1
|
Xiong J, Sun B, Zhang S, Qin L, Zhang J, Jiang H. A novel one-step immunoassay using mesoporous core-shell Pd@Pt nanoparticles as an alternative to horseradish peroxidase for amantadine detection. Talanta 2025; 291:127898. [PMID: 40058143 DOI: 10.1016/j.talanta.2025.127898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
The inherent limitations of natural enzymes hinder their stable application under harsh conditions, highlighting the urgent need for a stable alternative signal tracer. Herein, core-shell palladium@platinum (Pd@Pt) nanoparticles (NPs) with mesoporous and dendritic nanostructures were synthesized using a modified ultrasound-assisted chemical reduction method, resulting in a 25 % improvement in relative activity compared to previously reported methods. The yielding nanoparticles exhibited enhanced peroxidase-like activity with specific activity of 54.4 U/mg, and their Michaelis constant and maximum reaction velocity were 6.2 and 48 timers higher, respectively, than those of horseradish peroxidase (HRP). The Pd@Pt NPs were conjugated with antibodies via electrostatic adsorption, demonstrating their potential as a viable alternative to HRP. The rough surface structure of the Pd@Pt NPs not only enhanced the efficiency of antibody immobilization to approximately 90 %, but also, through a pH-regulated antibody immobilization strategy, facilitated the orientation of antibody recognition regions, thereby improving inhibition efficiency. A one-step immunoassay based on the Pd@Pt NPs immunoprobe was then developed, with amantadine (AMD) serving as a proof of concept. The proposed method showed a 2.8-fold increase in sensitivity, a 400-fold expansion in the linear range, and a 1-h reduction in detection time compared to the traditional "gold standard" ELISA. The practical applicability of the proposed method was validated in real chicken and pork samples, with coefficients of variation all less than 17.49 %, and a strong correlation with commercial kits was observed. These results suggest that Pd@Pt NPs are a promising signal-generating probe with significant potential as an alternative to HRP, offering improvements in sensitivity, linear range, stability, and other key performance characteristics.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Chen D, Zhu Z, Guo W, Wang Y, Yu Z, Zhu B, Lu J, Zan J. Enhancing RBP4 protein detection in clinical urine samples with solid-state nanopores through optimized sandwich immunoassay techniques. Biosens Bioelectron 2025; 278:117318. [PMID: 40056569 DOI: 10.1016/j.bios.2025.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Nanopore technology is a promising single-molecule sensing platform that can identify substances through the precise monitoring of changes in ion currents. However, protein detection in clinical samples using solid-state nanopores remains challenging due to their heterogeneously charged spherical structure, which results in signals with extremely low signal-to-noise ratios (SNR) and low capture rates that are difficult to analyze. In this study, we employed a double-antibody sandwich technique to specifically capture and amplify the target antigen, which significantly improves the SNR and effectively distinguishes the target signal from background interference. Key factors including buffer composition, voltage, antibody concentration, and pore dimensions were systematically optimized to further improve capture efficiency. The optimized approach enabled precise and reliable detection of retinol-binding protein 4 (RBP4) with an excellent linear response within the range of 55 fM to 5.5 pM. Moreover, our method facilitates quantitative detection of RBP4 in clinical urine samples within 40 min, and achieves 100% accuracy in distinguishing between 11 urine samples from chronic kidney disease (CKD) patients and healthy donors, highlighting its robustness and specificity. Our research not only paves a new pathway for efficient RBP4 detection, but also provides valuable insights into the application of nanopore technology for the clinical diagnosis of protein biomarkers.
Collapse
Affiliation(s)
- Daqi Chen
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Zhuobin Zhu
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhiyong Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Baian Zhu
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Zhuhai, Guangdong, China.
| |
Collapse
|
3
|
Park JH, Yoo YE, Jin JH, Kwon DI, Yoon JS, Kang DH, Lee Y, Kim K. Portable and rapid solid sample preparation system utilizing twin-screw mechanism for diagnostic applications. Analyst 2025; 150:1523-1532. [PMID: 40108997 DOI: 10.1039/d4an01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Solid specimens play a crucial role in diagnostic and analytical testing, yet their integration into in vitro diagnostics (IVD) is often limited by lengthy processing times and bulky sample preparation equipment. In this study, we introduce a novel twin-screw mechanical maceration system that enables rapid, continuous, and efficient solid sample preparation within a compact portable platform. By utilizing counter-rotating twin screws, the system generates high shear forces, significantly reducing processing time while maintaining high sample recovery efficiency. We validated its versatility across diverse solid sample types, demonstrating efficient bacterial elution from plant tissues and single-cell dissociation of animal tissues. Our device achieved bacterial elution from plant samples in under 1 min, which is 30 times faster than conventional stomaching, while maintaining a significantly smaller footprint. For animal tissue samples, it dissociated tissue samples of varying sizes (5 g to 100 mg) into single-cell suspensions within 1 min. Furthermore, we explored scalability with a miniaturized device fabricated using 3D printing, which retained comparable performance while reducing volume requirements, expediting processing time, and enabling manual operation without an external power source. This rapid, compact, adaptable, and highly efficient twin-screw system outperforms conventional solid sample processing techniques, making it a promising innovation for a wide range of biomedical applications, from point-of-care diagnostics to tissue biopsies, food hygiene, and agricultural monitoring.
Collapse
Affiliation(s)
- Ji Hyo Park
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Seoul, 08826, South Korea
| | - Yeong-Eun Yoo
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
- Department of Nanomechatronics, University of Science and Technology, Deajeon, 34103, South Korea
| | - Jae-Ho Jin
- Neo Nanotech, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea
| | - Da-In Kwon
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
- Neo Nanotech, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea
| | - Jae Sung Yoon
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
- Department of Nanomechatronics, University of Science and Technology, Deajeon, 34103, South Korea
| | - Do Hyun Kang
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
| | - Younju Lee
- Department of Surgery, Chungnam National Univeristy Sejong Hospital, 20 Bodeum 7-ro, Sejong, 30099, South Korea.
| | - Kwanoh Kim
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon, 34103, South Korea.
| |
Collapse
|
4
|
Karamifard F, Dadbinpour A, Mazaheri M. An in- vitro measurement for the toxicity of peptides inhibit hexokinase II in breast cancer cell lines. Sci Rep 2025; 15:10660. [PMID: 40148397 PMCID: PMC11950298 DOI: 10.1038/s41598-025-94858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
The role of the enzyme hexokinase 2 in many cancers has been identified through increased glycolysis or binding to the pro-apoptotic channel located in the outer mitochondrial membrane, (VDCA1) and protein kinase (MTOR). To prevent the cancer-causing pathways of this enzyme, it is possible to disrupt the interaction of hexokinase subunits. Peptides can be utilized to interfere with the interaction of subunits by binding to amino acids that contribute to enzyme dimerization. Nowadays, peptides have become a suitable option for the treatment of various diseases, especially cancer, due to their small size, ease of synthesis, and ability to penetrate the tumor. This study examined the toxic effect of peptides that inhibit enzyme interaction on tumorigenic MCF-7 and MDA-MB-231 and non-tumorigenic MCF10A cell lines through MTT analysis and flow cytometry to determine cell apoptosis. The MCF-7 line experienced a significant decrease in cell proliferation with both peptides. The RYALFSS peptide caused a decrease in the number of MDA-MB-231 cells, but the EKGLGATTHPTAAVKML peptide caused a significant increase. There was no significant increase or decrease in the MCF10A cell line. The study's finding indicate that peptides can serve as a tool to prevent the proliferation of carcinogenic cells.
Collapse
Affiliation(s)
- Faranak Karamifard
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Dadbinpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Genetic and Environmental Adventures Research Center, School of Abarkouh Paramedicin, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Mother and Newborn, Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Guo C, Liu Z, He Y, Zhang S, He L, Wang M, Zhang Z. Recent advances of surface plasmon resonance sensors based on metal-organic frameworks. Talanta 2025; 292:128008. [PMID: 40147082 DOI: 10.1016/j.talanta.2025.128008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The surface Plasmon resonance (SPR) sensing technique combines rapid response, high sensitivity, non-destructive operation, high specificity, real-time on-site detection, and continuous monitoring advantages. These distinctive features enable its broad application in detecting disease biomarkers, viruses, foodborne contaminants, and hazardous gases. To enhance SPR sensing signals, metal-organic frameworks (MOFs), which emerge as a category of highly porous-organic frameworks, have demonstrated superior performance as SPR sensitive layers due to their features of large specific surface areas, high porosity, regular skeletons, tunable chemical components and functionality, and promising optoelectronic performances. Varieties of MOFs (such as UiO-66, porphyrin-based MOFs, and zeolitic imidazolate frameworks) and MOFs-based composites with improved plasmon-exciton coupling and charge carrier mobility exhibit amplified SPR responses through the integration of diverse effects. This review systematically summarizes the construction principle of MOFs-based SPR sensors and discusses their advancements for the inspection of biomarkers, drug residuals, viruses, and volatile organic gases. Finally, we also analyze the current challenge and provide the perspective about this field, which can inspire readers to a certain extent.
Collapse
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Zhenzhen Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yihan He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Peng Y, Alqatari A, Kiessling F, Renn D, Grünberg R, Arold ST, Rueping M. Nanobody-Based Lateral Flow Assay for Rapid Zika Virus Detection. ACS Synth Biol 2025; 14:890-900. [PMID: 40053481 PMCID: PMC11934133 DOI: 10.1021/acssynbio.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
Zika virus infections remain severely underdiagnosed due to their initial mild clinical symptoms. However, recent outbreaks have revealed neurological complications in adults and severe deformities in newborns, emphasizing the critical need for accurate diagnosis. Lateral flow assays (LFAs) provide a rapid, cost-effective, and user-friendly method for antigen testing at point-of-care, bedside, or in home settings. LFAs utilizing nanobodies have multiple benefits over traditional antibody-based techniques, as nanobodies are much smaller, more stable, and simpler to manufacture. We introduce a nanobody-based LFA for the rapid identification of Zika virus antigens. Starting from two previously reported nanobodies recognizing the Zika nonstructural protein 1 (NS1), we evaluate periplasmic and cytosolic nanobody expression and test different purification tags and immobilization strategies. We quantify nanobody binding kinetics and validate their mutually noncompetitive binding. Avidity effects boost the capture of the tetrameric target protein by 3 orders of magnitude and point to a general strategy for higher sensitivity LFA sensing. The nanobody LFA detects Zika NS1 with a limit of detection ranging from 25 ng/mL in buffer to 1 ng/mL in urine. This nanobody-LFA has the potential to facilitate on-site and self-diagnosis, improve our understanding of Zika infection prevalence, and support public health initiatives in regions affected by Zika virus outbreaks.
Collapse
Affiliation(s)
- Yuli Peng
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Atheer Alqatari
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging (ExMI), University Hospital, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| | - Dominik Renn
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Raik Grünberg
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T. Arold
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
- KAUST
Center of Excellence for Smart Health, Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute
for Experimental Molecular Imaging (ExMI), University Hospital, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
7
|
Zielinska Z, Oldak L, Gorodkiewicz E. Biosensing systems for the detection of biomarkers of neurodegenerative diseases: A review. Talanta 2025; 284:127247. [PMID: 39586209 DOI: 10.1016/j.talanta.2024.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are pathologies associated with neuronal disorders and degradation. They are difficult to detect in their early stages, when it is crucial for appropriate treatment to be implemented. Currently, many biosensors are being developed to enable the determination of compounds characteristic of the aforementioned diseases. This review includes a de-scription of the structure of biosensors, as well as their applications in many areas of qualitative and quantitative analysis, with particular emphasis on diagnostics. The structures of biosensors that can potentially be used for the diagnosis of AD, PD and MS are discussed, as well as their characteristics, which depend on the technique used for the analysis and the type of recognition element capable of specifically binding a given biomarker. A description is also given of biosensors classified according to the type of sample used for quantitative determinations.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Doctoral School of Exact and Natural Science, Faculty of Chemistry, Bioanalysis Laboratory, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
8
|
Xia F, Liu F, Yang Y, Liu X, Zhao Y, Yang J, Huang W, Gu J. Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs. ACS Sens 2025; 10:1346-1355. [PMID: 39847658 DOI: 10.1021/acssensors.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with Fe3O4 nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (Fe3O4@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism. Such a unique configuration conceptualized IMIA where the HPZIF-8 shell served as a solid carrier to cover capture antibodies while the Fe3O4 core assisted its rapid separation. The large pore channels not only provided a stable microenvironment to maintain the recognition ability of captured antibodies but also enhanced their coating density, thus promoting the probability of capturing and binding target antigens, significantly improving immunoassay (IA) sensitivity. The practical clinic IA for cTnI (Cardiac Troponin I, biomarker of acute myocardial infarction (AMI)) in human serums was exemplified. The developed IMIA could accurately quantify slight fluctuations in cTnI concentrations in the serums of AMI patients at different stages after symptom onset with more than 100-fold enhancement of limit of detection (LOD) in comparison to conventional plate-based enzyme-linked immunosorbent assay (ELISA). Such high sensitivity of IMIA makes it a powerful tool for the accurate diagnosis of different diseases by altering the type of primary capture antibody.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhong Liu
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Yingjun Yang
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqiang Huang
- Thyroid and Breast Surgery, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Li H, Liu J, Li C, Wang R, Kannan S, Li X, Fu G. Development of a syringe-hosted load-and-read immunoassay device using autoinjected distance readout in paper inserts. Mikrochim Acta 2025; 192:195. [PMID: 40016539 DOI: 10.1007/s00604-025-07052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Pressure-based signal readout is promising for developing instrument-free immunoassays, but new detection methods are desirable to further advance the applicability of point-of-care testing (POCT). Herein, we developed a syringe-hosted load-and-read immunoassay device using autoinjected distance readout in paper inserts. The device was composed of multiple disposable syringes as the host for immuno-recognition, a three-dimensional (3D)-printed loading magazine of the syringes, and paper inserts to the magazine for distance signal readout. Using prostate-specific antigen (PSA) as a model target, the immuno-recognition system was constructed on the inner cylinder walls of the syringes. The immuno-captured platinum nanoparticles (Pt NPs) catalyzed the decomposition of H2O2 to produce O2 in the cylinders, driving the automatic quantitative injection behavior of the syringes. By loading the syringes into the magazine, the autoinjected liquids were received by the paper inserts to display the immunoassay signals as a visual traveling distance of liquids. PSA was determined with a low limit of detection (LOD) of 0.32 ng/mL and high accuracy in testing clinical serum specimens. Given the advantages of the simple syringe-hosted immuno-recognition method and the load-and-read signal readout in the paper inserts, the immunoassay device shows great potential in POCT.
Collapse
Affiliation(s)
- Haojie Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong ,Yantai University, Yantai, Shandong, 264005, China
| | - Jie Liu
- Department of Clinical Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Cuili Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong ,Yantai University, Yantai, Shandong, 264005, China
| | - Runze Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Sapna Kannan
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Guanglei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong ,Yantai University, Yantai, Shandong, 264005, China.
| |
Collapse
|
10
|
Vo DK, Trinh KTL. Polymerase Chain Reaction Chips for Biomarker Discovery and Validation in Drug Development. MICROMACHINES 2025; 16:243. [PMID: 40141854 PMCID: PMC11944077 DOI: 10.3390/mi16030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Polymerase chain reaction (PCR) chips are advanced, microfluidic platforms that have revolutionized biomarker discovery and validation because of their high sensitivity, specificity, and throughput levels. These chips miniaturize traditional PCR processes for the speed and precision of nucleic acid biomarker detection relevant to advancing drug development. Biomarkers, which are useful in helping to explain disease mechanisms, patient stratification, and therapeutic monitoring, are hard to identify and validate due to the complexity of biological systems and the limitations of traditional techniques. The challenges to which PCR chips respond include high-throughput capabilities coupled with real-time quantitative analysis, enabling researchers to identify novel biomarkers with greater accuracy and reproducibility. More recent design improvements of PCR chips have further expanded their functionality to also include digital and multiplex PCR technologies. Digital PCR chips are ideal for quantifying rare biomarkers, which is essential in oncology and infectious disease research. In contrast, multiplex PCR chips enable simultaneous analysis of multiple targets, therefore simplifying biomarker validation. Furthermore, single-cell PCR chips have made it possible to detect biomarkers at unprecedented resolution, hence revealing heterogeneity within cell populations. PCR chips are transforming drug development, enabling target identification, patient stratification, and therapeutic efficacy assessment. They play a major role in the development of companion diagnostics and, therefore, pave the way for personalized medicine, ensuring that the right patient receives the right treatment. While this tremendously promising technology has exhibited many challenges regarding its scalability, integration with other omics technologies, and conformity with regulatory requirements, many still prevail. Future breakthroughs in chip manufacturing, the integration of artificial intelligence, and multi-omics applications will further expand PCR chip capabilities. PCR chips will not only be important for the acceleration of drug discovery and development but also in raising the bar in improving patient outcomes and, hence, global health care as these technologies continue to mature.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Zhang S, Zhu W, Zhang X, Mei L, Liu J, Wang F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr 3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136655. [PMID: 39603133 DOI: 10.1016/j.jhazmat.2024.136655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
With the growing global concern over food safety, the rapid detection and disinfection of foodborne pathogens have become critical in public health. This study presents a novel machine learning-driven fluorescent sensor array utilizing aqueous CsPbBr3 perovskite quantum dots (PQDs) for the rapid identification and eradication of foodborne pathogens. The relative signal intensity changes (ΔRGB) generated by the sensor array were analyzed using the machine learning algorithm-Support Vector Machine (SVM). The study achieved the identification and recognition of five pathogens and their mixtures within a concentration range of 1.0 × 103 to 1.0 × 107 CFU/mL with an accuracy rate of 100 %, and the limits of detection (LOD) for the pathogens were found to be low. Additionally, the array also showed excellent performance in the identification of pathogens in tap water, achieving an accuracy rate of 100 %. Furthermore, the fluorescent sensor array was capable of inactivating the pathogens with an efficiency of over 99 % within 30 min post-detection. This development provides an efficient and reliable tool for the field of food safety detection.
Collapse
Affiliation(s)
| | - WeiWei Zhu
- Hefei University of Technology, Hefei 230009, China
| | - Xin Zhang
- Hefei University of Technology, Hefei 230009, China
| | - LiangHui Mei
- Hefei University of Technology, Hefei 230009, China
| | - Jian Liu
- Hefei University of Technology, Hefei 230009, China.
| | - Fangbin Wang
- Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
12
|
Justiz-Vaillant A, Soodeen S, Gopaul D, Arozarena-Fundora R, Thompson R, Unakal C, Akpaka PE. Tackling Infectious Diseases in the Caribbean and South America: Epidemiological Insights, Antibiotic Resistance, Associated Infectious Diseases in Immunological Disorders, Global Infection Response, and Experimental Anti-Idiotypic Vaccine Candidates Against Microorganisms of Public Health Importance. Microorganisms 2025; 13:282. [PMID: 40005649 PMCID: PMC11858333 DOI: 10.3390/microorganisms13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
This paper explores various aspects of microbiology and immunology, with a particular focus on the epidemiology and molecular characterisation of infectious diseases in the Caribbean and South America. Key areas of investigation include tuberculosis (TB), experimental vaccines, and bloodborne pathogens. A retrospective study conducted in Jamaica highlights the significance of early HIV screening, timely diagnosis, and inte-grated care. The paper also examines the challenges posed by nosocomial infections, particularly those caused by antibiotic-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), emphasising the critical importance of infection control measures. Additionally, it explores the regional microbiome, the global response to infectious diseases, and immune responses in patients with immunodeficiency disorders such as severe combined immunodeficiency (SCID) and chronic granulomatous disease (CGD), underscoring their heightened susceptibility to a wide range of infections.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Darren Gopaul
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 330912, Trinidad and Tobago
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
| |
Collapse
|
13
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2025; 64:e202418725. [PMID: 39551709 PMCID: PMC11753613 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Bruno J. Salena
- Department of MedicineMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| |
Collapse
|
14
|
Khandelwal D, Bhattacharya A, Kumari V, Gupta SS, Ranjan KR, Mishra V. Leveraging nanomaterials for ultrasensitive biosensors in early cancer detection: a review. J Mater Chem B 2025; 13:802-820. [PMID: 39635753 DOI: 10.1039/d4tb02107j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cancer remains a major global health challenge with a high mortality rate, as evidenced by the rise in new cases every year. Conventional diagnostic methods like PET scans, MRIs, and biopsies, despite being widely used, suffer from significant drawbacks such as high radiation exposure, difficulty in distinguishing malignant from benign tumors, and invasiveness. Early detection, which is crucial for improving treatment outcomes and survival rates, is hindered by the asymptomatic nature of early-stage cancer and the limitations of current diagnostic tools. Cancer biomarkers, detectable in body fluids, offer valuable diagnostic information, and recent advances in nanotechnology have led to the development of highly sensitive nano-biosensors. This review explores recent advancements (2022-2024) in the field of ultrasensitive nano-biosensors, emphasizing the strategic integration of nanomaterials to enhance sensitivity and accuracy in cancer biomarker detection. It highlights how precise nanomaterial positioning in sensor components like electrodes and bioreceptors enables early cancer diagnosis at low biomarker concentrations. These innovations underscore the transformative potential of nanomaterials in revolutionizing early cancer diagnostics, improving patient care, and enhancing survival outcomes.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Aheli Bhattacharya
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vanshika Kumari
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | | | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| |
Collapse
|
15
|
Jamshaid A, Noreen S, Khalid T. MALDI-MSI: A potential game changer in forensic sciences. Forensic Sci Med Pathol 2025:10.1007/s12024-024-00911-7. [PMID: 39808261 DOI: 10.1007/s12024-024-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Matrix-assisted laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) is an analytical technique used for the spatial mapping of drugs, explosives, and organic samples, making it a game-changer in Forensic examination. It detects a wide range of biomolecules in their native state without specific tags, antibodies, labels, and dyes. This review aims to highlight the advancement of MALDI-MSI over time and its impact on Forensic Science due to high-resolution molecular imaging. To foster the development of forensic investigations the utility of MALDI-MSI in six different broad areas, Latent Fingerprinting division, forensic toxicology division, Crime Scene Reconstruction and investigation division, Sex crimes, forensic trichology division, question document analysis, is explored in this review. MALDI-MSI possesses a unique strength of molecular imaging of biomolecules without complex preparation from diverse sample types. In the future, the sensitivity and detection limits of MALDI-MSI can be enhanced and its instrumental size should be reduced to perform on-site investigation.
Collapse
Affiliation(s)
- Asma Jamshaid
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saadia Noreen
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Tanveer Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
16
|
Teng P, Gao Z, Quan Q, He G, Song Q, Zhang X, Xiao W, Zhao J, Cao D, Liang J, Tang Y. SERS-based CRISPR/Cas12a assays for protein biomarker prostate-specific antigen detection. Anal Bioanal Chem 2025; 417:573-582. [PMID: 39576313 DOI: 10.1007/s00216-024-05663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Sensitive and accurate detection of protein biomarkers is crucial for disease diagnosis, especially for early diagnosis. Here, we describe surface-enhanced Raman scattering (SERS)-based CRISPR/Cas12a assays (S-CRISPR) for protein biomarker detection. Firstly, an S-CRISPR-driven enzyme-linked immunosorbent assay (S-CasLISA) was developed utilizing a capture antibody coated on a microplate to recognize the target and a detection antibody labeled with active DNA to trigger the activity of CRISPR/Cas12a. With this assay, we achieved detection of prostate-specific antigen (PSA) as models at the picogram level. The limit of detection (LoD) of S-CasLISA was 0.17 pg mL-1 and in the range of 0.1 pg mL-1 to 10 ng mL-1. Further, we applied aptamer to S-CRISPR (S-Apt-CRISPR), combining the high sensitivity of SERS with the high selectivity of aptamers, while simplifying the operation process of CRISPR detection of protein biomarkers. The proposed S-Apt-CRISPR also could detect picogram-level PSA and without repeated washing steps. The LoD of S-Apt-CRISPR was 0.35 pg mL-1 and in the range of 0.1 pg mL-1 to 10 ng mL-1. Both SERS-based CRISPR/Cas12a assays were validated with clinical samples and demonstrated accuracy consistent with the chemiluminescence immunoassay. The introduction of the CRISPR/Cas12a system with SERS has the effect of improving the analytical capabilities of the system, thereby broadening and facilitating its application in the analysis of sensitive and accurate protein biomarkers.
Collapse
Affiliation(s)
- Peijun Teng
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhixing Gao
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qiang Quan
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guangbo He
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China
| | - Qifang Song
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaoli Zhang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jiajie Liang
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, the First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China.
| | - Yong Tang
- GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Guangdong Zhongxin Biotech Limited, Guangzhou, 510000, China.
| |
Collapse
|
17
|
Liu Y, Jin Z, Sun D, Xu B, Lan T, Zhao Q, He Y, Li J, Cui Y, Zhang Y. Preparation of hapten and monoclonal antibody of hesperetin and establishment of enzyme-linked immunosorbent assay. Talanta 2025; 281:126912. [PMID: 39305766 DOI: 10.1016/j.talanta.2024.126912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/18/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Hesperetin is the aglycone of hesperidin and is widely found in the Rutaceae plants and herbal medicines. It exhibits antioxidant, detoxifying, anti-inflammatory, and antimicrobial properties, similar to hesperidin. It has also shown potential in the regulation of certain diseases. In order to detect hesperetin in complex matrix samples such as citrus and herbal, we developed an anti-hesperetin monoclonal antibody and established an indirect competitive enzyme-linked immunosorbent assay (icELISA). The half maximal inhibitory concentration (IC50) was determined to be 2.03 ng/mL, the detection range was 0.39-12.73 ng/mL. In practical sample testing, the concentration of hesperidin measured by icELISA is consistent with the result of UPLC-MS/MS, and the correlation coefficient (R2) is 0.97. These results showed that the established method has good accuracy, reproducibility and broad application prospects, and can be used for the detection of hesperetin in complex matrix samples (such as citrus and herbal samples).
Collapse
Affiliation(s)
- Yifan Liu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zihui Jin
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Di Sun
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Bo Xu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Tianyu Lan
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qiyang Zhao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jing Li
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China; Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, China.
| |
Collapse
|
18
|
Agbektas T, Guclu G, Tas A, Ozmen E, Topcu O, Aydin S, Silig Y. Leptin/Melanocortin Pathway in Cholelithiasis Patients: A Diagnostic Perspective. Protein Pept Lett 2025; 32:75-83. [PMID: 39582225 DOI: 10.2174/0109298665343979241025114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Cholelithiasis is the most prevalent inflammatory condition of the gallbladder. The regulation of biological processes, including energy homeostasis, and control of body weight are key mechanisms that the leptin and melanocortin pathways play a role in Cholelithiasis is the most prevalent inflammatory condition of the gallbladder. There are various risk factors for the development of gallstone disease, especially weight gain, and obesity is just one of them. This risk factor can be minimized by maintaining appetite and energy balance. Here, leptin and melanocortin pathways are the key mechanisms in maintaining appetite and energy homeostasis. OBJECTIVES The aim of this study was to investigate the relationship between the levels of LEP, LEPR, TrkB, BDNF, POMC, and MC4R proteins in patients with Cholelithiasis. This study aims to determine the relationship between LEP, LEPR, TrkB, BDNF, POMC, and MC4R protein levels, which play a role in maintaining appetite and energy homeostasis, and cholelithiasis. METHODS This study examined 44 patients diagnosed with Cholelithiasis and 44 healthy control subjects who had not previously been diagnosed with any form of Cholelithiasis. The levels of leptin (LEP), Leptin Binds To Leptin Receptors (LEPR), Tropomyosin Receptor Kinase B (TrkB), Brain-Derived Neurotrophic Factor (BDNF), Pro-OpioMelanoCortin (POMC), and Melanocortin- 4 Receptors (MC4R) molecules were analyzed using the Enzyme-Linked Immunosorbent Assay (ELISA) method. The results were analyzed using the SPSS Software (Version 22.0) program and GraphPad Prism 8.0.1 software. RESULTS The study found a statistically significant decrease (p < 0.05) in MC4R, TrkB, BDNF, and POMC protein levels in Cholelithiasis patients compared to the control group. There was no statistically significant difference in LEP and LEPR concentration values between the two groups (p = 0.247, p = 0.674). CONCLUSION The proteins MC4R, TrkB, BDNF, and POMC, which are involved in the leptin and melanocortin pathways may play a significant role in Cholelithiasis disease. However, more detailed research on the relevant proteins is needed. Nevertheless, this research will guide new studies.
Collapse
Affiliation(s)
- Tugba Agbektas
- Department of Food Processing Technologies Services, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Gulsen Guclu
- Department of Health Care Services, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ayca Tas
- Department of Nutrition and Dietetics, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Esma Ozmen
- Department of Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Niğde, Türkiye
| | - Omer Topcu
- Department of General Surgery, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry, Fırat University, Elazığ, Türkiye
| | - Yavuz Silig
- Department of Medical Biochemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
19
|
Wang R, Zhou L, Yang Y, Zhao F, Sun X, Liu X, Zou Z, Liang G. Spatially Quantitative Imaging of Enzyme Activity in a Living Cell. J Am Chem Soc 2024; 146:34870-34877. [PMID: 39655641 DOI: 10.1021/jacs.4c14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme activity plays a key role in cell heterogeneity. Its spatially quantitative imaging in a living cell not only directly displays but also helps people to understand cell heterogeneity. Current methods are hard to achieve due to the short intracellular retention or lack of internal reference of the imaging probes. Herein, we rationally designed a self-referenced Raman probe Val-Cit-Cys(StBu)-Pra-Gly-CBT (Yne-CBT) which takes an intracellular cathepsin B (CTSB)-initiated CBT-Cys click reaction to yield a long-retained cyclic dimer in cell. In the meantime, Raman signal changes of its two chemical bonds (C≡C and C≡N) after the reaction are used for self-referencing and quantitative Raman imaging of CTSB activity. In vitro experiments demonstrated that, with shell-isolated nanoparticle-enhanced Raman spectroscopy technique, 20 μM Yne-CBT was able to quantitatively detect CTSB activity with a limit of detection of 61.4 U L-1. Under a homemade microfluidic channel, Yne-CBT was successfully applied for spatially quantitative imaging CTSB activity in a living cell. Our strategy provides people with a facile method to directly and quantitatively display cell heterogeneity.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Zhou
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yueyan Yang
- School of Science, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Furong Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
20
|
Bosco MS, Naud-Martin D, Gonzalez-Galindo C, Auvray M, Araya-Farias M, Gropplero G, Rozenholc Y, Topcu Z, Gaucher JF, Tsatsaris V, Descroix S, Mahuteau-Betzer F, Gagey-Eilstein N. Bimodal Array-Based Fluorescence Sensor and Microfluidic Technology for Protein Fingerprinting and Clinical Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:8236-8247. [PMID: 39530215 DOI: 10.1021/acsabm.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins play a crucial role in determining disease states in humans, making them prime targets for the development of diagnostic sensors. The developed sensor array is used to investigate global proteomic changes by fingerprinting multifactorial disease states in model urine simulating phenylketonuria and in serum from preeclamptic pregnant women. Here, we report a fluorescence-based chemical sensing array that exploits the host-guest interaction between cucurbit[7]uril (CB[7]) and fluorescent triphenylamine derivatives (TPA) to detect a range of proteins. Using linear discriminant analysis, we identify fluorescence fingerprints of 14 proteins with over 98% accuracy in buffer and human serum. The array is optimized on an automated droplet microfluidic-based platform, for high-throughput sensing with controlled composition and lower sample volumes. This sensor enables the discrimination of proteins in physiological buffer and human serum, with promising applications in disease diagnosis.
Collapse
Affiliation(s)
- Monica Swetha Bosco
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Delphine Naud-Martin
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Carlos Gonzalez-Galindo
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| | - Marie Auvray
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Monica Araya-Farias
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Giacomo Gropplero
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Zeki Topcu
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Cité, 75006 Paris, France
| | - Jean-Francois Gaucher
- CiTCoM, Faculté de Pharmacie de Paris, Université Paris Cité, UMR CNRS 8038, 75006 Paris, France
| | - Vassilis Tsatsaris
- Department of Obstetric, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 bd Port-Royal, 75014 Paris, France
| | - Stéphanie Descroix
- Laboratoire Physics of Cells and Cancer (PCC), Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Florence Mahuteau-Betzer
- Institut Curie, Université PSL, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR9187, Inserm U1196, 91400 Orsay, France
| | - Nathalie Gagey-Eilstein
- Unité de Technologies Chimiques et Biologiques pour la Santé - UTCBS, Faculté de Pharmacie de Paris, Université Paris Cité, CNRS UMR 8258, Inserm U1267, 75006 Paris, France
| |
Collapse
|
21
|
Wang K, Wang S, Margolis S, Cho JM, Zhu E, Dupuy A, Yin J, Park SK, Magyar CE, Adeyiga OB, Jensen KS, Belperio JA, Passam F, Zhao P, Hsiai TK. Rapid prediction of acute thrombosis via nanoengineered immunosensors with unsupervised clustering for multiple circulating biomarkers. SCIENCE ADVANCES 2024; 10:eadq6778. [PMID: 39661669 PMCID: PMC11633740 DOI: 10.1126/sciadv.adq6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO2 laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody. Using unsupervised clustering based on four biomarker concentrations, we predicted thrombotic events in 49 of 53 patients. The four-biomarker combination yielded an area under the receiver operating characteristic curve (AUC) of 0.95, demonstrating high sensitivity and specificity for acute thrombosis prediction compared to the AUC values for individual biomarkers: CRP (0.773), calprotectin (0.711), sP-selectin (0.683), and D-dimer (0.739). Thus, a nanoengineered multichannel platform with unsupervised clustering provides accurate and efficient methods for predicting thrombosis, guiding personalized medicine.
Collapse
Affiliation(s)
- Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Shaolei Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Dupuy
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Junyi Yin
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| | - Clara E. Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oladunni B. Adeyiga
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristin Schwab Jensen
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Freda Passam
- Department of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, Faculty Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peng Zhao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung K. Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
22
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
23
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
24
|
Dong B, Hu K, Mao Y, Wen K, Wang Z, Qu H, Zheng L. A nanomaterial-independent and fluorescent immunoassay based on Eu-micelles for rapid and sensitive detection of fluoroquinolones in chicken. Food Chem 2024; 459:140419. [PMID: 39024876 DOI: 10.1016/j.foodchem.2024.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Fluorescent nanoprobes are widely applied in innovate enzyme-linked immunosorbent assays (ELISA) for detection of fluoroquinolones (FQs) residue in foodstuffs. Nevertheless, the complicated synthesis of nanoprobes hampers their practical applications. Herein, a nanomaterial-independent and fluorescent ELISA for sensitive detection of FQs is developed using the Eu-micelles as signal probe. Non-nanostructured Eu-micelles with high quantum yield and stability are facilely synthesized through the assembly of Eu3+ and ligands. Alkaline phosphatase catalyzes hydrolysis of 4-nitrophenyl phosphate to 4-nitrophenol. The fluorescent Eu-micelles can be readily quenched by 4-nitrophenol via static quenching. The signal generation mechanism integrates well with conventional ELISA systems. The established fluorescent ELISA achieves sensitive detection of FQs with a limit of detection of 0.03 μg/kg. The validation results from LC-MS show that the fluorescent ELISA exhibits good accuracy and recoveries. Our study presents a nanomaterial-independent strategy for developing the rapid immunoassay for FQs, which holds good promise for practical applications.
Collapse
Affiliation(s)
- Baolei Dong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kaiying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Mao G, Li Q, Zhang Z, Huang W, Luo Q, Dai J, Huang W, Ma Y. Analyte-induced hindrance in the RCA-assisted CRISPR/Cas12a system for homogeneous protein assays. Anal Chim Acta 2024; 1330:343294. [PMID: 39489975 DOI: 10.1016/j.aca.2024.343294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Heterogeneous assays, such as enzyme-linked immunosorbent assays, have become indispensable for in vitro diagnostics. However, the simple, sensitive, and accurate detection is limited by their multiple washing and incubation steps, and limited amplification methods. In this study, we design a novel approach utilizing analyte-induced hindrance within the rolling circle amplification (RCA)-assisted CRISPR/Cas12a system for simple and highly sensitive homogenous protein detection. Streptavidin (SA) and digoxin antibody (anti-Dig) are employed as representative detection models. The specific recognition of target proteins using primers modified with small molecules hinders the RCA process, preventing the activation of Cas12a's trans-cleavage activity, thereby leading to a reduction in fluorescence intensity. Our developed platform exhibites exceptional detection performance characterized by high sensitivity, robust specificity, and significant potential for application in complex samples. By expanding the recognition elements, this platform can evolve into a versatile clinical diagnostic tool with universal applicability. In addition, this platform provides a novel direction for quantifying ultralow-concentration disease biomarkers in clinical practice.
Collapse
Affiliation(s)
- Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ziying Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian Luo
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Weiren Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
26
|
Nikitina M, Khramtsov P, Devyatov S, Valeev R, Eryomina M, Chukavin A, Rayev M. The development of a method to produce diagnostic reagents using LaNiO 3 nanospheres and their application in nanozyme-linked immunosorbent assay for the colorimetric screening of C-reactive protein with high sensitivity. Analyst 2024; 149:5657-5667. [PMID: 39474875 DOI: 10.1039/d4an01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
LaNiO3 perovskite nanoparticles, especially nanospheres (LNNS), show great promise in biomedical assays due to their peroxidase-like catalytic properties. However, LNNS-based diagnostic reagents have not been tested in nanozyme enzyme-linked immunosorbent assay (NLISA) or other enzyme-linked immunosorbent assays, and there is limited data on their synthesis. To fill this gap, it is necessary to develop a method for creating LNNS conjugates with monoclonal antibodies and to investigate the reproducibility, scalability, and applicability of these diagnostic reagents in NLISA. We have successfully developed a method for producing novel diagnostic reagents utilizing LaNiO3 nanospheres. Our research demonstrates the application of these nanospheres in a NLISA specifically designed for the detection of C-reactive protein (CRP) in real serum samples. This method is both reproducible and scalable, allowing for the efficient production of nanospheres that are functionalized with monoclonal antibodies targeting CRP, with a mean diameter of approximately 270 nm. Based on the promising results obtained from our experiments, we have developed and optimized a sandwich-format NLISA for CRP detection. This assay achieved a lower limit of detection at 0.178 μg L-1, with a dynamic range from 12.5 to 0.195 μg L-1 and a linear detection range extending from 0.195 to 6.25 μg L-1, showcasing its potential for clinical applications. The new NLISA method, utilizing LaNiO3 nanospheres in a sandwich format for the detection of CRP, significantly enhances sensitivity compared to similar use horseradish peroxidase-based ELISA. In this study for the first time, the functionalization of lanthanum nickelate nanospheres with recognition elements has been demonstrated. This advancement also sheds light on the technological challenges involved in synthesizing diagnostic reagents, identifying areas that need further exploration.
Collapse
Affiliation(s)
- Maria Nikitina
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
| | | | - Rishat Valeev
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Marina Eryomina
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Andrey Chukavin
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia
- Udmurt Federal Research Center, Ural Branch of RAS, Izhevsk, Russia
| |
Collapse
|
27
|
Di Natale C, Coppola S, Vespini V, Tkachenko V, Luciani G, Vitiello G, Ferranti F, Mari S, Maffettone PL, Grilli S. Characterization of bovine serum albumin immobilization on surface modified glass slides in case of pyro-electrohydrodynamic spots. Anal Chim Acta 2024; 1329:343178. [PMID: 39396275 DOI: 10.1016/j.aca.2024.343178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Pyro-electrohydrodynamic jetting (p-jet) has emerged recently as a promising technique for biosensing applications, through the concentration of highly diluted biomolecules in fluorescent spots at microscale. However, a great challenge still remains in optimizing the binding strategy for the sensing interface, enabling the detection of low abundance proteins through immunofluorescence protocols. Indeed, the surface of reaction can be functionalized with different chemical groups able to bind the target molecule with a strong interaction, prior to the p-jet spots decreasing the possibility to lose sensitivity after the common rinsing steps. RESULTS Here, we characterize the immobilization of a model protein, specifically the bovine serum albumin (BSA), in the concentrated p-jet spots to demonstrate the reliability of the technique for highly sensitive immunodetection assays. We first performed spectroscopic measurements on BSA deposited through pipette spots at relatively high concentrations and we achieved a higher efficiency in case of the covalent bond by using the carbonate buffer and the epoxy-based slides. We then tested the covalent setting in case of the p-jet spots with highly diluted samples of pre-labelled BSA. A significant concentration-dependent behavior of the signal was obtained down to picogram levels. Finally, an immunofluorescent protocol was settled with the p-jet spots and a Limit of the Detection (LOD) of 0. 27 pg/mL was reached. SIGNIFICANCE The demonstration here that the p-jet spots are compatible with immunodetection procedures and provide a LOD down to 0.27 pg/mL, launches the p-jet technique towards the development in future of a point-of-care (POC) diagnostic tool. This would become a major force in analytical chemical laboratories. The identification of highly diluted biomarkers from peripheral body fluids would help clinicians performing early diagnosis, overcoming the limitations of the traditional immunochemistry tests, such as the enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Concetta Di Natale
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy.
| | - Sara Coppola
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Veronica Vespini
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Volodymyr Tkachenko
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Giuseppina Luciani
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy
| | - Giuseppe Vitiello
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Center for Colloid and Surface Science (CSGI), via della Lastruccia, Sesto Fiorentino, FI 80078, Italy
| | | | - Silvia Mari
- Italian Space Agency, Via del Politecnico snc, 00133, Rome, Italy
| | - Pier Luca Maffettone
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Simonetta Grilli
- University of Naples Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, I-80125, Napoli, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy.
| |
Collapse
|
28
|
Miura D, Hayashi W, Hirano K, Sasaki I, Tsukakoshi K, Kakizoe H, Asai S, Vavricka CJ, Takemae H, Mizutani T, Tsugawa W, Sode K, Ikebukuro K, Asano R. Proximity-Unlocked Luminescence by Sequential Enzymatic Reactions from Antibody and Antibody/Aptamer (PULSERAA): A Platform for Detection and Visualization of Virus-Containing Spots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403871. [PMID: 39316377 DOI: 10.1002/advs.202403871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Indexed: 09/25/2024]
Abstract
The SARS-CoV-2 pandemic has challenged more scientists to detect viruses and to visualize virus-containing spots for diagnosis and infection control; however, detection principles of commercially available technologies are not optimal for visualization. Here, a convenient and universal homogeneous detection platform named proximity-unlocked luminescence by sequential enzymatic reactions from antibody and antibody/aptamer (PULSERAA) is developed. This is designed so that the signal appears only when the donor and acceptor are in proximity on the viral surface. PULSERAA specifically detected in the range of 25-500 digital copies/mL of inactivated SARS-CoV-2 after simply mixing reagents; it is elucidated that the accumulation of chemical species in a limited space of the viral surface contributed to such high sensitivity. PULSERAA was quickly adapated to detect another virus variant, inactivated influenza A virus, and infectious SARS-CoV-2 in a clinical sample. Furthermore, on-site (direct, rapid, and portable) visualization of the inactivated SARS-CoV-2-containing spots by a conventional smartphone camera was achieved, demonstrating that PULSERAA can be a practical tool for preventing the next pandemic in the future.
Collapse
Affiliation(s)
- Daimei Miura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Wakana Hayashi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kensuke Hirano
- Department of Industrial Technology and Innovation, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ikkei Sasaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehumi Kakizoe
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Satomi Asai
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
- Division of Infection Control, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan
| |
Collapse
|
29
|
A N B, O D H, N S K, A V Z, B B D. Immunodetection of Poorly Soluble Substances: Limitations and Their Overcoming. Crit Rev Anal Chem 2024:1-26. [PMID: 39360478 DOI: 10.1080/10408347.2024.2402835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments. Thus, obtaining immunoreactants and implementing immunoassays of these substances need special methodological solutions. Hydrophobicity of antigens as well as their limited ability to functionalization and conjugation are often overlooked when developing immunoassays for these compounds. The main key finding is the possibility to influence the behavior of hydrophobic compounds for immunoassays, which requires specific approaches summarized in the review. Using the examples of two groups of compounds-surfactants (alkyl- and bisphenols) and fullerenes, we systematized the existing knowledge and experience in the development of immunoassays. This review addresses the challenges of immunodetection of poorly soluble substances and proposes solutions such as the use of hydrotropes, other solubilization techniques, and alternative receptors (aptamers and molecularly imprinted polymers).
Collapse
Affiliation(s)
- Berlina A N
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Hendrickson O D
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Komova N S
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Zherdev A V
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Dzantiev B B
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
30
|
Ting WT, Ali MY, Mitea V, Wang MJ, Howlader MMR. Polyaniline-based bovine serum albumin imprinted electrochemical sensor for ultra-trace-level detection in clinical and food safety applications. Int J Biol Macromol 2024; 277:134137. [PMID: 39067725 DOI: 10.1016/j.ijbiomac.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Monitoring bovine serum albumin (BSA) at ultra-low levels is crucial for clinical and food safety applications, as it plays a significant role in identifying various health conditions and potential risks, necessitating fast, trace-level detection of BSA. This study proposes an approach to address these challenges by employing molecularly imprinted polymer (MIP) to develop an ultra-trace-level and cost-effective BSA sensing platform. The MIP electrochemical sensor was developed using polyaniline (PANI) combined with the protein crosslinker glutaraldehyde (GA) to optimize BSA surface imprinting in the MIP. As a result, the sensor achieves a sensitivity of 1.24 μA/log(pg/mL), with a picomolar detectable limit of 2.3 pg/mL (0.035 pM) and a wide detection range from 20 pg/mL to 200,000 pg/mL (0.303 pM to 3030 pM), making it suitable for clinical and food safety applications. Additionally, the study explores the interaction between an acidic surfactant protein eluent (acetic acid with sodium dodecyl sulfate, AcOH-SDS) and BSA vacant sites, enhancing recognition and re-binding. The PANI-based MIP sensor demonstrates initial feasibility and practicality in commercial milk and real human serum, opening avenues for early disease detection and ensuring food safety in BSA-related immune responses.
Collapse
Affiliation(s)
- Wei-Ting Ting
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan; Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan
| | - Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Victor Mitea
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43 Keelung Road Section 4, Taipei 106, Taiwan.
| | - Matiar M R Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
31
|
Wang C, Zhao X, Huang X, Xu F, Gu C, Yu S, Zhang X, Qian J. Simultaneous detection of multiple mycotoxins using MXene-based electrochemical aptasensor array and a self-developed multi-channel portable device. Talanta 2024; 278:126450. [PMID: 38908138 DOI: 10.1016/j.talanta.2024.126450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
In response to the pressing need for highly efficient simultaneous detection of multiple mycotoxins, which are often found co-occurring in food raw materials and feed, an MXene-based electrochemical aptasensor array (MBEAA) was developed. This aptasensor array utilizes high-specificity aptamers as recognition elements, enabling the capture of electrical signal changes in the presence of target mycotoxins. Based on this platform, a multi-channel portable electrochemical device, enabling rapid, cost-effective, and simultaneous detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zealenone (ZEN) was further developed. The developed system boasts a wide detection range of 1.0 × 10-1 to 10.0 ng mL-1, with remarkable performance characterized by ultra-low detection limits of 41.2 pg mL-1, 27.6 pg mL-1, and 33.0 pg mL-1 for AFB1, OTA, and ZEN, respectively. Successfully applied in corn samples, this method offers a portable, easy-to-operate, and cost-effective solution for simultaneous multi-mycotoxin detection. Moreover, the application of the self-developed detection system could be expanded for simultaneous detection of many different targets when their specific aptamers or antibodies were available.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xin Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Foyan Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chengdong Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaorui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
32
|
Li S, Zhang Y, Liu J, Wang X, Qian C, Wang J, Wu L, Dai C, Yuan H, Wan C, Li J, Du W, Feng X, Li Y, Chen P, Liu BF. Fully Integrated and High-Throughput Microfluidic System for Multiplexed Point-Of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401848. [PMID: 38940626 DOI: 10.1002/smll.202401848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Indexed: 06/29/2024]
Abstract
For every epidemic outbreak, the prevention and treatments in resource-limited areas are always out of reach. Critical to this is that high accuracy, stability, and more comprehensive analytical techniques always rely on expensive and bulky instruments and large laboratories. Here, a fully integrated and high-throughput microfluidic system is proposed for ultra-multiple point-of-care immunoassay, termed Dac system. Specifically, the Dac system only requires a handheld portable device to automatically recycle repetitive multi-step reactions including on-demand liquid releasing, dispensing, metering, collecting, oscillatory mixing, and discharging. The Dac system performs high-precision enzyme-linked immunosorbent assays for up to 17 samples or targets simultaneously on a single chip. Furthermore, reagent consumption is only 2% compared to conventional ELISA, and microbubble-accelerated reactions shorten the assay time by more than half. As a proof of concept, the multiplexed detections are achieved by detecting at least four infection targets for two samples simultaneously on a singular chip. Furthermore, the barcode-based multi-target results can rapidly distinguish between five similar cases, allowing for accurate therapeutic interventions. Compared to bulky clinical instruments, the accuracy of clinical inflammation classification is 92.38% (n = 105), with a quantitative correlation coefficient of R2 = 0.9838, while the clinical specificity is 100% and the sensitivity is 98.93%.
Collapse
Affiliation(s)
- Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ying Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingxuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, 518000, China
| | - Jingjing Wang
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, 518000, China
| | - Liqiang Wu
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co., Ltd., Shenzhen, 518000, China
| | - Chenxi Dai
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiashuo Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
33
|
Deng R, Shi Y, Zhang Y, Zhang X, Deng S, Xia X. Precise, Sensitive Detection of Viable Foodborne Pathogenic Bacteria with a 6-Order Dynamic Range via Digital Rolling Circle Amplification. ACS Sens 2024; 9:4127-4133. [PMID: 39028985 DOI: 10.1021/acssensors.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The presence of viable pathogenic bacteria in food can lead to serious foodborne diseases, thus posing a risk to human health. Here, we develop a digital rolling circle amplification (dRCA) assay that enables the precise and sensitive quantification of viable foodborne pathogenic bacteria. Directly targeting pathogenic RNAs via a ligation-based padlock probe allows for precisely discriminating viable bacteria from dead one. The one-target-one-amplicon characteristic of dRCA enables high sensitivity and a broad quantitative detection range, conferring a detection limit of 10 CFU/mL and a dynamic range of 6 orders. dRCA can detect rare viable bacteria, even at a proportion as low as 0.1%, which is 50 times more sensitive than the live/dead staining method. The high sensitivity for detecting viable bacteria accommodates dRCA for assessing sterilization efficiency. Based on the assay, we found that, for pasteurization, slightly elevating the temperature to 68 °C can reduce the heating time to 10 min, which may minimize nutrient degradation caused by high-temperature exposure. The assay can serve as a precise tool for estimating the contamination by viable pathogenic bacteria and assessing sterilization, which facilitates food safety control.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yachen Shi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xinlei Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Kshirsagar A, Politza AJ, Guan W. Deep Learning Enabled Universal Multiplexed Fluorescence Detection for Point-of-Care Applications. ACS Sens 2024; 9:4017-4027. [PMID: 39010300 PMCID: PMC11421847 DOI: 10.1021/acssensors.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
There is a significant demand for multiplexed fluorescence sensing and detection across a range of applications. Yet, the development of portable and compact multiplexable systems remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum separation, which typically requires sophisticated and expensive optical components. Here, we demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost optical components and a pretrained machine learning (ML) model to enable multiplexed fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled up through updates to the machine learning model without altering the hardware. We demonstrate its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification (LAMP) assay designed to simultaneously detect three common respiratory viruses within a single reaction. The effectiveness of this approach highlights the system's potential for point-of-care applications that require cost-effective and scalable solutions. The machine learning-enabled multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread adoption in diverse settings, from clinical laboratories to field diagnostics.
Collapse
Affiliation(s)
- Aneesh Kshirsagar
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Anthony J. Politza
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, The Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
35
|
Shi Y, Fan J, Li N, Lv Y, Yu S, Zhang Y, Ye Y, Wu R, Shen H, Li LS. Tailored different sizes of quantum dot nanobeads for sensitive and quantitative detection based on the competition fluorescence-linked immunosorbent assay platform. Talanta 2024; 276:126296. [PMID: 38795648 DOI: 10.1016/j.talanta.2024.126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Highly stable and multicolor photoluminescent (PL) quantum dots (QDs) have attracted widespread attention as ideal probe materials in the field of in vitro diagnostics (IVD), especially the fluorescence-linked immunosorbent assay (FLISA), due to their advantages of high-throughput, high stability, and high sensitivity. However, the size of QDs as fluorescent probes have significant effects on antigen-antibody performance. Therefore, it is critical to design suitable QDs for obtain excellent quantitative detection-based biosensors. In this paper, we prepared different sizes of aqueous QDs (30 nm, 116 nm, 219 nm, and 320 nm) as fluorescent probes to optimize the competitive FLISA platform. The SARS-CoV-2 neutralizing antibody (NTAB) assay was used as an example, and it was found that the size of the QDs has a significant impact on the antigen-antibody binding efficiency and detection sensitivity in competitive FLISA platform. The results showed that these QD nanobeads (QBs, ∼219 nm) could be used as a labeled probe for competitive FLISA, with half-maximal inhibitory concentration (IC50) of 1.34 ng/mL and limit of detection (LOD) of 0.21 pg/mL for NTAB detection. More importantly, the results showed good specificity and accuracy, and the QB219 probe was able to efficiently bind NTAB without interference from other substances in the serum. Given the above advantages, the nanoprobe material (∼200 nm) offers considerable potential as a competitive FLISA platform in the field of IVD.
Collapse
Affiliation(s)
- Yangchao Shi
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Jinjin Fan
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ning Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Shenping Yu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yuning Zhang
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Yingli Ye
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
36
|
Liu M, Zhuang H, Zhang Y, Jia Y. A sandwich FRET biosensor for lysozyme detection based on peptide-functionalized gold nanoparticles and FAM-labeled aptamer. Talanta 2024; 276:126226. [PMID: 38754187 DOI: 10.1016/j.talanta.2024.126226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Lysozyme (LYZ) plays a crucial role in the body's immune defense system. Monitoring LYZ levels can provide valuable insights into the diagnosis and severity assessment of various diseases. Traditionally, antibody-based sandwich assays are employed for LYZ detection, but they are often time-consuming and operationally complicated. In this research, a novel sandwich FRET biosensor was developed, which enables rapid detection of LYZ based on peptide-functionalized gold nanoparticles (pAuNPs) and FAM-labeled aptamer (Apt-FAM). Initially, a mixture of Apt-FAM and pAuNPs resulted in partial quenching of the Apt-FAM fluorescence emission through an inner filter effect (IFE), with negligible energy transfer because of the electrostatic repulsion between the negatively charged pAuNPs and Apt-FAM. The introduction of LYZ into the mixture drove the specific binding of Apt-FAM and pAuNPs to LYZ, facilitating the formation of a pAuNPs-LYZ-aptamer sandwich structure. The formation of this complex drew the pAuNPs and Apt-FAM into close enough proximity to enable FRET to occur, which in turn effectively quenched the fluorescence emission of FAM. The decrease in FAM fluorescence intensity was correlated with the increasing concentration of LYZ. Thus, a sandwich FRET biosensor was successfully developed for LYZ detection with a linear detection range of 0-1.75 μM and a detection limit of 85 nM. Additionally, the biosensor allowed visual detection of LYZ in a 96-well microplate, with a rapid response time of just 15 s. This study introduces a innovative sandwich FRET biosensor that combines aptamer and peptide recognition elements, offering a fast and antibody-free method for protein detection.
Collapse
Affiliation(s)
- Meiqing Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China; State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China.
| | - Hongyuan Zhuang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, 361006, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China; Faculty of Science and Technology - ECE, University of Macau, 999078, Macau, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau, China.
| |
Collapse
|
37
|
Soleimani S, Bruce-Tagoe TA, Ullah N, Rippy MG, Spratt HG, Danquah MK. Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. Anal Bioanal Chem 2024; 416:4619-4634. [PMID: 38916796 DOI: 10.1007/s00216-024-05410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Staphylococcus aureus (S. aureus) is recognized as one of the most common causes of gastroenteritis worldwide. This pathogen is a major foodborne pathogen that can cause many different types of various infections, from minor skin infections to lethal blood infectious diseases. Iron-regulated surface determinant protein A (IsdA) is an important protein on the S. aureus surface. It is responsible for iron scavenging via interaction with hemoglobin, haptoglobin, and hemoglobin-haptoglobin complexes. This study develops a portable aptasensor for IsdA and S. aureus detection using aptamer-modified gold nanoparticles (AuNPs) integrated into screen-printed carbon electrodes (SPCEs). The electrode system was made of three parts, including a carbon counter electrode, an AuNPs/carbon working electrode, and a silver reference electrode. The aptamer by Au-S bonding was conjugated on the electrode surface to create the aptasensor platform. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to investigate the binding interactions between the aptasensor and the IsdA protein. CV studies showed a linear correlation between varying S. aureus concentrations within the range of 101 to 106 CFU/mL, resulting in a limit of detection (LOD) of 0.2 CFU/mL. The results demonstrated strong reproducibility, selectivity, and sensitivity of the aptasensor for enhanced detection of IsdA, along with about 93% performance stability after 30 days. The capability of the aptasensor to directly detect S. aureus via the IsdA surface protein binding was further investigated in a food matrix. Overall, the aptasensor device showed the potential for rapid detection of S. aureus, serving as a robust approach to developing real-time aptasensors to identify an extensive range of targets of foodborne pathogens and beyond.
Collapse
Affiliation(s)
- Shokoufeh Soleimani
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tracy Ann Bruce-Tagoe
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Meredith G Rippy
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Henry G Spratt
- Department of Biology, Geology, and Environmental Science, University of Tennessee, Chattanooga, TN, 37403, USA
| | - Michael K Danquah
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
38
|
Hu K, Yin W, Bai Y, Zhang J, Yin J, Zhu Q, Mu Y. CRISPR-Based Biosensors for Medical Diagnosis: Readout from Detector-Dependence Detection Toward Naked Eye Detection. BIOSENSORS 2024; 14:367. [PMID: 39194596 DOI: 10.3390/bios14080367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The detection of biomarkers (such as DNA, RNA, and protein) plays a vital role in medical diagnosis. The CRISPR-based biosensors utilize the CRISPR/Cas system for biometric recognition of targets and use biosensor strategy to read out biological signals without the employment of professional operations. Consequently, the CRISPR-based biosensors demonstrate great potential for the detection of biomarkers with high sensitivity and specificity. However, the signal readout still relies on specialized detectors, limiting its application in on-site detection for medical diagnosis. In this review, we summarize the principles and advances of the CRISPR-based biosensors with a focus on medical diagnosis. Then, we review the advantages and progress of CRISPR-based naked eye biosensors, which can realize diagnosis without additional detectors for signal readout. Finally, we discuss the challenges and further prospects for the development of CRISPR-based biosensors.
Collapse
Affiliation(s)
- Kai Hu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Weihong Yin
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Yunhan Bai
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Jiarui Zhang
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Juxin Yin
- Academy of Edge Intelligence, Hangzhou City University, Hangzhou 310015, China
| | - Qiangyuan Zhu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Ying Mu
- State Key Laboratory of Industrial Control Technology, Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
40
|
Chen M, Fan H, Li W, Ruan J, Yang Y, Mao C, Li R, Liu GL, Hu W. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright‐Field Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractConsidering the improved detection of biological analytes for affinity analysis is highly desirable, a metasurface plasmon resonance (Meta‐SPR)‐based imaging system, incorporating a localized SPR sensing platform with different microfluidic systems and employing simple bright‐field imaging, is established in this study. This system enables low‐level analyte concentration analysis, ranging from 100 pm to 100 nm, with the real‐time removal of nonspecific binding signals within the same device field of view. Combined with microfluidic systems and microdroplet spotting, it is possible to automatically measure the kinetic curves of a sample at ten concentration gradients or detect the specific responses of multiple samples in a single experiment simultaneously. This system can inexpensively and conveniently achieve complex detection functions, demonstrating an innovative breakthrough in sensor detection.
Collapse
Affiliation(s)
- Mingqian Chen
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Hongli Fan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wen Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Jingyan Ruan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Yihui Yang
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Cuixuan Mao
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Rui Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Gang L. Liu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wenjun Hu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| |
Collapse
|
41
|
Hu L, Rossetti M, Bergua JF, Parolo C, Álvarez-Diduk R, Rivas L, Idili A, Merkoçi A. Harnessing Bioluminescent Bacteria to Develop an Enzymatic-free Enzyme-linked immunosorbent assay for the Detection of Clinically Relevant Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30636-30647. [PMID: 38651970 PMCID: PMC11194763 DOI: 10.1021/acsami.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteriaAllivibrio fischeriand metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.
Collapse
Affiliation(s)
- Liming Hu
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Marianna Rossetti
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - José Francisco Bergua
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Claudio Parolo
- Barcelona
Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Lourdes Rivas
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Andrea Idili
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Arben Merkoçi
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
42
|
Whitehouse WL, Lo LHY, Kinghorn AB, Shiu SCC, Tanner JA. Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless, and Single-Step Nanomolar Detection of C-Reactive Protein. ACS APPLIED BIO MATERIALS 2024; 7:3721-3730. [PMID: 38485932 DOI: 10.1021/acsabm.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome. Currently, clinical turn-around times for established CRP detection methods take between 30 min to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers, functionalized onto inexpensive, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 min. The aptasensor limit of detection spans approximately 20-60 nM in 50% human serum with dynamic response windows spanning 1-200 or 1-500 nM (R = 0.97/R = 0.98 respectively). The sensor is stable for at least 1 week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of structure-switching electrochemical aptamer-based sensors (SS-EABs) for reagentless, voltammetric CRP detection. We hope this study inspires further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for broader use by the public.
Collapse
Affiliation(s)
- William L Whitehouse
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Louisa H Y Lo
- Advanced Biomedical Instrumentation Center, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Simon C C Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Lemmink IB, Straub LV, Bovee TFH, Mulder PPJ, Zuilhof H, Salentijn GI, Righetti L. Recent advances and challenges in the analysis of natural toxins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:67-144. [PMID: 38906592 DOI: 10.1016/bs.afnr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Natural toxins (NTs) are poisonous secondary metabolites produced by living organisms developed to ward off predators. Especially low molecular weight NTs (MW<∼1 kDa), such as mycotoxins, phycotoxins, and plant toxins, are considered an important and growing food safety concern. Therefore, accurate risk assessment of food and feed for the presence of NTs is crucial. Currently, the analysis of NTs is predominantly performed with targeted high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods. Although these methods are highly sensitive and accurate, they are relatively expensive and time-consuming, while unknown or unexpected NTs will be missed. To overcome this, novel on-site screening methods and non-targeted HPLC high resolution mass spectrometry (HRMS) methods have been developed. On-site screening methods can give non-specialists the possibility for broad "scanning" of potential geographical regions of interest, while also providing sensitive and specific analysis at the point-of-need. Non-targeted chromatography-HRMS methods can detect unexpected as well as unknown NTs and their metabolites in a lab-based approach. The aim of this chapter is to provide an insight in the recent advances, challenges, and perspectives in the field of NTs analysis both from the on-site and the laboratory perspective.
Collapse
Affiliation(s)
- Ids B Lemmink
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Leonie V Straub
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, P.R. China
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
45
|
Chen SJ, Lu SY, Tseng CC, Huang KH, Chen TL, Fu LM. Rapid Microfluidic Immuno-Biosensor Detection System for the Point-of-Care Determination of High-Sensitivity Urinary C-Reactive Protein. BIOSENSORS 2024; 14:283. [PMID: 38920587 PMCID: PMC11201708 DOI: 10.3390/bios14060283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic immuno-biosensor detection system consisting of a microfluidic spectrum chip and a micro-spectrometer detection device is presented for the rapid point-of-care (POC) detection and quantification of high-sensitivity C-reactive protein (hs-CRP) in urine. The detection process utilizes a highly specific enzyme-linked immunosorbent assay (ELISA) method, in which capture antibodies and detection antibodies are pre-deposited on the substrate of the microchip and used to form an immune complex with the target antigen. Horseradish peroxidase (HRP) is added as a marker enzyme, followed by a colorimetric reaction using 3,3',5,5'-tetramethylbenzidine (TMB). The absorbance values (a.u.) of the colorimetric reaction compounds are measured using a micro-spectrometer device and used to measure the corresponding hs-CRP concentration according to the pre-established calibration curve. It is shown that the hs-CRP concentration can be determined within 50 min. In addition, the system achieves recovery rates of 93.8-106.2% in blind water samples and 94.5-104.6% in artificial urine. The results showed that the CRP detection results of 41 urine samples from patients with chronic kidney disease (CKD) were highly consistent with the conventional homogeneous particle-enhanced turbidimetric immunoassay (PETIA) method's detection results (R2 = 0.9910). The experimental results showed its applicability in the detection of CRP in both urine and serum. Overall, the results indicate that the current microfluidic ELISA detection system provides an accurate and reliable method for monitoring the hs-CRP concentration in point-of-care applications.
Collapse
Affiliation(s)
- Szu-Jui Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Song-Yu Lu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan;
- College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuan-Hsun Huang
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - To-Lin Chen
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 70101, Taiwan; (S.-J.C.); (S.-Y.L.); (K.-H.H.); (T.-L.C.)
| |
Collapse
|
46
|
Qian C, Li P, Wang J, Hong X, Zhao X, Wu L, Miao Z, Du W, Feng X, Li Y, Chen P, Liu BF. Centrifugo-Pneumatic Reciprocating Flowing Coupled with a Spatial Confinement Strategy for an Ultrafast Multiplexed Immunoassay. Anal Chem 2024; 96:7145-7154. [PMID: 38656793 DOI: 10.1021/acs.analchem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.
Collapse
Affiliation(s)
- Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Pengjie Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jingjing Wang
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xudong Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liqiang Wu
- Shenzhen YHLO Biotech Co., Ltd., Shenzhen, Guangdong 518116, China
| | - Zeyu Miao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Nikitina M, Khramtsov P, Bochkova M, Rayev M. Development and performance of NLISA for C-reactive protein detection based on Prussian blue nanoparticle conjugates. Anal Bioanal Chem 2024; 416:3097-3106. [PMID: 38635074 DOI: 10.1007/s00216-024-05268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Prussian blue nanoparticles (PBNPs), also called nanozymes, are very attractive as an alternative to horseradish peroxidase in immunoassay development due to their simple and low-cost synthesis, stability and high catalytic activity. Today, there is a method for highly effective PBNP synthesis based on the reduction of an FeCl3/K3[Fe(CN)6] mixture by hydrogen peroxide. However, there is a lack of research showcasing the use of these highly effective PBNPs for specific target detection in clinical settings, as well as a lack of comprehensive comparisons with conventional methods. To address this gap, we prepared diagnostic reagents based on highly effective PBNPs by modifying them using gelatin and attaching anti-C-reactive protein (CRP) monoclonal antibodies through cross-linking with glutaraldehyde. As a result, a solid-phase colorimetric immunoassay in a sandwich format (nanozyme-linked immunosorbent assay [NLISA]) using highly effective PBNPs as a label for CRP detection has been demonstrated for the first time. The assay demonstrated a detection limit of 21.8 pg/mL, along with acceptable selectivity, precision (CV < 25%) and accuracy (the recovery index was within acceptable limits (75-125%) for LLOQ /ULOQ range. The analytical performance of this method is on par with sensitive assays developed in the last 5 years. Notably, the results obtained from NLISA align with those from an immunofluorescence assay conducted by a certified clinical laboratory. Furthermore, this study underscores the technological challenges involved in constructing an analysis that necessitate further exploration.
Collapse
Affiliation(s)
- Maria Nikitina
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia.
- Biology Faculty, Perm State University, Perm, Russia.
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Urals Branch of RAS, Perm, Russia
- Biology Faculty, Perm State University, Perm, Russia
| |
Collapse
|
48
|
Wang M, Liu Z, Liu C, He W, Qin D, You M. DNAzyme-based ultrasensitive immunoassay: Recent advances and emerging trends. Biosens Bioelectron 2024; 251:116122. [PMID: 38382271 DOI: 10.1016/j.bios.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhe Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Chang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wanghong He
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, 100050, PR China
| | - Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China.
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
49
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
50
|
Li H, Chen J, Xu W, Huang B, Peng C, Cai H, Hou R, Wen K, Li L, Dong B, Wang Z. A facile fluorescence microplate immunoassay based on an in situ fluorogenic reaction for the detection of two highly toxic anticoagulant rodenticides in food and biological matrix. Food Chem 2024; 437:137792. [PMID: 37866338 DOI: 10.1016/j.foodchem.2023.137792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/23/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Bromadiolone and brodifacoum, the most frequently used anticoagulant rodenticides, are highly toxic and pose a threat to public health by causing food poisoning incidents. Here, we developed a fluorescence microplate immunoassay for facile and sensitive detection of bromadiolone and brodifacoum by introducing three commercial chemicals (p-phenylenediamine, polyethyleneimine, H2O2) as a new substrate of horseradish peroxidase and then generating fluorescence signals based on an in situ fluorogenic reaction (detection time within 75 min). This assay exhibited higher efficiency in generating fluorescence signals, thereby exhibiting a 6-fold improvement in sensitivity compared with colorimetric ELISA. The limit of detection was 0.23-0.28 ng/mL (ng/g) for bromadiolone and 0.34-0.61 ng/mL (ng/g) for brodifacoum in corn and human serum, with recovery ratios higher than 82.3 %. These satisfactory results illustrated our proposed assay was a potential tool for food analysis and poisoning diagnosis caused by bromadiolone and brodifacoum.
Collapse
Affiliation(s)
- Hongfang Li
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Jie Chen
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Wenqing Xu
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Baowei Huang
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Chuanyi Peng
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Huimei Cai
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Ruyan Hou
- College of Tea and Food Science & Technology, Anhui Agricultural University, Animal-Derived Food Safety Innovation Team of Anhui Agricultural University, 230036 Hefei, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Lin Li
- College of Animal Science and Technology, Anhui Agricultural University, 230036 Hefei, China.
| | - Baolei Dong
- College of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China.
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| |
Collapse
|