1
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
2
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
3
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
4
|
Sut C, Tariket S, Cognasse F, Garraud O. Determination of predictors of severity for recipient adverse reactions during platelet product transfusions. Transfus Clin Biol 2017; 24:87-91. [PMID: 28479028 DOI: 10.1016/j.tracli.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The introduction of allogeneic cells is not a natural process, even if the transfusion is therapeutic and - when no alternative exists, as is often the case - essential. Transfusion of cellular products creates some level of danger sensed by recipients. Danger may manifest itself clinically or biologically, in which case we are dealing with recipient adverse reactions. Platelet concentrate transfusion in particular may be responsible for notable adverse reactions. Some appear to be inevitable, while others are tied to recipient factors: either health or genetic characteristics. The authors' research is specifically focused on platelet storage lesion and stress factors, and the means of controlling them to ensure greater recipient tolerance.
Collapse
Affiliation(s)
- C Sut
- Université de Lyon, GIMAP-EA3064, 42023 Saint-Étienne, France; Établissement français du sang Rhône-Alpes-Auvergne, 42023 Saint-Étienne, France
| | - S Tariket
- Université de Lyon, GIMAP-EA3064, 42023 Saint-Étienne, France; Établissement français du sang Rhône-Alpes-Auvergne, 42023 Saint-Étienne, France
| | - F Cognasse
- Université de Lyon, GIMAP-EA3064, 42023 Saint-Étienne, France; Établissement français du sang Rhône-Alpes-Auvergne, 42023 Saint-Étienne, France
| | - O Garraud
- Université de Lyon, GIMAP-EA3064, 42023 Saint-Étienne, France; Institut national de la transfusion sanguine, 75015 Paris, France.
| |
Collapse
|
5
|
Lannan KL, Spinelli SL, Blumberg N, Phipps RP. Maresin 1 induces a novel pro-resolving phenotype in human platelets. J Thromb Haemost 2017; 15:802-813. [PMID: 28079976 PMCID: PMC5378657 DOI: 10.1111/jth.13620] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 01/01/2023]
Abstract
Essentials Specialized proresolving mediators (SPMs) promote the resolution of inflammation. This study sought to investigate the effects of SPMs on human platelet function. The SPM, Maresin 1, enhanced hemostatic, but suppressed inflammatory functions of platelets. SPMs uniquely regulate platelet function and may represent a new class of antiplatelet agents. SUMMARY Background Antiplatelet therapy is a cornerstone of modern medical practice and is routinely employed to reduce the likelihood of myocardial infarction, thrombosis and stroke. However, current antiplatelet therapies, such as aspirin, often have adverse side-effects, including increased risk of bleeding, and some patients are relatively 'aspirin-resistant'. Platelets are intimately involved in hemostasis and inflammation, and clinical consequences are associated with excessive or insufficient platelet activation. Objectives A major unmet need in the field of hematology is the development of new agents that safely prevent unwanted platelet activation in patients with underlying cardiovascular disease, while minimizing the risk of bleeding. Here, we investigate the potential of endogenously produced, specialized pro-resolving mediators (SPMs) as novel antiplatelet agents. SPMs are a recently discovered class of lipid-derived molecules that drive the resolution of inflammation without being overtly immunosuppressive. Methods Human platelets were treated with lipoxin A4, resolvin D1, resolvin D2, 17-HDHA or maresin 1 for 15 min, then were subjected to platelet function tests, including spreading, aggregation and inflammatory mediator release. Results We show for the first time that human platelets express the SPM receptors, GPR32 and ALX. Furthermore, our data demonstrate that maresin 1 differentially regulates platelet hemostatic function by enhancing platelet aggregation and spreading, while suppressing release of proinflammatory and prothrombotic mediators. Conclusions These data support the concept that SPMs differentially regulate platelet function and may represent a novel class of antiplatelet agents. SPMs also may play an important role in the resolution of inflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- K L Lannan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - N Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
6
|
Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6:48. [PMID: 25762994 PMCID: PMC4327621 DOI: 10.3389/fimmu.2015.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Julie Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Biological and Environmental Engineering, Cornell University , Ithaca, NY , USA
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Olivier Garraud
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
7
|
Garraud O, Hamzeh-Cognasse H, Cognasse F. Platelets and cytokines: How and why? Transfus Clin Biol 2012; 19:104-8. [PMID: 22682309 DOI: 10.1016/j.tracli.2012.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/11/2022]
Abstract
For patients with platelet deficiencies, platelet components are therapeutic products for which there is no substitute. However, transfusion complications are more frequent with this labile blood product than with others. This is attributable to products secreted by the platelets themselves, including a variety of cytokines, chemokines, and biological response modifiers, some of which are secreted in large quantities following platelet activation. Why platelets are activated and prone to releasing these molecules during certain inflammatory and innate immune responses is not yet fully understood, but it could be due to several parameters including incompatibilities between blood donors and recipients, the process of platelet preparation and preservation, and the ability of the donor's immune system to sense danger presented by external stimuli during the blood donation process. This review presents our current knowledge of how the platelets that constitute the platelet component for transfusion are sources of cytokines and biological response modifiers and discusses methods to improve the quality of blood transfusion products and safety for patients.
Collapse
Affiliation(s)
- O Garraud
- Établissement français du sang Auvergne-Loire, 25, boulevard Pasteur, 42023 Saint-Étienne cedex 02, France.
| | | | | |
Collapse
|
8
|
Bruserud Ø. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets 2012; 24:85-97. [PMID: 22646762 DOI: 10.3109/09537104.2012.678426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are important in the defense against fungal infections due to their phagocytic and immunoregulatory functions. Platelets also contribute in such immune responses through their release of soluble mediators, including chemokines as well as several other soluble mediators. Both monocytes and platelets express several Toll-like receptors (TLRs) that can recognize fungal molecules and thus initiate intracellular signaling events. TLR ligation on monocytes and platelets may thereby be an early immunological event and function as an initiator of a local proinflammatory crosstalk between platelets and monocytes resulting in (i) monocyte-induced increase of platelet activation and (ii) platelet-associated enhancement of the monocyte activation/function. These effects may have clinical implications both for the efficiency of antifungal treatment and for the predisposition to fungal infections, for example, increased predisposition in patients with thrombocytopenia/monocytopenia due to chemotherapy- or disease-induced bone marrow failure.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
9
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
10
|
Abstract
Although platelets are best known as primary mediators of hemostasis, this function intimately associates them with inflammatory processes, and it has been increasingly recognized that platelets play an active role in both innate and adaptive immunity. For example, platelet adhesive interactions with leukocytes and endothelial cells via P-selectin can lead to several pro-inflammatory events, including leukocyte rolling and activation, production of cytokine cascades, and recruitment of the leukocytes to sites of tissue damage. Superimposed on this, platelets express immunologically-related molecules such as CD40L and Toll-like receptors that have been shown to functionally modulate innate immunity. Furthermore, platelets themselves can interact with microorganisms, and several viruses have been shown to cross-react immunologically with platelet antigens. This review discusses the central role that platelets play in inflammation, linking them with varied pathological conditions, such as atherosclerosis, sepsis, and immune thrombocytopenic purpura, and suggests that platelets also act as primary mediators of our innate defences.
Collapse
Affiliation(s)
- John W Semple
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | |
Collapse
|