (redox indicators), S. aureus was quantitatively detected in a range of 10-108 CFU/mL and the detection limit reached 1 CFU/mL. Moreover, this sensor was successfully applied for S. aureus detection in human serum and foods, demonstrating the reliability in practical applications.
Collapse
Affiliation(s)
- Tao Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Chengcheng Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Meisheng Wu
- Department of Chemistry, College of Science, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| |
Collapse
|
12
|
Bajwa HUR, Khan MK, Abbas Z, Riaz R, Rehman TU, Abbas RZ, Aleem MT, Abbas A, Almutairi MM, Alshammari FA, Alraey Y, Alouffi A. Nanoparticles: Synthesis and Their Role as Potential Drug Candidates for the Treatment of Parasitic Diseases. Life (Basel) 2022; 12:life12050750. [PMID: 35629416 PMCID: PMC9145985 DOI: 10.3390/life12050750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Protozoa, helminths and ectoparasites are the major groups of parasites distributed worldwide. Currently, these parasites are treated with chemotherapeutic antiprotozoal drugs, anti-helminthic and anti-ectoparasitic agents, but, with the passage of time, resistance to these drugs has developed due to overuse. In this scenario, nanoparticles are proving to be a major breakthrough in the treatment and control of parasitic diseases. In the last decade, there has been enormous development in the field of nanomedicine for parasitic control. Gold and silver nanoparticles have shown promising results in the treatments of various types of parasitic infections. These nanoparticles are synthesized through the use of various conventional and molecular technologies and have shown great efficacy. They work in different ways, that include damaging the parasite membrane, DNA (Deoxyribonucleic acid) disruption, protein synthesis inhibition and free-radical formation. These agents are effective against intracellular parasites as well. Other nanoparticles, such as iron, nickel, zinc and platinum, have also shown good results in the treatment and control of parasitic infections. It is hoped that this research subject will become the future of modern drug development. This review summarizes the methods that are used to synthesize nanoparticles and their possible mechanisms of action against parasites.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Roshan Riaz
- Department of Animal Nutrition and Nutritional Diseases, Ankara University, Ankara 06100, Turkey;
| | - Tauseef ur Rehman
- Department of Parasitology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (T.u.R.); (A.A.)
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad 38040, Pakistan; (M.K.K.); (Z.A.); (R.Z.A.)
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture Multan, Multan 60650, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Arar Northern Border University, Arar 73211, Saudi Arabia;
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62217, Saudi Arabia;
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
- Correspondence: (T.u.R.); (A.A.)
| |
Collapse
|
13
|
Luqman M, Awan MUF, Muhammad S, Daud S, Yousafzai A, Arooj F. Microbial pollution in inland recreational freshwaters of Quetta, Pakistan: an initial report. JOURNAL OF WATER AND HEALTH 2022; 20:575-588. [PMID: 35350009 DOI: 10.2166/wh.2022.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Parasitic contamination of surface waters, especially recreational waters, is a serious problem for under-developed nations like Pakistan, where numerous outbreaks of parasitic diseases are reported each year. In the current study, parasitic presence in two surface waters (Hanna Lake and Wali-Tangi Dam) of Quetta was monitored quarterly for 1 year. The methodology involved the pre-concentration of the water samples and the subsequent preparation for the microscopic search of parasites. Physico-chemical and bacteriological variables were also studied. Wet staining, modified Trichrome staining, and modified acid-fast staining methods were used to identify various parasitic forms (cysts, oocysts, eggs, trophozoites). Collectively 11 parasitic elements (10 in Lake and 8 in Dam) belonging to 10 species were recorded, many of which are potential human pathogens. The species identified include Trichomonas sp., Isospora sp., Balantidium coli, Cryptosporidium sp., Entamoeba spp., amoebas, Microsporidium sp., Endolimax nana, Ascaris lumbricoides, and Giardia spp. Parasitic contamination remained persistent in both locations throughout the year independent of physico-chemical parameters (temperature, EC, pH, turbidity, and DO) and bacterial concentration of water. Reliance on bacterial presence for monitoring of recreational waters can be a risk for tourists. Entamoeba spp. and A. lumbricoides may be used for surface water monitoring in these waters.
Collapse
Affiliation(s)
- Muhammad Luqman
- Department of Environment Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan E-mail:
| | | | - Sohaib Muhammad
- Department of Botany, Government College University, Kachehry Road, Lahore, Pakistan
| | - Shakeela Daud
- Department of Biotechnology, BUITEMS, Baleli Road, Quetta, Pakistan
| | - Asma Yousafzai
- Department of Biotechnology, BUITEMS, Baleli Road, Quetta, Pakistan
| | - Fariha Arooj
- Department of Environment Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, Pakistan E-mail:
| |
Collapse
|
14
|
Arslan AH, Ciloglu FU, Yilmaz U, Simsek E, Aydin O. Discrimination of waterborne pathogens, Cryptosporidium parvum oocysts and bacteria using surface-enhanced Raman spectroscopy coupled with principal component analysis and hierarchical clustering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120475. [PMID: 34653850 DOI: 10.1016/j.saa.2021.120475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/24/2023]
Abstract
Waterborne pathogens (parasites, bacteria) are serious threats to human health. Cryptosporidium parvum is one of the protozoan parasites that can contaminate drinking water and lead to diarrhea in animals and humans. Rapid and reliable detection of these kinds of waterborne pathogens is highly essential. Yet, current detection techniques are limited for waterborne pathogens and time-consuming and have some major drawbacks. Therefore, rapid screening methods would play an important role in controlling the outbreaks of these pathogens. Here, we used label-free surface-enhanced Raman Spectroscopy (SERS) combined with multivariate analysis for the detection of C. parvum oocysts along with bacterial contaminants including, Escherichia coli, and Staphylococcus aureus. Silver nanoparticles (AgNPs) are used as SERS substrate and samples were prepared with simply mixed of concentrated AgNPs with microorganisms. Each species presented distinct SERS spectra. Principal component analysis (PCA) and hierarchical clustering were performed to discriminate C. parvum oocysts, E. coli, and S. aureus. PCA was used to visualize the dataset and extract significant spectral features. According to score plots in 3 dimensional PCA space, species formed distinct group. Furthermore, each species formed different clusters in hierarchical clustering. Our study indicates that SERS combined with multivariate analysis techniques can be utilized for the detection of C. parvum oocysts quickly.
Collapse
Affiliation(s)
- Afra Hacer Arslan
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | | | - Ummugulsum Yilmaz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | - Emrah Simsek
- Preclinical Sciences, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey; ERKAM-Clinical Engineering Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
15
|
Zini LB, Lorenzini R, Camelo LGG, Gutterres M. Occurrence of Cryptosporidium and Giardia in surface water supply from 2016 to 2020 in South Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:496. [PMID: 34282498 DOI: 10.1007/s10661-021-09280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The objectives of this research are to evaluate Giardia and Cryptosporidium contamination in surface water supply in Rio Grande do Sul (RS) State in South Brazil in the years 2016 to 2020, assess seasonality, and to infer the population that may have been exposed to these protozoa through drinking water based on drinking water treatment efficiency. Data were obtained through the drinking water surveillance national information system. From 204 DWT plants in the state, 66 have been analyzed for protozoa. A total of 2304 analyses of protozoa in raw water were evaluated, of which 223 had both Giardia spp. cysts and/or Cryptosporidium spp. oocysts in concentrations that varied from 0.1 to 21.5/L. A total of 2,712,125 people from 48 cities were at risk of having the presence of pathogenic protozoa in their drinking water. The probability of finding these protozoa was higher in winter. Giardia cysts were more likely to be found in a period without rain, suggesting that sewage was the main source of contamination. It is concluded that the springs of Rio Grande do Sul are impacted and the circulation of pathogenic protozoa through the territory is endemic with a probable source of contamination to sewage and livestock activity.
Collapse
Affiliation(s)
- Luciano Barros Zini
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil.
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil.
| | - Rafaela Lorenzini
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Luana Gabriele Gomes Camelo
- Health State Secretary of Rio Grande do Sul, Environmental Vigilance, Av. Ipiranga, Porto Alegre, RS, 5400, 90610-000, Brazil
| | - Mariliz Gutterres
- Chemical Engineering Department, Federal University of Rio Grande do Sul, Luiz Englert s/nº, downtown, Porto Alegre, RS, 90040-040, Brazil
| |
Collapse
|
16
|
Jain S, Santana W, Dolabella SS, Santos ALS, Souto EB, Severino P. Are Nanobiosensors an Improved Solution for Diagnosis of Leishmania? Pharmaceutics 2021; 13:491. [PMID: 33916812 PMCID: PMC8066167 DOI: 10.3390/pharmaceutics13040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is one of the deadliest neglected tropical diseases affecting 12-15 million people worldwide, especially in middle- and low-income countries. Rapid and accurate diagnosis of the disease is important for its adequate management and treatment. Several techniques are available for the diagnosis of leishmaniasis. Among these, parasitological and immunological tests are most widely used. However, in most cases, the utilized diagnostic techniques are not good enough, showing cross-reactivity and reduced accuracy. In recent years, many new methods have been reported with potential for improved diagnosis. This review focuses on the diagnosis of Leishmania exploring the biosensors and nanotechnology-based options for their detection. New developments including the use of nanomaterials as fluorophores, fluorescence quenchers as reducing agents and as dendrimers for signal improvement and amplification, together with the use of aptamers to replace antibodies are described. Future research opportunities to overcome the current limitations on the available diagnostic approaches are also discussed.
Collapse
Affiliation(s)
- Sona Jain
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Wanessa Santana
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Silvio S. Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - André L. S. Santos
- Paulo de Góes Microbiology Institute, Departament of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3004-531 Coimbra, Portugal
| | - Patrícia Severino
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| |
Collapse
|
17
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
18
|
Zhang J, Liu J. Nanozyme‐based luminescence detection. LUMINESCENCE 2020; 35:1185-1194. [DOI: 10.1002/bio.3893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|