1
|
Díaz-Salazar H, Osorio-Ocampo G, Porcel S. Straightforward Access to Isoindoles and 1,2-Dihydrophthalazines Enabled by a Gold-Catalyzed Three-Component Reaction. J Org Chem 2024; 89:10163-10174. [PMID: 38989839 DOI: 10.1021/acs.joc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We describe herein a gold-catalyzed three-component reaction of o-alkynylbenzaldehydes, aryldiazonium salts, and trimethoxybenzene. This process enables the one-pot formation of valuable isoindoles and 1,2-dihydrophathalazines. The regioselectivity of the reaction is dictated by the nature of the aryldiazonium salt. Noticeably, the reaction is performed at room temperature under mild conditions and tolerates a variety of functional groups on both the o-alkynylbenzaldehyde and the aryldiazonium salt. Experimental mechanistic studies suggest that it is catalyzed by arylAu(III) species.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Gabriel Osorio-Ocampo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
2
|
Salamanca-Ortiz H, Domínguez-Gomez G, Chávez-Blanco A, Ortega-Bernal D, Díaz-Chávez J, González-Fierro A, Candelaria-Hernández M, Dueñas-González A. The inhibitory and transcriptional effects of the epigenetic repurposed drugs hydralazine and valproate in lymphoma cells. Am J Cancer Res 2024; 14:3068-3082. [PMID: 39005694 PMCID: PMC11236763 DOI: 10.62347/idkg8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/27/2024] [Indexed: 07/16/2024] Open
Abstract
Lymphoma is a disease that affects countless lives each year. In order to combat this disease, researchers have been exploring the potential of DNMTi and HDACi drugs. These drugs target the cellular processes that contribute to lymphomagenesis and treatment resistance. Our research evaluated the effectiveness of a combination of two such drugs, hydralazine (DNMTi) and valproate (HDACi), in B-cell and T-cell lymphoma cell lines. Here we show that the combination of hydralazine and valproate decreased the viability of cells over time, leading to the arrest of cell-cycle and apoptosis in both B and T-cells. This combination of drugs proved to be synergistic, with each drug showing significant growth inhibition individually. Microarray analyses of HuT 78 and Raji cells showed that the combination of hydralazine and valproate resulted in the up-regulation of 562 and 850 genes, respectively, while down-regulating 152 and 650 genes. Several proapoptotic and cell cycle-related genes were found to be up-regulated. Notably, three and five of the ten most up-regulated genes in HuT 78 and Raji cells, respectively, were related to immune function. In summary, our study suggests that the combination of hydralazine and valproate is an effective treatment option for both B- and T-lymphomas. These findings are highly encouraging, and we urge further clinical evaluation to validate our research and potentially improve lymphoma treatment.
Collapse
Affiliation(s)
- Harold Salamanca-Ortiz
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Guadalupe Domínguez-Gomez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alma Chávez-Blanco
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Daniel Ortega-Bernal
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 05348, Mexico
- Department of Sciences, Universidad Autónoma MetropolitanaCoyoacan, Mexico City 04960, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana XochimilcoCoyoacan, Mexico City 04960, Mexico
| | - José Díaz-Chávez
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Aurora González-Fierro
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Myrna Candelaria-Hernández
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
| | - Alfonso Dueñas-González
- Subdirection of Basic Research, Instituto Nacional de Cancerología (INCan)Tlalpan, Mexico City 14080, Mexico
- Department of Genomic Medicine and Environmental Toxicology, Institute of Biomedical Research, Universidad Nacional Autónoma de Mexico (UNAM), Av. Universidad 3004, Copilco UniversidadCoyoacan, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Stefany Aires do Nascimento FB, do Amaral Valente Sá LG, de Andrade Neto JB, da Silva LJ, Rodrigues DS, de Farias Cabral VP, Barbosa AD, Almeida Moreira LE, Braga Vasconcelos CR, Cavalcanti BC, França Rios ME, Silva J, Marinho ES, Dos Santos HS, de Mesquita JR, Pinto Lobo MD, de Moraes MO, Nobre Júnior HV, da Silva CR. Antimicrobial activity of hydralazine against methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Future Microbiol 2024; 19:91-106. [PMID: 38294293 DOI: 10.2217/fmb-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 02/01/2024] Open
Abstract
Background: Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 μg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.
Collapse
Affiliation(s)
- Francisca B Stefany Aires do Nascimento
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil
| | - João B de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, 60190-180, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Vitória P de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Lara E Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Camille R Braga Vasconcelos
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Bruno Coêlho Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Maria E França Rios
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry & Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 62930-000, Brazil
| | - Helcio Silva Dos Santos
- Science & Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, 62010-560, Brazil
| | - Jacó Rl de Mesquita
- St. Joseph Hospital for Infectious Diseases, Fortaleza, CE, 60455-610, Brazil
| | | | - Manoel Odorico de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Department of Physiology & Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 60430-372, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| |
Collapse
|
4
|
DNA Methylation Malleability and Dysregulation in Cancer Progression: Understanding the Role of PARP1. Biomolecules 2022; 12:biom12030417. [PMID: 35327610 PMCID: PMC8946700 DOI: 10.3390/biom12030417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Mammalian genomic DNA methylation represents a key epigenetic modification and its dynamic regulation that fine-tunes the gene expression of multiple pathways during development. It maintains the gene expression of one generation of cells; particularly, the mitotic inheritance of gene-expression patterns makes it the key governing mechanism of epigenetic change to the next generation of cells. Convincing evidence from recent discoveries suggests that the dynamic regulation of DNA methylation is accomplished by the enzymatic action of TET dioxygenase, which oxidizes the methyl group of cytosine and activates transcription. As a result of aberrant DNA modifications, genes are improperly activated or inhibited in the inappropriate cellular context, contributing to a plethora of inheritable diseases, including cancer. We outline recent advancements in understanding how DNA modifications contribute to tumor suppressor gene silencing or oncogenic-gene stimulation, as well as dysregulation of DNA methylation in cancer progression. In addition, we emphasize the function of PARP1 enzymatic activity or inhibition in the maintenance of DNA methylation dysregulation. In the context of cancer remediation, the impact of DNA methylation and PARP1 pharmacological inhibitors, and their relevance as a combination therapy are highlighted.
Collapse
|
5
|
Rytlewski J, Brockman QR, Dodd RD, Milhem M, Monga V. Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:25-35. [PMID: 35582536 PMCID: PMC8992584 DOI: 10.20517/cdr.2021.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022]
Abstract
Sarcomas are a class of rare malignancies of mesenchymal origin with a heterogeneous histological spectrum. They are classically associated with poor outcomes, especially once metastasized. A path to improving clinical outcomes may be made through modifying the epigenome, where a variety of sarcomas demonstrate changes that contribute to their oncogenic phenotypes. This Perspective article identifies and describes changes in the sarcoma genome, while discussing specific epigenetic changes and their effect on clinical outcomes. Clinical attempts at modulating epigenetics in sarcoma are reviewed, as well as potential implications of these studies. Epigenetic targets to reverse and delay chemotherapy resistance are discussed. Future directions with primary next steps are proposed to invigorate the current understanding of epigenetic biomarkers to enact targeted therapies to epigenetic phenotypes of sarcoma subtypes. Modifications to prior studies, as well as proposed clinical steps, are also addressed.
Collapse
Affiliation(s)
- Jeff Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qierra R Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Lopes N, Pacheco MB, Soares-Fernandes D, Correia MP, Camilo V, Henrique R, Jerónimo C. Hydralazine and Enzalutamide: Synergistic Partners against Prostate Cancer. Biomedicines 2021; 9:biomedicines9080976. [PMID: 34440180 PMCID: PMC8391120 DOI: 10.3390/biomedicines9080976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Advanced prostate cancers frequently develop resistance to androgen-deprivation therapy with serious implications for patient survival. Considering their importance in this type of neoplasia, epigenetic modifications have drawn attention as alternative treatment strategies. The aim of this study was to assess the antitumoral effects of the combination of hydralazine, a DNA methylation inhibitor, with enzalutamide, an antagonist of the androgen receptor, in prostate cancer cell lines. Several biological parameters, such as cell viability, proliferation, DNA damage, and apoptosis, as well as clonogenic and invasive potential, were evaluated. The individual treatments with hydralazine and enzalutamide exerted growth-inhibitory effects in prostate cancer cells and their combined treatment displayed synergistic effects. The combination of these two drugs was very effective in decreasing malignant features of prostate cancer and may become an alternative therapeutic option for prostate cancer patient management.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Diana Soares-Fernandes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (N.L.); (M.B.P.); (D.S.-F.); (M.P.C.); (V.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000; Fax: +351-225-084-047
| |
Collapse
|
7
|
Pacheco MB, Camilo V, Lopes N, Moreira-Silva F, Correia MP, Henrique R, Jerónimo C. Hydralazine and Panobinostat Attenuate Malignant Properties of Prostate Cancer Cell Lines. Pharmaceuticals (Basel) 2021; 14:ph14070670. [PMID: 34358096 PMCID: PMC8308508 DOI: 10.3390/ph14070670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: or ; Tel.: +351-225-084-000; Fax: +351-225-084-199
| |
Collapse
|
8
|
Wang Y, Nguyen DT, Yang G, Anesi J, Kelly J, Chai Z, Ahmady F, Charchar F, Golledge J. A Modified MTS Proliferation Assay for Suspended Cells to Avoid the Interference by Hydralazine and β-Mercaptoethanol. Assay Drug Dev Technol 2021; 19:184-190. [PMID: 33471568 DOI: 10.1089/adt.2020.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay is one of the most commonly used tests of cell proliferation. Hydralazine has been reported to interfere with the performance of the MTS assay when used on adherent cells. This study aimed to investigate whether hydralazine interferes with the performance of the MTS assay on suspended cells. THP-1 (a monocytic leukemia cell line) cells were cultured in the presence or absence of hydralazine (0, 10, 50, 100, and 500 μM) for 2 or 24 h. Cell numbers were analyzed using the MTS, trypan blue exclusion, or microscopic assays. A modified version of the standard MTS assay was established by centrifuging the cells and replacing the test medium with fresh culture medium immediately before the addition of the MTS reagent. Culture of THP-1 cells with hydralazine at concentrations of 50, 100, and 500 μM for 2 h increased absorbance (p < 0.001) in the standard MTS assay, whereas both the trypan blue exclusion assay and microscopy suggested no change in cell numbers. Culture of THP-1 cells with 100 and 500 μm hydralazine for 24 h increased absorbance (p < 0.05) in the standard MTS assay; however, trypan blue exclusion and microscopy suggested a decrease in cell numbers. In a cell-free system, hydralazine (100 and 500 μM) increased absorbance in a time- and concentration-dependent manner. The modified MTS assay produced results consistent with trypan blue exclusion and microscopy using THP-1 cells. In addition, the modified MTS assay produced reliable results when K562 and Jurkat cells were incubated with hydralazine or β-mercaptoethanol (βME). In conclusion, a simple modification of the standard MTS assay overcame the interference of hydralazine and βME when assessing suspended cells.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Dinh Tam Nguyen
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Guang Yang
- Department of Gerontology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jack Anesi
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Jason Kelly
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia.,Fiona Elsey Cancer Research Institute, Ballarat, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fahima Ahmady
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Fadi Charchar
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Australia
| |
Collapse
|
9
|
Wang Y, Nguyen DT, Yang G, Anesi J, Chai Z, Charchar F, Golledge J. An Improved 3-(4,5-Dimethylthiazol-2-yl)-5-(3-Carboxymethoxyphenyl)-2-(4-Sulfophenyl)-2H-Tetrazolium Proliferation Assay to Overcome the Interference of Hydralazine. Assay Drug Dev Technol 2020; 18:379-384. [DOI: 10.1089/adt.2020.1004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Yutang Wang
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Dinh Tam Nguyen
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Guang Yang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jack Anesi
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Zhonglin Chai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Fadi Charchar
- Discipline of Life Sciences, School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Australia
| |
Collapse
|
10
|
Boussios S, Mikropoulos C, Samartzis E, Karihtala P, Moschetta M, Sheriff M, Karathanasi A, Sadauskaite A, Rassy E, Pavlidis N. Wise Management of Ovarian Cancer: On the Cutting Edge. J Pers Med 2020; 10:E41. [PMID: 32455595 PMCID: PMC7354604 DOI: 10.3390/jpm10020041] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality among women. Two-thirds of patients present at advanced stage at diagnosis, and the estimated 5 year survival rate is 20-40%. This heterogeneous group of malignancies has distinguishable etiology and molecular biology. Initially, single-gene sequencing was performed to identify germline DNA variations associated with EOC. However, hereditary EOC syndrome can be explained by germline pathogenic variants (gPVs) in several genes. In this regard, next-generation sequencing (NGS) changed clinical diagnostic testing, allowing assessment of multiple genes simultaneously in a faster and cheaper manner than sequential single gene analysis. As we move into the era of personalized medicine, there is evidence that poly (ADP-ribose) polymerase (PARP) inhibitors exploit homologous recombination (HR) deficiency, especially in breast cancer gene 1 and 2 (BRCA1/2) mutation carriers. Furthermore, extensive preclinical data supported the development of aurora kinase (AURK) inhibitors in specific tumor types, including EOC. Their efficacy may be optimized in combination with chemotherapeutic or other molecular agents. The efficacy of metformin in ovarian cancer prevention is under investigation. Certain mutations, such as ARID1A mutations, and alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway, which are specific in ovarian clear cell carcinoma (OCCC) and endometrioid ovarian carcinoma (EnOC), may offer additional therapeutic targets in these clinical entities. Malignant ovarian germ cell tumors (MOGCTs) are rare and randomized trials are extremely challenging for the improvement of the existing management and development of novel strategies. This review attempts to offer an overview of the main aspects of ovarian cancer, catapulted from the molecular mechanisms to therapeutic considerations.
Collapse
Affiliation(s)
- Stergios Boussios
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| | - Christos Mikropoulos
- St Luke’s Cancer Center, Royal Surrey County Hospital, Egerton Rd, Guildford GU2 7XX, UK;
| | - Eleftherios Samartzis
- Division of Gynecology, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091 Zürich, Switzerland;
| | - Peeter Karihtala
- Department of Oncology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, P.O. Box 100, FI-00029 Helsinki, Finland;
| | - Michele Moschetta
- Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK;
| | - Matin Sheriff
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Afroditi Karathanasi
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Agne Sadauskaite
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (M.S.); (A.K.); (A.S.)
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110 Ioannina, Greece;
| |
Collapse
|
11
|
Andrade FDO, Nguyen NM, Warri A, Hilakivi-Clarke L. Reversal of increased mammary tumorigenesis by valproic acid and hydralazine in offspring of dams fed high fat diet during pregnancy. Sci Rep 2019; 9:20271. [PMID: 31889127 PMCID: PMC6937280 DOI: 10.1038/s41598-019-56854-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Maternal or paternal high fat (HF) diet can modify the epigenome in germ cells and fetal somatic cells leading to an increased susceptibility among female offspring of multiple generations to develop breast cancer. We determined if combined treatment with broad spectrum DNA methyltransferase (DNMT) inhibitor hydralazine and histone deacetylase (HDAC) inhibitor valproic acid (VPA) will reverse this increased risk. C57BL/6 mouse dams were fed either a corn oil-based HF or control diet during pregnancy. Starting at age 7 weeks, female offspring were administered 3 doses of 7,12-dimethylbenz[a]anthracene (DMBA) to initiate mammary cancer. After last dose, offspring started receiving VPA/hydralazine administered via drinking water: no adverse health effects were detected. VPA/hydralazine reduced mammary tumor multiplicity and lengthened tumor latency in HF offspring when compared with non-treated HF offspring. The drug combination inhibited DNMT3a protein levels and increased expression of the tumor suppressor gene Cdkn2a/p16 in mammary tumors of HF offspring. In control mice not exposed to HF diet in utero, VPA/hydralazine increased mammary tumor incidence and burden, and elevated expression of the unfolded protein response and autophagy genes, including HIF-1α, NFkB, PERK, and SQSTM1/p62. Expression of these genes was already upregulated in HF offspring prior to VPA/hydralazine treatment. These findings suggest that breast cancer prevention strategies with HDAC/DNMT inhibitors need to be individually tailored.
Collapse
Affiliation(s)
| | - N M Nguyen
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - A Warri
- Department of Oncology, Georgetown University, Washington, DC, USA.,Institute of Biomedicine, University of Turku Medical Faculty, FI-20014, Turku, Finland
| | | |
Collapse
|
12
|
Yeh SJ, Chang CA, Li CW, Wang LHC, Chen BS. Comparing progression molecular mechanisms between lung adenocarcinoma and lung squamous cell carcinoma based on genetic and epigenetic networks: big data mining and genome-wide systems identification. Oncotarget 2019; 10:3760-3806. [PMID: 31217907 PMCID: PMC6557199 DOI: 10.18632/oncotarget.26940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant type of lung cancer in the world. Lung adenocarcinoma (LADC) and lung squamous cell carcinoma (LSCC) are subtypes of NSCLC. We usually regard them as different disease due to their unique molecular characteristics, distinct cells of origin and dissimilar clinical response. However, the differences of genetic and epigenetic progression mechanism between LADC and LSCC are complicated to analyze. Therefore, we applied systems biology approaches and big databases mining to construct genetic and epigenetic networks (GENs) with next-generation sequencing data of LADC and LSCC. In order to obtain the real GENs, system identification and system order detection are conducted on gene regulatory networks (GRNs) and protein-protein interaction networks (PPINs) for each stage of LADC and LSCC. The core GENs were extracted via principal network projection (PNP). Based on the ranking of projection values, we got the core pathways in respect of KEGG pathway. Compared with the core pathways, we found significant differences between microenvironments, dysregulations of miRNAs, epigenetic modifications on certain signaling transduction proteins and target genes in each stage of LADC and LSCC. Finally, we proposed six genetic and epigenetic multiple-molecule drugs to target essential biomarkers in each progression stage of LADC and LSCC, respectively.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-An Chang
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signaling Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.,Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan
| |
Collapse
|
13
|
Kumanishi S, Yamanegi K, Nishiura H, Fujihara Y, Kobayashi K, Nakasho K, Futani H, Yoshiya S. Epigenetic modulators hydralazine and sodium valproate act synergistically in VEGI-mediated anti-angiogenesis and VEGF interference in human osteosarcoma and vascular endothelial cells. Int J Oncol 2019; 55:167-178. [PMID: 31180533 DOI: 10.3892/ijo.2019.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/14/2019] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth inhibitor (VEGI; also referred to as TNFSF15 or TL1A) is involved in the modulation of vascular homeostasis. VEGI is known to operate via two receptors: Death receptor‑3 (DR3) and decoy receptor‑3 (DcR3). DR3, which is thus far the only known functional receptor for VEGI, contains a death domain and induces cell apoptosis. DcR3 is secreted as a soluble protein and antagonizes VEGI/DR3 interaction. Overexpression of DcR3 and downregulation of VEGI have been detected in a number of cancers. The aim of the present study was to investigate the effects of sodium valproate (VPA), a histone deacetylase inhibitor, in combination with hydralazine hydrochloride (Hy), a DNA methylation inhibitor, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Combination treatment with Hy and VPA synergistically induced the expression of VEGI and DR3 in both OS and HMVE cells, without inducing DcR3 secretion. In addition, it was observed that the combination of VPA and Hy significantly enhanced the inhibitory effect on vascular tube formation by VEGI/DR3 autocrine and paracrine pathways. Furthermore, the VEGI/VEGF‑A immune complex was pulled down by immunoprecipitation. Taken together, these findings suggest that DNA methyltransferase and histone deacetylase inhibitors not only have the potential to induce the re‑expression of tumor suppressor genes in cancer cells, but also exert anti‑angiogenic effects, via enhancement of the VEGI/DR3 pathway and VEGI/VEGF‑A interference.
Collapse
Affiliation(s)
- Shunsuke Kumanishi
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Koji Yamanegi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroshi Nishiura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuki Fujihara
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kenta Kobayashi
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiroyuki Futani
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Shinichi Yoshiya
- Department of Orthopedic Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
14
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
15
|
Schcolnik-Cabrera A, Domínguez-Gómez G, Dueñas-González A. Comparison of DNA demethylating and histone deacetylase inhibitors hydralazine-valproate versus vorinostat-decitabine incutaneous t-cell lymphoma in HUT78 cells. AMERICAN JOURNAL OF BLOOD RESEARCH 2018; 8:5-16. [PMID: 30038842 PMCID: PMC6055069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Cutaneous T-cell lymphoma (CTCL) is an uncommon extranodal non-Hodgkin T-cell lymphoma that originates from mature T lymphocytes homed at the skin. Epigenetic alterations observed in CTCL are not limited to overexpression of Histone Deacetylases but also to DNA hypermethylation. The known synergy between Histone deacetylase inhibitors (HDACi) and DNA methyltransferases inhibitors (DNMTi) suggests that combining these agent classes could be effective for CTCL. METHODS In this study, the combinations of the HDACi and DNMTi hydralazine/valproate (HV) and vorinostat/decitabine (VD) were compared in regard to viability inhibition, clonogenicity, pharmacological interaction and cell cycle effects in the CTCL cell line Hut78. In addition, the effect of these combinations was evaluated in normal peripheral blood mononuclear cells. RESULTS The results show that each of the DNMTi and HDACi exerts growth inhibition, mostly by inducing apoptosis as shown in the cell cycle distribution. However, in the combination of HV the interaction is more synergic and also it inhibits the clonogenic capacity of cells over time. Additionally, the HV combination seems to affect in a minor degree the viability of peripheral blood mononuclear cells. CONCLUSIONS The results of this study and the preclinical and clinical evidence on the efficacy of combining HDACi with DNMTi strongly suggest that more studies are needed with this drug class combination in CTCL, particularly with the hydralazine-valproate scheme, which is safe, and these drugs are widely available and administered by oral route.
Collapse
Affiliation(s)
| | | | - Alfonso Dueñas-González
- Unidad De Investigacion Biomédica En Cancer, Instituto De Investigaciones Biomédicas UNAM/Instituto Nacional De CancerologíaMéxico
| |
Collapse
|
16
|
Encouraging results with the compassionate use of hydralazine/valproate (TRANSKRIP™) as epigenetic treatment for myelodysplastic syndrome (MDS). Ann Hematol 2017; 96:1825-1832. [DOI: 10.1007/s00277-017-3103-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/13/2017] [Indexed: 12/17/2022]
|
17
|
Clinical and biological effects of demethylating agents on solid tumours – A systematic review. Cancer Treat Rev 2017; 54:10-23. [DOI: 10.1016/j.ctrv.2017.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
|
18
|
Espinoza-Zamora JR, Labardini-Méndez J, Sosa-Espinoza A, López-González C, Vieyra-García M, Candelaria M, Lozano-Zavaleta V, Toledano-Cuevas DV, Zapata-Canto N, Cervera E, Dueñas-González A. Efficacy of hydralazine and valproate in cutaneous T-cell lymphoma, a phase II study. Expert Opin Investig Drugs 2017; 26:481-487. [PMID: 28277033 DOI: 10.1080/13543784.2017.1291630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate the activity and safety of hydralazine and valproate (Transkrip) in cutaneous T-cell lymphoma (CTCL). METHODS Previously untreated and progressive/refractory CTCL patients received hydralazine at 83 mg or 182 mg/day for slow and rapid acetylators respectively plus magnesium valproate at a total dose of 30 mg/Kg t.i.d daily in continuous 28-day cycles in this phase II study. The primary objective was overall response rate (ORR) measured by the modified severity weighted assessment tool (m-SWAT), secondary end-points were time to response (TTR), time to progression (TTP), duration of response (DOR), progression-free survival (PFS), overall survival (OS) and safety. RESULTS Fourteen patients were enrolled (7 untreated and 7 pretreated). ORR was 71% with 50% complete and 21% partial. Two had stable disease and two progressed. At a median follow-up of 36 months (5-52), median TTR was 2 months (1-4); median DOR was 28 months (5-45); median PFS 36 and not reached for OS. There were no differences in median TTR, DOR, and PFS between treated and pretreated patients. Pruritus relieve was complete in 13 out of 14 patients. No grade 3 or 4 toxicities were observed. CONCLUSION The combination of hydralazine and valproate is safe, very well tolerated and effective in CTCL.
Collapse
Affiliation(s)
| | - Juan Labardini-Méndez
- a Department of Hematology , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | - Celia López-González
- a Department of Hematology , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | - Myrna Candelaria
- b Division of Clinical Research , Instituto Nacional de Cancerología , Mexico City , Mexico
| | | | | | - Nidia Zapata-Canto
- a Department of Hematology , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Eduardo Cervera
- a Department of Hematology , Instituto Nacional de Cancerología , Mexico City , Mexico
| | - Alfonso Dueñas-González
- c Unidad de Investigación Biomédica en Cáncer , Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Cancerología , Mexico City , Mexico
| |
Collapse
|
19
|
Mathew T, Papp AÁ, Paknia F, Fustero S, Surya Prakash GK. Benzodiazines: recent synthetic advances. Chem Soc Rev 2017; 46:3060-3094. [DOI: 10.1039/c7cs00082k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review provides a comprehensive overview of the recent developments in synthetic strategies for benzodiazines, important scaffolds in medicinal chemistry.
Collapse
Affiliation(s)
- Thomas Mathew
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Attila Á. Papp
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Farzaneh Paknia
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Santos Fustero
- Department of Organic Chemistry
- Faculty of Pharmacy
- University of Valencia
- E – 46100 Burjassot (Valencia)
- Spain
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
20
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
21
|
Hilakivi-Clarke L, Wärri A, Bouker KB, Zhang X, Cook KL, Jin L, Zwart A, Nguyen N, Hu R, Cruz MI, de Assis S, Wang X, Xuan J, Wang Y, Wehrenberg B, Clarke R. Effects of In Utero Exposure to Ethinyl Estradiol on Tamoxifen Resistance and Breast Cancer Recurrence in a Preclinical Model. J Natl Cancer Inst 2016; 109:2905688. [PMID: 27609189 DOI: 10.1093/jnci/djw188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background Responses to endocrine therapies vary among patients with estrogen receptor (ER+) breast cancer. We studied whether in utero exposure to endocrine-disrupting compounds might explain these variations. Methods We describe a novel ER+ breast cancer model to study de novo and acquired tamoxifen (TAM) resistance. Pregnant Sprague Dawley rats were exposed to 0 or 0.1 ppm ethinyl estradiol (EE2), and the response of 9,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumors to 15 mg/kg TAM, with (n = 17 tumors in the controls and n = 20 tumors in EE2 offspring) or without 1.2 g/kg valproic acid and 5 mg/kg hydralazine (n = 24 tumors in the controls and n = 32 tumors in EE2 offspring) in the female offspring, was assessed. One-sided Chi2 tests were used to calculate P values. Comparisons of differentially expressed genes between mammary tumors in in utero EE2-exposed and control rats, and between anti-estrogen-resistant LCC9 and -sensitive LCC1 human breast cancer cells, were also performed. Results In our preclinical model, 54.2% of mammary tumors in the control rats exhibited a complete response to TAM, of which 23.1% acquired resistance with continued anti-estrogen treatment and recurred. Mammary tumors in the EE2 offspring were statistically significantly less likely to respond to TAM (P = .047) and recur (P = .007). In the EE2 offspring, but not in controls, adding valproic acid and hydralazine to TAM prevented recurrence (P < .001). Three downregulated and hypermethylated genes (KLF4, LGALS3, MICB) and one upregulated gene (ETV4) were identified in EE2 tumors and LCC9 breast cancer cells, and valproic acid and hydralazine normalized the altered expression of all four genes. Conclusions Resistance to TAM may be preprogrammed by in utero exposure to high estrogen levels and mediated through reversible epigenetic alterations in genes associated with epithelial-mesenchymal transition and tumor immune responses.
Collapse
Affiliation(s)
| | - Anni Wärri
- Department of Oncology, Georgetown University, Washington, DC.,Institute of Biomedicine, University of Turku Medical Faculty, Turku, Finland
| | - Kerrie B Bouker
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC
| | - Katherine L Cook
- Department of Oncology, Georgetown University, Washington, DC.,Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - Lu Jin
- Department of Oncology, Georgetown University, Washington, DC
| | - Alan Zwart
- Department of Oncology, Georgetown University, Washington, DC
| | - Nguyen Nguyen
- Department of Oncology, Georgetown University, Washington, DC
| | - Rong Hu
- Department of Oncology, Georgetown University, Washington, DC
| | - M Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC
| | - Sonia de Assis
- Department of Oncology, Georgetown University, Washington, DC
| | - Xiao Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Jason Xuan
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA
| | | | - Robert Clarke
- Department of Oncology, Georgetown University, Washington, DC
| |
Collapse
|
22
|
Lee CY, Lai HY, Chiu A, Chan SH, Hsiao LP, Lee ST. The effects of antiepileptic drugs on the growth of glioblastoma cell lines. J Neurooncol 2016; 127:445-53. [PMID: 26758059 PMCID: PMC4835521 DOI: 10.1007/s11060-016-2056-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
Abstract
To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levetiracetam, magnesium sulfate, oxcarbazepine, phenytoin, primidone, tiagabine, topiramate, valproic acid, and vigabatrin. Dexamethasone and temozolomide were used as a negative and positive control respectively. Our results showed temozolomide and oxcarbazepine significantly inhibited glioblastoma cell growth and reached IC50 at therapeutic concentrations. The other antiepileptic drugs screened were unable to reach IC50 at therapeutic concentrations. The metabolites of oxcarbazepine were also unable to reach IC50. Dexamethasone, ethosuximide, levetiracetam, and vigabatrin showed some growth enhancement though they did not reach statistical significance. The growth enhancement effects of ethosuximide, levetiracetam, and vigabatrin found in the study may indicate that these compounds should not be used for prophylaxis or short term treatment of epilepsy in glioblastoma. While valproic acid and oxcarbazepine were effective, the required dose of valproic acid was far above that used for the treatment of epilepsy and the metabolites of oxcarbazepine failed to reach significant growth inhibition ruling out the use of oral oxcarbazepine or valproic acid as monotherapy in glioblastoma. The possibility of using these compounds as local treatment is a future area of study.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan
| | - Hung-Yi Lai
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan
| | - Angela Chiu
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan
| | - She-Hung Chan
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan
| | - Ling-Ping Hsiao
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan
| | - Shih-Tseng Lee
- Department of Neurosurgery, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 5 Fu-Shing Street, 333, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Takada M, Fujimoto M, Motomura H, Hosomi K. Inverse Association between Sodium Channel-Blocking Antiepileptic Drug Use and Cancer: Data Mining of Spontaneous Reporting and Claims Databases. Int J Med Sci 2016; 13:48-59. [PMID: 26816494 PMCID: PMC4716819 DOI: 10.7150/ijms.13834] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/27/2015] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Voltage-gated sodium channels (VGSCs) are drug targets for the treatment of epilepsy. Recently, a decreased risk of cancer associated with sodium channel-blocking antiepileptic drugs (AEDs) has become a research focus of interest. The purpose of this study was to test the hypothesis that the use of sodium channel-blocking AEDs are inversely associated with cancer, using different methodologies, algorithms, and databases. METHODS A total of 65,146,507 drug-reaction pairs from the first quarter of 2004 through the end of 2013 were downloaded from the US Food and Drug Administration Adverse Event Reporting System. The reporting odds ratio (ROR) and information component (IC) were used to detect an inverse association between AEDs and cancer. Upper limits of the 95% confidence interval (CI) of < 1 and < 0 for the ROR and IC, respectively, signified inverse associations. Furthermore, using a claims database, which contains 3 million insured persons, an event sequence symmetry analysis (ESSA) was performed to identify an inverse association between AEDs and cancer over the period of January 2005 to May 2014. The upper limit of the 95% CI of adjusted sequence ratio (ASR) < 1 signified an inverse association. RESULTS In the FAERS database analyses, significant inverse associations were found between sodium channel-blocking AEDs and individual cancers. In the claims database analyses, sodium channel-blocking AED use was inversely associated with diagnoses of colorectal cancer, lung cancer, gastric cancer, and hematological malignancies, with ASRs of 0.72 (95% CI: 0.60 - 0.86), 0.65 (0.51 - 0.81), 0.80 (0.65 - 0.98), and 0.50 (0.37 - 0.66), respectively. Positive associations between sodium channel-blocking AEDs and cancer were not found in the study. CONCLUSION Multi-methodological approaches using different methodologies, algorithms, and databases suggest that sodium channel-blocking AED use is inversely associated with colorectal cancer, lung cancer, gastric cancer, and hematological malignancies.
Collapse
Affiliation(s)
- Mitsutaka Takada
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Mai Fujimoto
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Haruka Motomura
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kouichi Hosomi
- Division of Clinical Drug Informatics, School of Pharmacy, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
24
|
Duenas-Gonzalez A, Medina-Franco JL, Chavez-Blanco A, Dominguez-Gomez G, Fernández-de Gortari E. Developmental DNA methyltransferase inhibitors in the treatment of gynecologic cancers. Expert Opin Pharmacother 2015; 17:323-38. [PMID: 26559668 DOI: 10.1517/14656566.2016.1118053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION DNA methylation has become an attractive target for the treatment of cancer. DNA methyltransferase inhibitors have proven useful for the treatment of myelodysplastic syndrome and are being evaluated in gynecological neoplasias. AREAS COVERED We provide an overview of the current knowledge on DNA methylation and cancer and the role of DNA methylation in cervical, ovarian and endometrial carcinomas. The results of recent clinical trials with demethylating agents for cervical and ovarian cancer treatment are also discussed. EXPERT OPINION There are few studies of DNA demethylating agents for cervical and ovarian cancer treatment; nevertheless, the results are promising. To accelerate these advances, there are at least two actions that can be simultaneously pursued. One is to greatly increase the number of small clinical exploratory trials with existing demethylating drugs and using methylome analyses to identify predictive factors for response and/or toxicity. The second is finding out epigenetic 'drivers' unique to gynecological cancers and their subtypes, and then proceed to clinical trials in a highly selected population of patients. It is expected that in the future, DNA demethylation could have a role in the treatment of gynecologic cancers.
Collapse
Affiliation(s)
- Alfonso Duenas-Gonzalez
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología , Mexico City , Mexico
| | - José L Medina-Franco
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| | - Alma Chavez-Blanco
- c Division of Basic Research , Instituto Nacional de Cancerología , Mexico City , México
| | | | - Eli Fernández-de Gortari
- b Facultad de Química, Departamento de Farmacia , Universidad Nacional Autónoma de México , México City , México
| |
Collapse
|
25
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|