1
|
She J, Li Q, Cui M, Zheng Q, Yang J, Chen T, Shen D, Peng S, Li C, Liu Y. Profiling of phenolic composition in camellia oil and its correlative antioxidant properties analysis. Front Nutr 2024; 11:1440279. [PMID: 39246396 PMCID: PMC11378838 DOI: 10.3389/fnut.2024.1440279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Less research has been conducted on the association between camellia oil's (CO) phenolic composition and antioxidant capability. In this study, the phenolic profile of CO and its connection to antioxidant capacity were examined utilizing a combination of widely-targeted phenolic metabolomics and multivariate statistical analysis. A total of 751 phenolics were discovered. The WGCNA was used to link phenols to antioxidants, yielding 161 antioxidant-related phenols from the blue module. In response to several antioxidant assays, 59 (FRAP), 59 (DPPH), and 53 (ABTS) phenolics were identified as differential phenolic markers (DPMs). Further stepwise multiple linear regression revealed six DPMs that substantially influenced the antioxidant capacities. Nine metabolic pathways and their associated network mechanisms for the most significant phenolics were developed. This study sheds light on the phenolic content of CO, elucidates their role in antioxidant activity, and lays the groundwork for improving extraction techniques and generating improved product.
Collapse
Affiliation(s)
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | | | - Jie Yang
- Hunan Academy of Forestry, Changsha, China
| | | | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| | | | - Chi Li
- Hunan Shennongguo Oil Eco-Agriculture Development Co., Ltd., Leiyang, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, China
| |
Collapse
|
2
|
Reyes-Corral M, Gil-González L, González-Díaz Á, Tovar-Luzón J, Ayuso MI, Lao-Pérez M, Montaner J, de la Puerta R, Fernández-Torres R, Ybot-González P. Pretreatment with oleuropein protects the neonatal brain from hypoxia-ischemia by inhibiting apoptosis and neuroinflammation. J Cereb Blood Flow Metab 2024:271678X241270237. [PMID: 39157939 DOI: 10.1177/0271678x241270237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Hypoxic-ischemic (HI) encephalopathy is a cerebrovascular injury caused by oxygen deprivation to the brain and remains a major cause of neonatal mortality and morbidity worldwide. Therapeutic hypothermia is the current standard of care but it does not provide complete neuroprotection. Our aim was to investigate the neuroprotective effect of oleuropein (Ole) in a neonatal (seven-day-old) mouse model of HI. Ole, a secoiridoid found in olive leaves, has previously shown to reduce damage against cerebral and other ischemia/reperfusion injuries. Here, we administered Ole as a pretreatment prior to HI induction at 20 or 100 mg/kg. A week after HI, Ole significantly reduced the infarct area and the histological damage as well as white matter injury, by preserving myelination, microglial activation and the astroglial reactive response. Twenty-four hours after HI, Ole reduced the overexpression of caspase-3 and the proinflammatory cytokines IL-6 and TNF-α. Moreover, using UPLC-MS/MS we found that maternal supplementation with Ole during pregnancy and/or lactation led to the accumulation of its metabolite hydroxytyrosol in the brains of the offspring. Overall, our results indicate that pretreatment with Ole confers neuroprotection and can prevent HI-induced brain damage by modulating apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Laura Gil-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Ángela González-Díaz
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Javier Tovar-Luzón
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - María Irene Ayuso
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- CIBERSAM, ISCIII (Spanish Network for Research in Mental Health), Seville, Spain
| | - Miguel Lao-Pérez
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
| | - Joan Montaner
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rut Fernández-Torres
- Departamento de Química Analítica, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - Patricia Ybot-González
- Institute of Biomedicine of Seville (IBiS), CSIC-US-Junta de Andalucía (SAS), Seville, Spain
- Spanish National Research Council (CSIC), Spain
| |
Collapse
|
3
|
Wang S, Zhou W, Wei Z, Li H, Xiao Y. Solvent-tuned perovskite heterostructures enable visual linoleic acid assay and edible oil species discrimination via wavelength shift. Food Chem 2024; 449:139190. [PMID: 38579653 DOI: 10.1016/j.foodchem.2024.139190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenbin Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhongyu Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hang Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Fayek NM, Baky MH, Li Z, Khalifa I, Capanoglu E, Farag MA. Metabolome classification of olive by-products from different oil presses providing insights into its potential health benefits and valorization as analyzed via multiplex MS-based techniques coupled to chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38768954 DOI: 10.1002/pca.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION The Olive (Olea europaea L.) is one of the most popular edible oil-producing fruits, consumed worldwide for its myriad nutritional and health benefits. Olive oil production generates huge quantities of by-products from the fruit, which are considered environmental hazards. Recently, more and more efforts have been made to valorize olive by-products as a source of low-cost, value-added food applications. OBJECTIVE The main objective of this study was to globally assess the metabolome of olive fruit by-products, including olive mill wastewater, olive pomace, and olive seeds from fruits from two areas, Siwa and Anshas, Egypt. METHODS Gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography with mass spectrometry (UPLC-MS) were used for profiling primary and secondary metabolites in olive by-products. Also, multivariate data analyses were used to assess variations between olive by-product samples. RESULTS A total of 103 primary metabolites and 105 secondary metabolites were identified by GC-MS and UPLC-MS, respectively. Fatty acids amounted to a major class in the olive by-products at 53-91%, with oleic acid dominating, especially in the pomace of Siwa. Mill wastewater was discriminated from other by-products by the presence of phenolics mainly tyrosol, hydroxyl tyrosol, and α-tocopherol as analyzed by UPLC-MS indicating their potential antioxidant activity. Pomace and seeds were rich in fatty acids/esters and hydroxy fatty acids and not readily distinguishable from each other. CONCLUSION The current work discusses the metabolome profile of olive waste products for valorization purposes. Pomace and seeds were enriched in fatty acids/esters, though not readily distinguishable from each other.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute Co. Ltd, Hangzhou, Zhejiang, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Quality control of woody edible oil: The application of fluorescence spectroscopy and the influencing factors of fluorescence. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
8
|
Wu X, Hou J, Zhang Z, Chen L, Ni H, Qian Y, Wu W, Long H, Zhang L, Li F, Lei M, Huang Y, Guo D, Wu W. In-depth exploration and comparison of chemical constituents from two Lilium species through offline two-dimensional liquid chromatography combined with multimode acquisition of high-resolution mass spectrometry. J Chromatogr A 2022; 1670:462980. [DOI: 10.1016/j.chroma.2022.462980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
|
9
|
Comparative Evaluation of Different Targeted and Untargeted Analytical Approaches to Assess Greek Extra Virgin Olive Oil Quality and Authentication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041350. [PMID: 35209139 PMCID: PMC8874659 DOI: 10.3390/molecules27041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO has been thoroughly studied over the last several years, aiming at its authentication, but also to reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative study was conducted to assess Greek EVOOs’ quality and authentication utilizing different analytical approaches, both targeted and untargeted. 173 monovarietal EVOOs from three emblematic Greek cultivars (Koroneiki, Kolovi and Adramytiani), obtained during the harvesting years of 2018–2020, were analyzed and quantified as per their fatty acids methyl esters (FAMEs) composition via the official method (EEC) No 2568/91, as well as their bioactive content through liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) methodology. In addition to FAMEs analysis, EVOO samples were also analyzed via HRMS-untargeted metabolomics and optical spectroscopy techniques (visible absorption, fluorescence and Raman). The data retrieved from all applied techniques were analyzed with Machine Learning methods for the authentication of the EVOOs’ variety. The models’ predictive performance was calculated through test samples, while for further evaluation 30 commercially available EVOO samples were also examined in terms of variety. To the best of our knowledge, this is the first study where different techniques from the fields of standard analysis, spectrometry and optical spectroscopy are applied to the same EVOO samples, providing strong insight into EVOOs chemical profile and a comparative evaluation through the different platforms.
Collapse
|
10
|
Phytochemical Profile of Eight Categories of Functional Edible Oils: A Metabolomic Approach Based on Chromatography Coupled with Mass Spectrometry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional vegetable oils are highly considered not only for their nutritional value, but also for their health benefits. The profile of phytochemicals responsible for their quality is useful also for the identification of possible mislabeling or adulteration. The comparative composition of eight categories (sunflower, pumpkin, hempseed, linseed, soybean, walnut, sea buckthorn and olive) of commercial vs. authentic oils was determined. Fatty acids, volatiles, carotenoids, tocopherols, and phenolic components were analyzed by gas- and liquid chromatography-based techniques coupled with diode array, mass spectrometry, or fluorescence detection. Classification models, commonly used in metabolomics, e.g., principal component analysis, partial least squares discriminant analysis, hierarchical clusters and heatmaps have been applied to discriminate each category and individual samples. Carotenoids, tocopherols, and phenolics contributed mostly, qualitatively, and quantitatively to the discrimination between the eight categories of oils, as well as between the authentic and the commercial ones. This metabolomic approach can be easily implemented and the heatmaps can be considered as “identity” cards of each oil category and the quality of commercial oils, comparative to the authentic ones of the same botanical and geographical origin.
Collapse
|
11
|
Sterols and Triterpene Diols in Virgin Olive Oil: A Comprehensive Review on Their Properties and Significance, with a Special Emphasis on the Influence of Variety and Ripening Degree. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olive oil is considered one of the most valuable vegetable oils and is highly appreciated by consumers for its specific and distinguishable taste and aroma, as well as its nutritional value. Sterols and triterpene diols are important carriers of bioactive properties of olive oil and are responsible for some of the beneficial effects of its consumption on human health, such as lowering serum LDL-cholesterol levels and significantly reducing the risk of cardiovascular diseases. The concentration of total sterols and the proportions of particular sterols and triterpene diols are among the parameters used to verify and prove the authenticity of olive oil in accordance with the EU and other countries’ regulations. Finally, their composition has been shown to have high discrimination potential for ensuring traceability with respect to variety, geographical origin, harvest date, and other factors. For these reasons, the research on sterols and triterpene diols in olive oil is an ever-growing field of scientific interest with great practical importance. This review focuses on all the important aspects of sterols and triterpene diols in olive oil, from their chemical structure, biosynthesis, occurrence and role in plants, health benefits, and their use in official controls of olive oil purity and authenticity, to a conclusive survey on the recent findings about the effects of different factors of influence on their content and composition, with a detailed comparative analysis of studies that investigated the effects of the two most important factors, variety and ripening degree.
Collapse
|
12
|
Wu X, Long H, Li F, Wu W, Zhou J, Liu C, Hou J, Wu W, Guo D. Comprehensive feature-based molecular networking and metabolomics approaches to reveal the differences components in Cinnamomum cassia and Cinnamomum verum. J Sep Sci 2021; 44:3810-3821. [PMID: 34415684 DOI: 10.1002/jssc.202100399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 01/17/2023]
Abstract
Cinnamon was been a widely used plant in medicinal and spices for a long time and has spread all over the world. However, the differences in the components of the bark from Cinnamomum cassia and Cinnamomum verum, the two most common types of cinnamon, have not been thoroughly investigated. In the present experiment, ultra-high-performance liquid chromatography LTQ-Orbitrap Velos Pro hybrid mass spectrometer-based metabolomics coupled with chemometrics and feature-based molecular networking were employed to dramatically distinguish and annotate Cinnamomum cassia Bark and Cinnamomum verum bark. As a consequence, principal component analysis, orthogonal projection to latent structures discriminates analysis, and heat map analysis demonstrated clear discrimination between the profiles of metabolites in cinnamon. Besides, as the known compounds, proanthocyanidins (cinnamtannin B1 and procyanidin B2) and alkaloids (norboldine, norisoboldine) with variable importance in the projection scores >6, and an unknown alkaloid (formula C24 H33 NO6 ) were selected as the best markers to discriminate cinnamon. Furthermore, large numbers of proanthocyanidins and alkaloids components were identified through feature-based molecular networking for the first time. Our investigation provides new ideas for the discovery of quality markers and identification of unknown components in natural products.
Collapse
Affiliation(s)
- Xingdong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| | - Huali Long
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| | - Feifei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| | - Wenyong Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China
| | - Jing Zhou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China
| | - Chen Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China
| | - Jinjun Hou
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Rd 501, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Rd, Beijing, 100049, P. R. China
| |
Collapse
|