1
|
Lella C, Nestor L, De Bundel D, Vander Heyden Y, Van Eeckhaut A. Targeted Chiral Metabolomics of D-Amino Acids: Their Emerging Role as Potential Biomarkers in Neurological Diseases with a Focus on Their Liquid Chromatography-Mass Spectrometry Analysis upon Chiral Derivatization. Int J Mol Sci 2024; 25:12410. [PMID: 39596475 PMCID: PMC11595108 DOI: 10.3390/ijms252212410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
In neuroscience research, chiral metabolomics is an emerging field, in which D-amino acids play an important role as potential biomarkers for neurological diseases. The targeted chiral analysis of the brain metabolome, employing liquid chromatography (LC) coupled to mass spectrometry (MS), is a pivotal approach for the identification of biomarkers for neurological diseases. This review provides an overview of D-amino acids in neurological diseases and of the state-of-the-art strategies for the enantioselective analysis of chiral amino acids (AAs) in biological samples to investigate their putative role as biomarkers for neurological diseases. Fluctuations in D-amino acids (D-AAs) levels can be related to the pathology of neurological diseases, for example, through their role in the modulation of N-methyl-D-aspartate receptors and neurotransmission. Because of the trace presence of these biomolecules in mammals and the complex nature of biological matrices, highly sensitive and selective analytical methods are essential. Derivatization strategies with chiral reagents are highlighted as critical tools for enhancing detection capabilities. The latest advances in chiral derivatization reactions, coupled to LC-MS/MS analysis, have improved the enantioselective quantification of these AAs and allow the separation of several chiral metabolites in a single analytical run. The enhanced performances of these methods can provide an accurate correlation between specific D-AA profiles and disease states, allowing for a better understanding of neurological diseases and drug effects on the brain.
Collapse
Affiliation(s)
- Cinzia Lella
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Liam Nestor
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| | - Yvan Vander Heyden
- Research Group Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; (C.L.); (L.N.); (D.D.B.)
| |
Collapse
|
2
|
Zhao Y, Park I, Rubakhin SS, Bashir R, Vlasov Y, Sweedler JV. 1-Octanol-assisted ultra-small volume droplet microfluidics with nanoelectrospray ionization mass spectrometry. Anal Chim Acta 2024; 1321:342998. [PMID: 39155094 PMCID: PMC11413884 DOI: 10.1016/j.aca.2024.342998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Droplet microfluidics with push-pull and microdialysis sampling from brain slices, cultured cells and engineered tissues produce low volume mass limited samples containing analytes sampled from the extracellular space. This sampling approach coupled to mass spectrometry (MS) detection allows evaluation of time-dependent chemical changes. Our goal is an approach for continuous sampling and segregation of extracellular samples into picoliter droplets followed by the characterization of the droplets using nanoelectrospray ionization (nESI) MS. The main focus here is the optimization of the carrier oil for the microfluidic device that neither affects the stability of picoliter droplets nor compatibility with MS detection of a range of analytes. RESULTS We developed and characterized a 1-octanol-assisted ultra-small volume droplet microfluidic nESI MS system for the analysis of neurotransmitters in distinct samples including cerebrospinal fluid (CSF). The use of a 1-octanol oil phase was effective for generation of aqueous droplets as small as 65 pL and enabled detection of acetylcholine (ACh) and gamma-aminobutyric acid (GABA) in water and artificial CSF. Continuous MS analysis of droplets for extended periods up to 220 min validated the long-term stability of droplet generation and analyte detection by nESI-MS. As an example, ACh response demonstrated a linear working range (R2 = 0.99) between 0.4 μM and 25 μM with a limit of detection of 370 nM (24 amol), enabling its quantitation in rodent CSF. SIGNIFICANCE The established droplet microfluidics - nESI MS approach allows the analysis of microenvironments at high spatiotemporal resolution. The approach may allow microsampling and monitoring of spatiotemporal dynamics of neurochemicals and drugs in the brain and spinal cord of live animals.
Collapse
Affiliation(s)
- Yaoyao Zhao
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Insu Park
- Holonyak Micro & Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Beckman Institute for Advanced Science and Technology, Holonyak Micro & Nanotechnology Laboratory, and Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Xu D, Dai X, Zhang L, Cai Y, Chen K, Wu J, Dong L, Shen L, Yang J, Zhao J, Zhou Y, Mei Z, Wei W, Zhang Z, Xiong N. Mass spectrometry for biomarkers, disease mechanisms, and drug development in cerebrospinal fluid metabolomics. Trends Analyt Chem 2024; 173:117626. [DOI: 10.1016/j.trac.2024.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
4
|
Nestor L, De Bundel D, Vander Heyden Y, Smolders I, Van Eeckhaut A. Unravelling the brain metabolome: A review of liquid chromatography - mass spectrometry strategies for extracellular brain metabolomics. J Chromatogr A 2023; 1712:464479. [PMID: 37952387 DOI: 10.1016/j.chroma.2023.464479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
The analysis of the brain extracellular metabolome is of interest for numerous subdomains within neuroscience. Not only does it provide information about normal physiological functions, it is even more of interest for biomarker discovery and target discovery in disease. The extracellular analysis of the brain is particularly interesting as it provides information about the release of mediators in the brain extracellular fluid to look at cellular signaling and metabolic pathways through the release, diffusion and re-uptake of neurochemicals. In vivo samples are obtained through microdialysis, cerebral open-flow microperfusion or solid-phase microextraction. The analytes of potential interest are typically low in concentration and can have a wide range of physicochemical properties. Liquid chromatography coupled to mass spectrometry has proven its usefulness in brain metabolomics. It allows sensitive and specific analysis of low sample volumes, obtained through different approaches. Several strategies for the analysis of the extracellular fluid have been proposed. The most widely used approaches apply sample derivatization, specific stationary phases and/or hydrophilic interaction liquid chromatography. Miniaturization of these methods allows an even higher sensitivity. The development of chiral metabolomics is indispensable, as it allows to compare the enantiomeric ratio of compounds and provides even more challenges. Some limitations continue to exist for the previously developed methods and the development of new, more sensitive methods remains needed. This review provides an overview of the methods developed for sampling and liquid chromatography-mass spectrometry analysis of the extracellular metabolome.
Collapse
Affiliation(s)
- Liam Nestor
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dimitri De Bundel
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ilse Smolders
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann Van Eeckhaut
- Research group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
5
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
6
|
van de Wetering R, Vorster JA, Geyrhofer S, Harvey JE, Keyzers RA, Schenk S. Behavioral metabolomics: how behavioral data can guide metabolomics research on neuropsychiatric disorders. Metabolomics 2023; 19:69. [PMID: 37530897 PMCID: PMC10397151 DOI: 10.1007/s11306-023-02034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
INTRODUCTION Metabolomics produces vast quantities of data but determining which metabolites are the most relevant to the disease or disorder of interest can be challenging. OBJECTIVES This study sought to demonstrate how behavioral models of psychiatric disorders can be combined with metabolomics research to overcome this limitation. METHODS We designed a preclinical, untargeted metabolomics procedure, that focuses on the determination of central metabolites relevant to substance use disorders that are (a) associated with changes in behavior produced by acute drug exposure and (b) impacted by repeated drug exposure. Untargeted metabolomics analysis was carried out on liquid chromatography-mass spectrometry data obtained from 336 microdialysis samples. Samples were collected from the medial striatum of male Sprague-Dawley (N = 21) rats whilst behavioral data were simultaneously collected as part of a (±)-3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization experiment. Analysis was conducted by orthogonal partial least squares, where the Y variable was the behavioral data, and the X variables were the relative concentrations of the 737 detected features. RESULTS MDMA and its derivatives, serotonin, and several dopamine/norepinephrine metabolites were the greatest predictors of acute MDMA-produced behavior. Subsequent univariate analyses showed that repeated MDMA exposure produced significant changes in MDMA metabolism, which may contribute to the increased abuse liability of the drug as a function of repeated exposure. CONCLUSION These findings highlight how the inclusion of behavioral data can guide metabolomics data analysis and increase the relevance of the results to the phenotype of interest.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | - Jan A Vorster
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sophie Geyrhofer
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Joanne E Harvey
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
7
|
Meng X, Liu Y, Huo M, Yang S, Zhang X, Tian L, Li W, Wei J, Wang Z, Zhou Z, Chen Y, Wang Z, Abliz Z. Mapping of Fatty Aldehydes in the Diabetic Rat Brain Using On-Tissue Chemical Derivatization and Air-Flow-Assisted Desorption Electrospray Ionization-Mass Spectrometry Imaging. J Proteome Res 2023; 22:36-46. [PMID: 36564034 DOI: 10.1021/acs.jproteome.2c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty aldehydes (FALs) are involved in various biological processes, and their abnormal metabolism is related to the occurrence and development of neurological diseases. Because of their low ionization efficiency, methods for in situ detection and mass spectrometry imaging (MSI) analysis of FALs remain underreported. On-tissue chemical tagging of hardly ionizable target analytes with easily ionized moieties can improve ionization efficiency and detection sensitivity in MSI experiments. In this study, an on-tissue chemical derivatization-air-flow-assisted desorption electrospray ionization-MSI method was developed to visualize FALs in the rat brain. The method showed high sensitivity and specificity, allowing the use of in situ high-resolution MS3 to identify FALs. The methodology was applied to investigate the region-specific distribution of FALs in the brains of control and diabetic encephalopathy (DE) rats. In DE rats, FALs were found to be significantly enriched in various brain regions, especially in the cerebral cortex, hippocampus, and amygdala. Thus, increased FAL levels and oxidative stress occurred in a region-dependent manner, which may contribute to cognitive function deficits in DE. In summary, we provide a novel method for the in situ detection of FALs in biological tissues as well as new insights into the potential pathogenesis of DE.
Collapse
Affiliation(s)
- Xianyue Meng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Meiling Huo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Shu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| | - Xin Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Lu Tian
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Zhaoying Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yanhua Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zhonghua Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Zeper Abliz
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China.,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China.,Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, P. R. China
| |
Collapse
|
8
|
Jijo A, Cheredath A, Uppangala S, Lakshmi R. V, Joseph D, Meitei HY, Asampille G, Kumar P, Gowda G. A. N, Kalthur G, Kovacic B, Adiga SK. ICSI in non-male factor infertility patients does not alter metabolomic signature in sibling embryos as evidenced by sensitivity enhanced nuclear magnetic resonance (NMR) spectroscopy. PLoS One 2022; 17:e0273321. [PMID: 36149910 PMCID: PMC9506644 DOI: 10.1371/journal.pone.0273321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) was developed to overcome male factor infertility, however, there recently has been an increasing trend in ICSI usage irrespective of the etiology, demonstrating an overuse of this insemination technique. There is a limited knowledge on the behaviour of ICSI derived embryos in non-male factor infertility patients. Metabolomic assessment of preimplantation embryos in conjunction with morphological evaluation can provide better understanding of embryonic behaviour. Hence, this study was undertaken to explore if there are any metabolomic differences between IVF and ICSI derived sibling day-5 blastocysts from non-male factor infertility patients. This prospective study included nineteen couples with non-male factor infertility undergoing Assisted Reproductive Technology. The sibling oocytes retrieved from each patient were randomly assigned to two groups and inseminated either by IVF or ICSI. Spent culture media (SCM) in which embryos were cultured up to day 5 were collected and investigated using sensitivity enhanced NMR based metabolite profiling utilizing high resolution (800 MHz) NMR equipped with cryogenically cooled micro-coil (1.7 mm) probe. The metabolomic signature between IVF and ICSI derived sibling blastocysts was assessed. A significant reduction in the concentrations of pyruvate, citrate, glucose and lysine were observed in both IVF and ICSI sibling embryos compared to medium control (P< 0.05-0.001). Further, histidine and valine level was found lower in ICSI embryos compared to medium control (P<0.05) during 96 hours of in vitro culture. Notably, between IVF and ICSI SCM, no significant difference in the concentration of the metabolites was found. Our results suggest that ICSI in non-male factor does not alter the SCM metabolomic signature during 96 hours of embryonic development.
Collapse
Affiliation(s)
- Ameya Jijo
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Aswathi Cheredath
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Shubhashree Uppangala
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Vani Lakshmi R.
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
| | - David Joseph
- NMR Research Centre, Indian Institute of Science, Bangalore, India
| | - Huidrom Yaiphaba Meitei
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gitanjali Asampille
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Pratap Kumar
- Department of Reproductive Medicine and Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Nagana Gowda G. A.
- Northwest Metabolomics Research Center, Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States of America
| | - Guruprasad Kalthur
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Borut Kovacic
- Department of Reproductive Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Satish Kumar Adiga
- Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|