1
|
Zeng X, Wang L, Liu C, Zhang J, Shi HW, Shen W, Kong D, Huang C, Lee HK, Tang S. An integrated liposome-based microfluidic strategy for rapid colorimetric analysis: A case study of microRNA-21 detection. Talanta 2024; 272:125838. [PMID: 38430866 DOI: 10.1016/j.talanta.2024.125838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
In this study, a novel integrated liposome-based microfluidic platform combined with a smartphone was designed for the rapid colorimetric detection of microRNA-21 (miRNA-21) in real samples. The flowing surface-functionalized liposomes were first captured by nucleic acid-functionalized Au nanoparticles in the microfluidic chip. In the presence of miRNA-21, the DNA strand modified on the surface of Au nanoparticles hybridized with the target to form double-stranded products and was cleaved by duplex-specific nuclease (DSN) enzyme, causing the liposomes to be re-released. Then, as the liposomes in the colorimetric module were lysed and the "cellular" contents were released, a step-by-step "glucose-glucose oxidase-3,3',5,5'-tetramethylbenzidine (TMB)" colorimetric reaction process catalyzed by the G-quadruplex/hemin was triggered. The grayscale values were recorded and recognized by the smartphone camera for miRNA-21 analysis. The advantages of the present strategy included the portability of smartphone-based colorimetric assay, the encapsulation and transport of reactants by liposomes and the low solvent usage of microfluidic chip. Under optimal conditions, this assay exhibited a wide linear range from 1 pM to 1 nM (r2 = 0.9981), and the limit of detection of miRNA-21 was as low as 0.27 pM. Moreover, the high specificity of this strategy allowed its successful application to the rapid analysis of miRNA-21 in real blood serum samples of people with type 2 diabetes.
Collapse
Affiliation(s)
- Xuemin Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Hai-Wei Shi
- National Medical Products Administration Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, 210019, PR China; Chemical Drug Inspection Laboratory 2, Jiangsu Institute for Food and Drug Control, Nanjing, 210019, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Cheng Huang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Zhang Z, Liu T, Dong M, Ahamed MA, Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1969. [PMID: 38783564 PMCID: PMC11141732 DOI: 10.1002/wnan.1969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/10/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
MicroRNA (miRNA), crucial non-coding RNAs, have emerged as key biomarkers in molecular diagnostics, prognosis, and personalized medicine due to their significant role in gene expression regulation. Salivary miRNA, in particular, stands out for its non-invasive collection method and ease of accessibility, offering promising avenues for the development of point-of-care diagnostics for a spectrum of diseases, including cancer, neurodegenerative disorders, and infectious diseases. Such development promises rapid and precise diagnosis, enabling timely treatment. Despite significant advancements in salivary miRNA-based testing, challenges persist in the quantification, multiplexing, sensitivity, and specificity, particularly for miRNA at low concentrations in complex biological mixtures. This work delves into these challenges, focusing on the development and application of salivary miRNA tests for point-of-care use. We explore the biogenesis of salivary miRNA and analyze their quantitative expression and their disease relevance in cancer, infection, and neurodegenerative disorders. We also examined recent progress in miRNA extraction, amplification, and multiplexed detection methods. This study offers a comprehensive view of the development of salivary miRNA-based point-of-care testing (POCT). Its successful advancement could revolutionize the early detection, monitoring, and management of various conditions, enhancing healthcare outcomes. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Zhikun Zhang
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Tianyi Liu
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Md. Ahasan Ahamed
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
3
|
Jeon E, Koo B, Kim S, Kim J, Yu Y, Jang H, Lee M, Kim SH, Kang T, Kim SK, Kwak R, Shin Y, Lee J. Biporous silica nanostructure-induced nanovortex in microfluidics for nucleic acid enrichment, isolation, and PCR-free detection. Nat Commun 2024; 15:1366. [PMID: 38355558 PMCID: PMC10866868 DOI: 10.1038/s41467-024-45467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Efficient pathogen enrichment and nucleic acid isolation are critical for accurate and sensitive diagnosis of infectious diseases, especially those with low pathogen levels. Our study introduces a biporous silica nanofilms-embedded sample preparation chip for pathogen and nucleic acid enrichment/isolation. This chip features unique biporous nanostructures comprising large and small pore layers. Computational simulations confirm that these nanostructures enhance the surface area and promote the formation of nanovortex, resulting in improved capture efficiency. Notably, the chip demonstrates a 100-fold lower limit of detection compared to conventional methods used for nucleic acid detection. Clinical validations using patient samples corroborate the superior sensitivity of the chip when combined with the luminescence resonance energy transfer assay. The enhanced sample preparation efficiency of the chip, along with the facile and straightforward synthesis of the biporous nanostructures, offers a promising solution for polymer chain reaction-free detection of nucleic acids.
Collapse
Affiliation(s)
- Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jieun Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sang Kyung Kim
- Center for Augmented Safety Systems with Intelligence, Sensing and Tracking (ASSIST), Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP. 3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective. Curr Pharm Des 2024; 30:2993-3008. [PMID: 39161144 DOI: 10.2174/0113816128322300240725052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Deependra Pratap Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| |
Collapse
|
5
|
Aggarwal RT, Lai L, Li H. Microarray fabrication techniques for multiplexed bioassay applications. Anal Biochem 2023; 683:115369. [PMID: 37914004 DOI: 10.1016/j.ab.2023.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Microarrays are powerful tools for high-throughput bioassays that can extract information from tens of thousands of micro-spots consisting of biomolecules. This information is invaluable to many applications, such as drug discovery and disease diagnostics. Different applications of these microarrays need spots of different shapes, sizes, and chemistries to achieve their goals. Micro/nano-fabrication techniques are used to make microarrays with different feature structures and array densities for required assay procedures. Understanding these fabrication methods is essential to creating an effective microarray. The purpose of this article is to critically review fabrication methods used in recent microarray-based bioassay studies. We summarized commonly used microarray fabrication techniques and filled the gap in recent literature on relevant topics. We discussed recent examples of how microarrays were fabricated and used in a variety of bioassays. Specifically, we examined microarray printing, various microlithography techniques, and microfluidics-based microarray fabrication. We evaluated how their application shaped the fabrication methods and compared their performance based on different applications. In the end, we discussed current challenges and outlined potential future directions. This review addressed the gap in literature and provided important insights for choosing appropriate fabrication techniques towards different applications.
Collapse
Affiliation(s)
| | - Leyun Lai
- School of Engineering, University of Guelph, Guelph, Ontario, N1G2W1, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, N1G2W1, Canada.
| |
Collapse
|
6
|
Sun W, Yin J, Liu L, Wu Z, Wang Y, Liu T, Xiong H, Liu X, Wang X, Jiang H. Endogenous miRNA and K + Co-Activated Dynamic Assembly of DNA Coacervates for Intracellular miRNA Imaging and Mitochondrial Intervention. Anal Chem 2023; 95:14101-14110. [PMID: 37674256 DOI: 10.1021/acs.analchem.3c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Intracellular dynamic assembly of DNA structures may be beneficial for the development of multifunctional nanoplatforms for the regulation of cell behaviors, providing new strategies for disease diagnosis and intervention. Herein, we propose the dynamic assembly of DNA coacervates in living cells triggered by miRNA-21 and K+, which can be used for both miRNA imaging and mitochondrial intervention. The rationale is that miRNA-21 can trigger the hybridization chain reaction to generate G-quadruplex precursors, and K+ can mediate the assembly of G-quadruplex-based coacervates, allowing the colorimetric detection of miRNA-21 ranging from 10 pM to 10 μM. Moreover, the as-formed DNA coacervates can specifically target mitochondria in MCF-7 breast cancer cells using the MCF-7 cell membrane as delivery carriers, which further act as an anionic shielding to inhibit communication between mitochondria and environments, with a significant inhibitory effect on ATP production and cellular migration behaviors. This work provides an ideal multifunctional nanoplatform for rationally interfering with cellular metabolism and migration behaviors through the dynamic assembly of DNA coacervates mediated by endogenous molecules, which has a large number of potential applications in the biomedical field, especially theranostics for cancer metastasis.
Collapse
Affiliation(s)
- Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jiajia Yin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Liu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhicheng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yihan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hongjie Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
7
|
Bhatti JS, Khullar N, Vijayvergiya R, Navik U, Bhatti GK, Reddy PH. Mitochondrial miRNA as epigenomic signatures: Visualizing aging-associated heart diseases through a new lens. Ageing Res Rev 2023; 86:101882. [PMID: 36780957 DOI: 10.1016/j.arr.2023.101882] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Aging bears many hard knocks, but heart disorders earn a particular allusion, being the most widespread. Cardiovascular diseases (CVDs) are becoming the biggest concern to mankind due to sundry health conditions directly or indirectly related to heart-linked abnormalities. Scientists know that mitochondria play a critical role in the pathophysiology of cardiac diseases. Both environment and genetics play an essential role in modulating and controlling mitochondrial functions. Even a minor abnormality may prove detrimental to heart function. Advanced age combined with an unhealthy lifestyle can cause most cardiomyocytes to be replaced by fibrotic tissue which upsets the conducting system and leads to arrhythmias. An aging heart encounters far more heart-associated comorbidities than a young heart. Many state-of-the-art technologies and procedures are already being used to prevent and treat heart attacks worldwide. However, it remains a mystery when this heart bomb would explode because it lacks an alarm. This calls for a novel and effective strategy for timely diagnosis and a sure-fire treatment. This review article provides a comprehensive overture of prospective potentials of mitochondrial miRNAs that predict complicated and interconnected pathways concerning heart ailments and signature compilations of relevant miRNAs as biomarkers to plot the role of miRNAs in epigenomics. This article suggests that analysis of DNA methylation patterns in age-associated heart diseases may determine age-impelled biomarkers of heart disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Rajesh Vijayvergiya
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Departments of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Combining 3D Printing and Microfluidic Techniques: A Powerful Synergy for Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16010069. [PMID: 36678566 PMCID: PMC9867206 DOI: 10.3390/ph16010069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Nanomedicine has grown tremendously in recent years as a responsive strategy to find novel therapies for treating challenging pathological conditions. As a result, there is an urgent need to develop novel formulations capable of providing adequate therapeutic treatment while overcoming the limitations of traditional protocols. Lately, microfluidic technology (MF) and additive manufacturing (AM) have both acquired popularity, bringing numerous benefits to a wide range of life science applications. There have been numerous benefits and drawbacks of MF and AM as distinct techniques, with case studies showing how the careful optimization of operational parameters enables them to overcome existing limitations. Therefore, the focus of this review was to highlight the potential of the synergy between MF and AM, emphasizing the significant benefits that this collaboration could entail. The combination of the techniques ensures the full customization of MF-based systems while remaining cost-effective and less time-consuming compared to classical approaches. Furthermore, MF and AM enable highly sustainable procedures suitable for industrial scale-out, leading to one of the most promising innovations of the near future.
Collapse
|
9
|
Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization. Molecules 2022; 27:molecules27238428. [PMID: 36500520 PMCID: PMC9739806 DOI: 10.3390/molecules27238428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Recently, microRNAs (miRNA) captured the interest as novel diagnostic and prognostic biomarkers, with their potential for early indication of numerous pathologies. Since miRNA is a short, non-coding RNA sequence, the sensitivity and selectivity of their detection remain a cornerstone of scientific research. As such, methods based on nanomaterials have emerged in hopes of developing fast and facile approaches. At the core of the detection method based on nanotechnology lie nanoprobes and other functionalized nanomaterials. Since miRNA sensing and detection are generally rooted in the capture of target miRNA with the complementary sequence of oligonucleotides, the sequence needs to be attached to the nanomaterial with a specific conjugation strategy. As each nanomaterial has its unique properties, and each conjugation approach presents its drawbacks and advantages, this review offers a condensed overview of the conjugation approaches in nanomaterial-based miRNA sensing. Starting with a brief recapitulation of specific properties and characteristics of nanomaterials that can be used as a substrate, the focus is then centered on covalent and non-covalent bonding chemistry, leading to the functionalization of the nanomaterials, which are the most commonly used in miRNA sensing methods.
Collapse
|
10
|
Yamaguchi H, Miyazaki M. Enzyme-immobilized microfluidic devices for biomolecule detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Yin S, Chen A, Ding Y, Song J, Chen R, Zhang P, Yang C. Recent advances in exosomal RNAs analysis towards diagnostic and therapeutic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Li J, Cai R, Tan W. A Novel ECL Sensing System for Ultrahigh Sensitivity miRNA-21 Detection Based on Catalytic Hairpin Assembly Cascade Nonmetallic SPR Effect. Anal Chem 2022; 94:12280-12285. [DOI: 10.1021/acs.analchem.2c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|