1
|
Cui Y, Zhu L, Li Y, Ge K, Lu W, Ge L, Chen K, Xue J, Zheng F, Dai S, Pan H, Liang J, Ji L, Shen Q. Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network. Food Chem 2024; 470:142614. [PMID: 39740437 DOI: 10.1016/j.foodchem.2024.142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na]+, [TG + NH4]+. This process identified 53 lipid peaks, forming a robust lipid fingerprint for each oil type. An SCNN model was developed using fingerprints, achieving an impressive classification accuracy of 98.5 ± 2.2 %. The integration of DESI-MS with SCNN provides a fast and reliable tool for identifying and classifying vegetable oils, thereby reducing mislabeling fraud and assuring oil quality. By enabling accurate authentication, it contributes to improved transparency and integrity in food labeling and quality control practices.
Collapse
Affiliation(s)
- Yiwei Cui
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liangcun Zhu
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Li
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Ge
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kang Chen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Feiyang Zheng
- Hangzhou Puyu Technology Development Co., Ltd, Hangzhou 310015, China
| | - Shuncong Dai
- Key Laboratory of Medicine-Food Homology Innovation and Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 311110, China
| | - Huafei Pan
- The Third People's Hospital of Yuhang District, Hangzhou 311115, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Lu W, Li Y, Ge L, Wang H, Liu T, Zhao Q, Mao Z, Liang J, Wang P, Chen K, Xue J, Shen Q. Comprehensive lipidomics study of basa catfish and sole fish using ultra-performance liquid chromatography Q-extractive orbitrap mass spectrometry for fish authenticity. Curr Res Food Sci 2024; 9:100812. [PMID: 39139808 PMCID: PMC11321432 DOI: 10.1016/j.crfs.2024.100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The authenticity of fish products has become a widespread issue in markets due to substitution and false labeling. Lipidomics combined with chemometrics enables the fraudulence identification of food through the analysis of a large amount of data. This study utilized ultra-high-performance liquid chromatography (UHPLC)-QE Orbitrap MS technology to comprehensively analyze the lipidomics of commercially available basa catfish and sole fish. In positive and negative ion modes, a total of 779 lipid molecules from 21 lipid subclasses were detected, with phospholipid molecules being the most abundant, followed by glycerides molecules. Significant differences in the lipidome fingerprinting between the two fish species were observed. A total of 165 lipid molecules were screened out as discriminative features to distinguish between basa catfish and sole fish, such as TAG(16:0/16:0/18:1), PC(14:0/22:3), and TAG(16:1/18:1/18:1), etc. This study could provide valuable insights into authenticating aquatic products through comprehensive lipidomics analysis, contributing to quality control and consumer protection in the food industry.
Collapse
Affiliation(s)
- Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yunyan Li
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lijun Ge
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Honghai Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ting Liu
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Zhujun Mao
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou, 310052, China
| | - Pingya Wang
- Zhoushan Institute of Food & Drug Control, Zhoushan, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
3
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Kartsova LA, Bessonova EA, Deev VA, Kolobova EA. Current Role of Modern Chromatography with Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy in the Investigation of Biomarkers of Endometriosis. Crit Rev Anal Chem 2023; 54:2110-2133. [PMID: 36625278 DOI: 10.1080/10408347.2022.2156770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis has a wide range of clinical manifestations, and the disease course is unpredictable, making the diagnosis a challenging task. Despite significant advances in the pathophysiology of endometriosis and various proposed theories, the exact etiology is not fully understood and is still unknown. The most commonly used biomarker of endometriosis is CA-125, however, it is nonspecific and is applied for cancers diagnosis. Therefore, the development of reliable noninvasive diagnostic tests for the early diagnosis of endometriosis remains one of the top priorities. Omics technologies are very promising approaches for constructing diagnostic models and biomarker discovery. Their use can greatly facilitate the study of such a complex disease as endometriosis. Nowadays, powerful analytical platforms commonly used in omics, such as gas and liquid chromatography with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, have proven to be a promising tools for biomarker discovery. The aim of this review is to summarize the various features of the analytical approaches, practical challenges and features of gas and liquid chromatography with MS and NMR spectroscopy (including sample processing protocols, technological advancements, and methodology) used for profiling of metabolites, lipids, peptides and proteins in physiological fluids and tissues from patients with endometriosis. In addition, this report devotes special attention to the issue of how comprehensive analyses of these profiles can effectively contribute to the study of endometriosis. The search query included reports published between 2012 and 2022 years in PubMed, Web-of-Science, SCOPUS, Science Direct.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Alekseevna Kolobova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
- The Federal State Institute of Public Health 'The Nikiforov Russian Center of Emergency and Radiation Medicine', The Ministry of Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| |
Collapse
|
5
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Shi Q, Fu J, Chen J, Wang J, Luo Y, Xie W. Rapid On-Site Detection of Various Amphetamine-Type Drugs in Human Urine and Hair by Portable Pulsed Direct Current Electrospray Ionization Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822060132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bogusiewicz J, Kupcewicz B, Goryńska PZ, Jaroch K, Goryński K, Birski M, Furtak J, Paczkowski D, Harat M, Bojko B. Investigating the Potential Use of Chemical Biopsy Devices to Characterize Brain Tumor Lipidomes. Int J Mol Sci 2022; 23:ijms23073518. [PMID: 35408879 PMCID: PMC8998862 DOI: 10.3390/ijms23073518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
The development of a fast and accurate intraoperative method that enables the differentiation and stratification of cancerous lesions is still a challenging problem in laboratory medicine. Therefore, it is important to find and optimize a simple and effective analytical method of enabling the selection of distinctive metabolites. This study aims to assess the usefulness of solid-phase microextraction (SPME) probes as a sampling method for the lipidomic analysis of brain tumors. To this end, SPME was applied to sample brain tumors immediately after excision, followed by lipidomic analysis via liquid chromatography-high resolution mass spectrometry (LC-HRMS). The results showed that long fibers were a good option for extracting analytes from an entire lesion to obtain an average lipidomic profile. Moreover, significant differences between tumors of different histological origin were observed. In-depth investigation of the glioma samples revealed that malignancy grade and isocitrate dehydrogenase (IDH) mutation status impact the lipidomic composition of the tumor, whereas 1p/19q co-deletion did not appear to alter the lipid profile. This first on-site lipidomic analysis of intact tumors proved that chemical biopsy with SPME is a promising tool for the simple and fast extraction of lipid markers in neurooncology.
Collapse
Affiliation(s)
- Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland;
| | - Paulina Zofia Goryńska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Krzysztof Goryński
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Marcin Birski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Dariusz Paczkowski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-168 Bydgoszcz, Poland
- Correspondence: (M.H.); (B.B.)
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
- Correspondence: (M.H.); (B.B.)
| |
Collapse
|
8
|
Tu CH, Qi XE, Shui SS, Lin HM, Benjakul S, Zhang B. Investigation of the changes in lipid profiles induced by hydroxyl radicals in whiteleg shrimp (Litopenaeus vannamei) muscle using LC/MS-based lipidomics analysis. Food Chem 2022; 369:130925. [PMID: 34455329 DOI: 10.1016/j.foodchem.2021.130925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The oxidative effects of hydroxyl radical on the alterations of lipid profiles were investigated in shrimp muscle. Chemical results indicate peroxide value (PV) and thiobarbituric acid index (TBA-i) value in oxidation-treated shrimp significantly increased with oxidation time, and hydroxyl radical concentration increased, compared with those of in fresh samples. It was assumed that radical attack might induce lipid decomposition, backbone cleavage, and/or side-chain modifications. LC/MS-based lipidomics analysis revealed 835 lipids in shrimp assigned to 27 lipid classes, including 219 PCs and 98 CLs. In total, 86 and 34 differentially abundant lipids (DALs) accumulated at lower and higher levels, respectively, were identified in OS, compared with that in FS. This indicates hydroxyl radical attack altered the lipidomics profiles of shrimp muscle to a large extent. Furthermore, DALs, including CL 62:2, PC 38:3, and PE 34:9, could be considered as promising biomarkers to distinguish fresh and oxidation-treated shrimp products.
Collapse
Affiliation(s)
- Chuan-Hai Tu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xue-Er Qi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shan-Shan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hui-Min Lin
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
9
|
Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021; 11:metabo11110780. [PMID: 34822438 PMCID: PMC8625079 DOI: 10.3390/metabo11110780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed.
Collapse
|
10
|
Müller WH, De Pauw E, Far J, Malherbe C, Eppe G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog Lipid Res 2021; 83:101114. [PMID: 34217733 DOI: 10.1016/j.plipres.2021.101114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Knowing the spatial location of the lipid species present in biological samples is of paramount importance for the elucidation of pathological and physiological processes. In this context, mass spectrometry imaging (MSI) has emerged as a powerful technology allowing the visualization of the spatial distributions of biomolecules, including lipids, in complex biological samples. Among the different ionization methods available, the emerging surface-assisted laser desorption/ionization (SALDI) MSI offers unique capabilities for the study of lipids. This review describes the specific advantages of SALDI-MSI for lipid analysis, including the ability to perform analyses in both ionization modes with the same nanosubstrate, the detection of lipids characterized by low ionization efficiency in MALDI-MS, and the possibilities of surface modification to improve the detection of lipids. The complementarity of SALDI and MALDI-MSI is also discussed. Finally, this review presents data processing strategies applied in SALDI-MSI of lipids, as well as examples of applications of SALDI-MSI in biomedical lipidomics.
Collapse
Affiliation(s)
- Wendy H Müller
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys RU, Department of Chemistry, University of Liège, Allée du Six Août, 11 - Quartier Agora, 4000 Liège, Belgium.
| |
Collapse
|
11
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|