1
|
Pakkiyam S, Marimuthu M, Kumar J, Ganesh V, Veerapandian M. Microbial crosstalk with dermal immune system: A review on emerging analytical methods for macromolecular detection and therapeutics. Int J Biol Macromol 2024; 293:139369. [PMID: 39743089 DOI: 10.1016/j.ijbiomac.2024.139369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
According to global health metrics, clinical symptoms such as cellulitis and pyoderma associated with skin diseases are a significant burden worldwide, affecting 2.2 million disability-adjusted life years in 2020. There is a strong correlation between the commensal bacteria and the host immune system. Classical methods deployed in dermal biofilm crosstalk studies often hamper many individuals from early diagnosis and rationalized therapy. Herein, the present report aims to study the role of skin microbiota and mechanisms of microbial crosstalk with host immune system. The emerging analytical tools devised for sensor/biosensor platforms, including molecularly imprinted polymers, microarrays, aptamers, CRISPR-cas9, and optical/electrochemical approaches, are discussed as alternative methods for important biomarker analysis. Further, the types and characteristics of microorganism-derived macromolecules and the recent skin organoid toward personalized therapy are highlighted. This information will largely benefit researchers involved in the pathophysiology of skin disease, wound dressing materials, including diagnostic and healing patch designs, in addition to biological macromolecules devoted to wound repair.
Collapse
Affiliation(s)
- Sangavi Pakkiyam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Marimuthu
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology Tiruchirappalli Campus, Trichy 621 105, Tamil Nadu, India; Innovaspark STEM Edutainment Centre, Karaikudi 630 003, Tamil Nadu, India
| | - Jitendra Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - V Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Das S, Sil S, Pal SK, Kula P, Sinha Roy S. Label-free liquid crystal-based optical detection of norfloxacin using an aptamer recognition probe in soil and lake water. Analyst 2024; 149:3828-3838. [PMID: 38855814 DOI: 10.1039/d4an00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.
Collapse
Affiliation(s)
- Sayani Das
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.
| | - Soma Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Susanta Sinha Roy
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.
| |
Collapse
|
3
|
Toma L, Mattarozzi M, Ronda L, Marassi V, Zattoni A, Fortunati S, Giannetto M, Careri M. Are Aptamers Really Promising as Receptors for Analytical Purposes? Insights into Anti-Lysozyme DNA Aptamers through a Multitechnique Study. Anal Chem 2024; 96:2719-2726. [PMID: 38294352 DOI: 10.1021/acs.analchem.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Aptamers are recognition elements increasingly used for the development of biosensing strategies, especially in the detection of proteins or small molecule targets. Lysozyme, which is recognized as an important biomarker for various diseases and a major allergenic protein found in egg whites, is one of the main analytical targets of aptamer-based biosensors. However, since aptamer-based strategies can be prone to artifacts and data misinterpretation, rigorous strategies for multifaceted characterization of the aptamer-target interaction are needed. In this work, a multitechnique approach has been devised to get further insights into the binding performance of the anti-lysozyme DNA aptamers commonly used in the literature. To study molecular interactions between lysozyme and different anti-lysozyme DNA aptamers, measurements based on a magneto-electrochemical apta-assay, circular dichroism spectroscopy, fluorescence spectroscopy, and asymmetrical flow field-flow fractionation were performed. The reliability and versatility of the approach were proved by investigating a SELEX-selected RNA aptamer reported in the literature, that acts as a positive control. The results confirmed that an interaction in the low micromolar range is present in the investigated binding buffers, and the binding is not associated with a conformational change of either the protein or the DNA aptamer. The similar behavior of the anti-lysozyme DNA aptamers compared to that of randomized sequences and polythymine, used as negative controls, showed nonsequence-specific interactions. This study demonstrates that severe testing of aptamers resulting from SELEX selection is the unique way to push these biorecognition elements toward reliable and reproducible results in the analytical field.
Collapse
Affiliation(s)
- Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parma 43124, Italy
- CNR, Institute of Biophysics, Pisa 56124, Italy
| | - Valentina Marassi
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna 40126, Italy
- byFlow srl, Bologna 40126, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Andrea Zattoni
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna 40126, Italy
- byFlow srl, Bologna 40126, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Simone Fortunati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parma 43124, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome 00136 , Italy
| |
Collapse
|
4
|
Chen S, Liu Y, Qin Z, Wen G, Jiang Z. A new and highly efficient CuMOF-based nanoenzyme and its application to the aptamer SERS/FL/RRS/Abs quadruple-mode analysis of ultratrace malachite green. Analyst 2024; 149:1179-1189. [PMID: 38206348 DOI: 10.1039/d3an01902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Malachite green (MG) is highly toxic, persistent, and carcinogenic, and its widespread use is a danger to the ecosystem and a threat to public health and food safety, making it necessary to develop new sensitive multimode molecular spectroscopy methods. In this work, a new copper-based nanomaterial (CuNM) was prepared by a high-temperature roasting using a copper metal-organic framework (CuMOF) as precursor. The as-prepared CuNM was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and BET surface area analysis. CuNM was found to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce the oxidation product TMBOX; however, subsequently, the MG aptamer (Apt) could be adsorbed on the CuNM surface by intermolecular interaction, which would inhibit the catalytic performance. After the addition of MG to be tested, the CuNM previously adsorbed by the Apt was transformed into its free state, thus restoring its catalytic activity. This new nanocatalytic indicator reaction could be monitored by surface-enhanced Raman scattering (SERS)/resonance Rayleigh scattering (RRS)/fluorescence (FL)/absorption (Abs) quadruple-mode methods. The SERS determination range was 0.004-0.4 nmol L-1 MG, with a limit of detection of 0.0032 nM. In this way, a rapid, stable, and sensitive method for the determination of MG residues in the environment was established.
Collapse
Affiliation(s)
- Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Yue Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiyu Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| |
Collapse
|
5
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
6
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Wang A, Liu J, Yang J, Yang L. Aptamer affinity-based microextraction in-line coupled to capillary electrophoresis mass spectrometry using a porous layer/nanoparticle -modified open tubular column. Anal Chim Acta 2023; 1239:340750. [PMID: 36628776 DOI: 10.1016/j.aca.2022.340750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
An aptamer affinity based microextraction column is developed to be directly in-line coupled to capillary electrophoresis-mass spectrometry (CE-MS) for analyzing mycotoxins in food samples. Single-stranded DNA aptamers for selective recognition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) targets are co-immobilized via covalent bonds on the surface of the inlet end of a capillary, which is pre-modified with three-dimensional porous layer and gold nanoparticles to enhance the specific surface area and loading capacity. The outlet of the capillary is designed as a porous tip to serve as the spray source for injection to the mass spectrometry. All the necessary processes for pretreatment and analysis of a sample are accomplished in one injection, including aptamer affinity-based microextraction, CE separation and MS detection of analytes. AFB1 and OTA are simultaneously determined in a wide linear range with sample consumption of only 1 μL and the limit-of-detection as low as 1 pg/mL. The microextraction column exhibits excellent repeatability and stability, which can be used over 45 runs within a month with CE separation efficiency and only MS intensity slightly decreased. Mycotoxins in three kinds of cereal based infant foods are accurately analyzed using the proposed method. The study provides a robust and universal approach that would have potential applications in a variety of analytical fields based on selective molecular recognition coupling to CE-MS analysis.
Collapse
Affiliation(s)
- Anping Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianing Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jinlan Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
8
|
Yan R, Wen Z, Hu X, Wang W, Meng H, Song Y, Wang S, Tang Y. A sensitive sensing system based on fluorescence dipeptide nanoparticles for sulfadimethoxine determination. Food Chem 2022; 405:134963. [DOI: 10.1016/j.foodchem.2022.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
9
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Nehra M, Kumar V, Kumar R, Dilbaghi N, Kumar S. Current Scenario of Pathogen Detection Techniques in Agro-Food Sector. BIOSENSORS 2022; 12:489. [PMID: 35884292 PMCID: PMC9313409 DOI: 10.3390/bios12070489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 05/05/2023]
Abstract
Over the past-decade, agricultural products (such as vegetables and fruits) have been reported as the major vehicles for foodborne diseases, which are limiting food resources. The spread of infectious diseases due to foodborne pathogens poses a global threat to human health and the economy. The accurate and timely detection of infectious disease and of causative pathogens is crucial in the prevention and treatment of disease. Negligence in the detection of pathogenic substances can be catastrophic and lead to a pandemic. Despite the revolution in health diagnostics, much attention has been paid to the agro-food sector regarding the detection of food contaminants (such as pathogens). The conventional analytical techniques for pathogen detection are reliable and still in operation. However, laborious procedures and time-consuming detection via these approaches emphasize the need for simple, easy-to-use, and affordable detection techniques. The rapid detection of pathogens from food is essential to avoid the morbidity and mortality originating from the suboptimal nature of empiric pathogen treatment. This review critically discusses both the conventional and emerging bio-molecular approaches for pathogen detection in agro-food.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India;
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India; (M.N.); (V.K.); (N.D.)
| |
Collapse
|
11
|
Chen S, Lin S, Han X, Han X. Handheld pH‐Meter‐Based Electrochemical Aptasensing of Carcinoembryonic Antigen on Multifuctional Magnetic Beads. ELECTROANAL 2022. [DOI: 10.1002/elan.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shaobo Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences CHINA
| | | | | | - Xianlin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences CHINA
| |
Collapse
|
12
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
13
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
15
|
Mattarozzi M, Toma L, Bertucci A, Giannetto M, Careri M. Aptamer-based assays: strategies in the use of aptamers conjugated to magnetic micro- and nanobeads as recognition elements in food control. Anal Bioanal Chem 2021; 414:63-74. [PMID: 34245326 PMCID: PMC8748373 DOI: 10.1007/s00216-021-03501-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
An outlook on the current status of different strategies for magnetic micro- and nanosized bead functionalization with aptamers as prominent bioreceptors is given with a focus on electrochemical and optical apta-assays, as well as on aptamer-modified magnetic bead–based miniaturized extraction techniques in food control. Critical aspects that affect interaction of aptamers with target molecules, as well as the possible side effects caused by aptamer interaction with other molecules due to non-specific binding, are discussed. Challenges concerning the real potential and limitations of aptamers as bioreceptors when facing analytical problems in food control are addressed.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Marco Giannetto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| |
Collapse
|
16
|
Selective Capture and Identification of Methicillin-Resistant Staphylococcus aureus by Combining Aptamer-Modified Magnetic Nanoparticles and Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126571. [PMID: 34207373 PMCID: PMC8234742 DOI: 10.3390/ijms22126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.
Collapse
|
17
|
Nguyen DK, Jang CH. A Label-Free Liquid Crystal Biosensor Based on Specific DNA Aptamer Probes for Sensitive Detection of Amoxicillin Antibiotic. MICROMACHINES 2021; 12:mi12040370. [PMID: 33808299 PMCID: PMC8065461 DOI: 10.3390/mi12040370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
We developed a liquid crystal (LC) aptamer biosensor for the sensitive detection of amoxicillin (AMX). The AMX aptamer was immobilized onto the surface of a glass slide modified with a mixed self-assembled layer of dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) and (3-aminopropyl) triethoxysilane (APTES). The long alkyl chains of DMOAP maintained the LC molecules in a homeotropic orientation and induced a dark optical appearance under a polarized light microscope (POM). In the presence of AMX, the specific binding of the aptamer and AMX molecules induced a conformational change in the aptamers, leading to the disruption of the homeotropic orientation of LCs, resulting in a bright optical appearance. The developed aptasensor showed high specificity and a low detection limit of 3.5 nM. Moreover, the potential application of the developed aptasensor for the detection of AMX in environmental samples was also demonstrated. Therefore, the proposed aptasensor is a promising platform for simple, rapid, and label-free monitoring of AMX in an actual water environment with high selectivity and sensitivity.
Collapse
|