1
|
Prasanna PGS, Ahmed MM, Hong JA, Coleman CN. Best practices and novel approaches for the preclinical development of drug-radiotherapy combinations for cancer treatment. Lancet Oncol 2024; 25:e501-e511. [PMID: 39362261 DOI: 10.1016/s1470-2045(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 10/05/2024]
Abstract
Drug-radiation combination therapy is a practical approach to improving clinical outcomes for many tumours. Unfortunately, most clinical combination studies combine drugs with radiotherapy empirically and do not exploit mechanistic synergy in cell death and the interconnectivity of molecular pathways of tumours or rationale for selecting the dose, fractionation, and schedule, which can result in suboptimal efficacy and exacerbation of toxic effects. However, opportunities exist to generate compelling preclinical evidence for combination therapies from fit-for-purpose translational studies for simulating the intended clinical study use scenarios with standardised preclinical assays and algorithms to evaluate complex molecular interactions and analysis of synergy before clinical research. Here, we analyse and discuss the core issues in the translation of preclinical data to enhance the relevance of preclinical assays, in vitro clonogenic survival along with apoptosis, in vivo tumour regression and growth delay assays, and toxicology of organs at risk without creating barriers to innovation and provide a synopsis of emerging areas in preclinical radiobiology.
Collapse
Affiliation(s)
- Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Mansoor M Ahmed
- Division of Radiation Biology and Molecular Therapeutics, Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Xiao Q, Zhai L, Zhang X, Liu Y, Li J, Xie X, Xu G, He S, Fu H, Tang Y, Zhang F, Liu Y. How can we establish animal models of HIV-associated lymphoma? Animal Model Exp Med 2024; 7:484-496. [PMID: 38567763 PMCID: PMC11369037 DOI: 10.1002/ame2.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/27/2024] [Indexed: 09/04/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV-associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Jun Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Xiaoqing Xie
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Guofa Xu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Huihui Fu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Yifeng Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| | - Fujie Zhang
- Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology‐OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
3
|
Trompier F, DeWerd LA, Poirier Y, Dos Santos M, Sheng K, Kunugi KA, Winters TA, DiCarlo AL, Satyamitra M. Minimum reporting standards should be expected for preclinical radiobiology irradiators and dosimetry in the published literature. Int J Radiat Biol 2023; 100:1-6. [PMID: 37695653 PMCID: PMC10841746 DOI: 10.1080/09553002.2023.2250848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
The cornerstones of science advancement are rigor in performing scientific research, reproducibility of research findings and unbiased reporting of design and results of the experiments. For radiation research, this requires rigor in describing experimental details as well as the irradiation protocols for accurate, precise and reproducible dosimetry. Most institutions conducting radiation biology research in in vitro or animal models do not have describe experimental irradiation protocols in sufficient details to allow for balanced review of their publication nor for other investigators to replicate published experiments. The need to increase and improve dosimetry standards, traceability to National Institute of Standards and Technology (NIST) standard beamlines, and to provide dosimetry harmonization within the radiation biology community has been noted for over a decade both within the United States and France. To address this requirement subject matter experts have outlined minimum reporting standards that should be included in published literature for preclinical irradiators and dosimetry.
Collapse
Affiliation(s)
- François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Larry A DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Morgane Dos Santos
- Department of Radiobiology and Regenerative Medicine (SERAMED), Radiobiology of Accidental, Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Keith A Kunugi
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
4
|
Poirier Y, DeWerd LA, Trompier F, Santos MD, Sheng K, Kunugi K, Satyamitra MM, DiCarlo AL, Winters TA. Minimum Reporting Standards Should be Expected for Preclinical Radiobiology Irradiators and Dosimetry in the Published Literature. Radiat Res 2023; 200:217-222. [PMID: 37590483 PMCID: PMC10578361 DOI: 10.1667/rade-23-00119.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Larry A. DeWerd
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - François Trompier
- Ionizing Radiation Dosimetry Laboratory (LDRI), Human Radiation Protection Unity, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Rose, France
| | - Morgane Dos Santos
- Department of Radiobiology and Regenerative Medicine (SERAMED), Radiobiology of Accidental Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Ke Sheng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Keith Kunugi
- Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
5
|
Gomes NP, Frederick B, Jacobsen JR, Chapnick D, Su TT. A High Throughput Screen with a Clonogenic Endpoint to Identify Radiation Modulators of Cancer. Radiat Res 2023; 199:132-147. [PMID: 36583948 PMCID: PMC10000021 DOI: 10.1667/rade-22-00086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2022] [Indexed: 12/31/2022]
Abstract
Clonogenic assays evaluate the ability of single cells to proliferate and form colonies. This process approximates the regrowth and recurrence of tumors after treatment with radiation or chemotherapy, and thereby provides a drug discovery platform for compounds that block this process. However, because of their labor-intensive and cumbersome nature, adapting canonical clonogenic assays for high throughput screening (HTS) has been challenging. We overcame these barriers by developing an integrated system that automates cell- and liquid-handling, irradiation, dosimetry, drug administration, and incubation. Further, we developed a fluorescent live-cell based automated colony scoring methodology that identifies and counts colonies precisely based upon actual nuclei number rather than colony area, thereby eliminating errors in colony counts caused by radiation induced changes in colony morphology. We identified 13 cell lines from 7 cancer types, where radiation is a standard treatment module, that exhibit identical radiation and chemoradiation response regardless of well format and are amenable to miniaturization into small-well HTS formats. We performed pilot screens through a 1,584 compound NCI Diversity Set library using two cell lines representing different cancer indications. Radiation modulators identified in the pilot screens were validated in traditional clonogenic assays, providing proof-of-concept for the screen. The integrated methodology, hereafter "clonogenic HTS", exhibits excellent robustness (Z' values > 0.5) and shows high reproducibility (>95%). We propose that clonogenic HTS we developed can function as a drug discovery platform to identify compounds that inhibit tumor regrowth following radiation therapy, to identify new efficacious pair-wise combinations of known oncologic therapies, or to identify novel modulators ofapproved therapies.
Collapse
Affiliation(s)
| | | | | | | | - Tin Tin Su
- SuviCa, Inc., Boulder, Colorado 80307-3131
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Colorado, 80309-0347
- Molecular and Cellular Oncology Program, University of Colorado Cancer Center, Aurora, Colorado 80045
| |
Collapse
|
6
|
Hong JA, Vikram B, Buchsbaum J, Capala J, Livinski A, Teicher B, Prasanna P, Ahmed MM, Obcemea C, Coleman CN, Espey MG. The State of Preclinical Modeling for Early Phase Cancer Trials Using Molecularly Targeted Agents with Radiation. Radiat Res 2022; 198:625-631. [PMID: 35976726 DOI: 10.1667/rade-22-00077.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023]
Abstract
Preclinical studies inform and guide the development of novel treatment combination strategies that bridge the laboratory with the clinic. We aimed to evaluate approaches cancer researchers used to justify advancing new combinations of molecularly targeted agents and radiation treatment into early-phase human clinical trials. Unsolicited early phase clinical trial proposals submitted to the National Cancer Institute's Cancer Therapy Evaluation Program between January 2016 and July 2020 were curated to quantify key characteristics and proportion of preclinical data provided by trialists seeking to conduct molecularly targeted agent-radiation combination studies in cancer patients. These data elucidate the current landscape for how the rationale for a molecularly targeted agent-radiation combination therapy is supported by preclinical research and illustrate unique challenges faced in translation at the intersection of precision medicine and radiation oncology.
Collapse
Affiliation(s)
- Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Bhadrasian Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Jeffrey Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | | | - Alicia Livinski
- National Institutes of Health Library, Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892
| | - Beverly Teicher
- Molecular Pharmacology Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Pataje Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Ceferino Obcemea
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| | - Michael Graham Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland 20892
| |
Collapse
|
7
|
Chughtai AA, Pannhausen J, Dinger P, Wirtz J, Knüchel R, Gaisa NT, Eble MJ, Rose M. Effective Radiosensitization of Bladder Cancer Cells by Pharmacological Inhibition of DNA-PK and ATR. Biomedicines 2022; 10:biomedicines10061277. [PMID: 35740300 PMCID: PMC9220184 DOI: 10.3390/biomedicines10061277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Abstract
This study aims at analyzing the impact of the pharmacological inhibition of DNA damage response (DDR) targets (DNA-PK and ATR) on radiosensitization of bladder cancer cell lines of different molecular/histological subtypes. Applying DNA-PK (AZD7648) and ATR (Ceralasertib) inhibitors on SCaBER, J82 and VMCUB-1 bladder cancer cell lines, we revealed sensitization upon ionizing radiation (IR), i.e., the IC50 for each drug shifted to a lower drug concentration with increased IR doses. In line with this, drug exposure retarded DNA repair after IR-induced DNA damage visualized by a neutral comet assay. Western blot analyses confirmed specific inhibition of targeted DDR pathways in the analyzed bladder cancer cell lines, i.e., drugs blocked DNA-PK phosphorylation at Ser2056 and the ATR downstream mediator CHK1 at Ser317. Interestingly, clonogenic survival assays indicated a cell-line-dependent synergism of combined DDR inhibition upon IR. Calculating combined index (CI) values, with and without IR, according to the Chou–Talalay method, confirmed drug- and IR-dose-specific synergistic CI values. Thus, we provide functional evidence that DNA-PK and ATR inhibitors specifically target corresponding DDR pathways retarding the DNA repair process at nano-molar concentrations. This, in turn, leads to a strong radiosensitizing effect and impairs the survival of bladder cancer cells.
Collapse
Affiliation(s)
- Ahmed Ali Chughtai
- Department of Radiation Oncology, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence: (A.A.C.); (M.R.); Tel.: +49-241-8036863 (A.A.C.); +49-241-8089715 (M.R.); Fax: +49-241-8082425 (A.A.C.); +49-241-8082439 (M.R.)
| | - Julia Pannhausen
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Pia Dinger
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Julia Wirtz
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Nadine T. Gaisa
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Michael J. Eble
- Department of Radiation Oncology, RWTH Aachen University, 52074 Aachen, Germany;
| | - Michael Rose
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (J.P.); (P.D.); (J.W.); (R.K.); (N.T.G.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
- Correspondence: (A.A.C.); (M.R.); Tel.: +49-241-8036863 (A.A.C.); +49-241-8089715 (M.R.); Fax: +49-241-8082425 (A.A.C.); +49-241-8082439 (M.R.)
| |
Collapse
|
8
|
A High-Throughput In Vitro Radiobiology Platform for Megavoltage Photon Linear Accelerator Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We designed and developed a multiwell tissue culture plate irradiation setup, and intensity modulated radiotherapy plans were generated for 96-, 24-, and 6-well tissue culture plates. We demonstrated concordance between planned and measured/imaged radiation dose profiles using radiochromic film, a 2D ion chamber array, and an electronic portal-imaging device. Cell viability, clonogenic potential, and g-H2AX foci analyses showed no significant differences between intensity-modulated radiotherapy and open-field, homogeneous irradiations. This novel platform may help to expedite radiobiology experiments within a clinical environment and may be used for wide-ranging ex vivo radiobiology applications.
Collapse
|
9
|
Parsels LA, Zhang Q, Karnak D, Parsels JD, Lam K, Willers H, Green MD, Rehemtulla A, Lawrence TS, Morgan MA. Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. Int J Radiat Oncol Biol Phys 2021; 111:e38-e53. [PMID: 34348175 PMCID: PMC8602768 DOI: 10.1016/j.ijrobp.2021.07.1708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Combination therapies with agents targeting the DNA damage response (DDR) offer an opportunity to selectively enhance the therapeutic index of chemoradiation or eliminate use of chemotherapy altogether. The successful translation of DDR inhibitors to clinical use requires investigating both their direct actions as (chemo)radiosensitizers and their potential to stimulate tumor immunogenicity. Beginning with high-throughput screening using both viability and DNA damage-reporter assays, followed by validation in gold-standard radiation colony-forming assays and in vitro assessment of mechanistic effects on the DDR, we describe proven strategies and methods leading to the clinical development of DDR inhibitors both with radiation alone and in combination with chemoradiation. Beyond these in vitro studies, we discuss the impact of key features of human xenograft and syngeneic mouse models on the relevance of in vivo tumor efficacy studies, particularly with regard to the immunogenic effects of combined therapy with radiation and DDR inhibitors. Finally, we describe recent technological advances in radiation delivery (using the small animal radiation research platform) that allow for conformal, clinically relevant radiation therapy in mouse models. This overall approach is critical to the successful clinical development and ultimate Food and Drug Administration approval of DDR inhibitors as (chemo)radiation sensitizers.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Kwok Lam
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
10
|
Lin SH, Willers H, Krishnan S, Sarkaria JN, Baumann M, Lawrence TS. Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. Int J Radiat Oncol Biol Phys 2021; 111:1131-1139. [PMID: 34454045 PMCID: PMC9159468 DOI: 10.1016/j.ijrobp.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Radiation therapy is a major treatment modality used in > 60% of cancer patients as definitive local treatment for inoperable locoregionally confined tumors and as palliative therapy. Although cytotoxic chemotherapy enhances the effectiveness of treatment, the benefit over radiation therapy alone is modest. There is a need to enhance the effectiveness of local tumor control over what sequentially or concurrently administered cytotoxic chemotherapy provides. Although many biological pathways are known to enhance the effectiveness of radiation therapy, there is currently a paucity of drugs approved for use in combination. Several clinical trials have tested the effectiveness of combining targeted agents or immunotherapies with radiation therapy, but the results of these trials have been negative, likely stemming from the relative lack of preclinical evidence using appropriate experimental standardization or model systems. Accelerating the identification of agents tested in an appropriate clinical context and experimental systems or models would greatly enhance the potential to bring forward early testing of drugs that would not only be safe but also more effective. This article provides an overview of the opportunities and challenges of developing therapeutics to combine with radiation therapy, and some guidance toward preclinical and early clinical testing to improve the chance that advanced phase testing of drug-radiation combinations would be successful in the long term.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, Florida
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, Minnesota
| | | | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Baschnagel AM, Elnaggar JH, VanBeek HJ, Kromke AC, Skiba JH, Kaushik S, Abel L, Clark PA, Longhurst CA, Nickel KP, Leal TA, Zhao SG, Kimple RJ. ATR Inhibitor M6620 (VX-970) Enhances the Effect of Radiation in Non-Small Cell Lung Cancer Brain Metastasis Patient-Derived Xenografts. Mol Cancer Ther 2021; 20:2129-2139. [PMID: 34413128 PMCID: PMC8571002 DOI: 10.1158/1535-7163.mct-21-0305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
M6620, a selective ATP-competitive inhibitor of the ATM and RAD3-related (ATR) kinase, is currently under investigation with radiation in patients with non-small cell lung cancer (NSCLC) brain metastases. We evaluated the DNA damage response (DDR) pathway profile of NSCLC and assessed the radiosensitizing effects of M6620 in a preclinical NSCLC brain metastasis model. Mutation analysis and transcriptome profiling of DDR genes and pathways was performed on NSCLC patient samples. NSCLC cell lines were assessed with proliferation, clonogenic survival, apoptosis, cell cycle, and DNA damage signaling and repair assays. NSCLC brain metastasis patient-derived xenograft models were used to assess intracranial response and overall survival. In vivo IHC was performed to confirm in vitro results. A significant portion of NSCLC patient tumors demonstrated enrichment of DDR pathways. DDR pathways correlated with lung squamous cell histology; and mutations in ATR, ATM, BRCA1, BRCA2, CHEK1, and CHEK2 correlated with enrichment of DDR pathways in lung adenocarcinomas. M6620 reduced colony formation after radiotherapy and resulted in inhibition of DNA DSB repair, abrogation of the radiation-induced G2 cell checkpoint, and formation of dysfunctional micronuclei, leading to enhanced radiation-induced mitotic death. The combination of M6620 and radiation resulted in improved overall survival in mice compared with radiation alone. In vivo IHC revealed inhibition of pChk1 in the radiation plus M6620 group. M6620 enhances the effect of radiation in our preclinical NSCLC brain metastasis models, supporting the ongoing clinical trial (NCT02589522) evaluating M6620 in combination with whole brain irradiation in patients with NSCLC brain metastases.
Collapse
Affiliation(s)
- Andrew M Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Jacob H Elnaggar
- Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Haley J VanBeek
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ashley C Kromke
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Justin H Skiba
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Saakshi Kaushik
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lindsey Abel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Paul A Clark
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Colin A Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ticiana A Leal
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shuang G Zhao
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Bucher M, Trinkl S, Endesfelder D, Weiss T, Gomolka M, Pätzold J, Lechel U, Roessler U, de Las Heras Gala H, Moertl S, Giussani A. Radiation field and dose inhomogeneities using an X-ray cabinet in radiation biology research. Med Phys 2021; 48:8140-8151. [PMID: 34655237 DOI: 10.1002/mp.15297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
PURPOSE X-ray cabinets are replacing 137 Cs/60 Co sources in radiation biology research due to advantages in size, handling, and radiation protection. However, because of their different physical properties, X-ray cabinets are more susceptible to experimental influences than conventional sources. The aim of this study was to examine the variations related to the experimental setups typically used to investigate biological radiation effects with X-ray cabinets. MATERIALS AND METHODS A combined approach of physical dose measurements by thermoluminescence dosimetry and detection of biological effects by quantification of γH2AX and 53BP1 foci was used to analyze field inhomogeneity and evaluate the influence of the components of the experimental setup. RESULTS Irradiation was performed using an X-ray tube (195 kV, 10 mA, 0.5-mm-thick copper filter, dose rate of 0.59 Gy/min). Thermoluminescence dosimetry revealed inhomogeneity and a dose decrease of up to 42.3% within the beam area (diameter 31.1 cm) compared to the dose at the center. This dose decrease was consistent with the observed decline in the number of radiation-induced foci by up to 55.9 %. Uniform dose distribution was measured after reducing the size of the radiation field (diameter 12.5 cm). However, when using 15-ml test tubes placed at different positions within this field, the dose decreased by up to 17% in comparison to the central position. Analysis of foci number revealed significant differences between the tubes for γH2AX (1 h) and 53BP1 (4 h) at different time points after irradiation. Neither removal of some tubes nor of the caps improved the dose decrease significantly. By contrast, when using 1.5-ml tubes, dose differences were less than 4%, and no significant differences in foci number were detected. CONCLUSION X-ray cabinets are user-friendly irradiation units for investigating biological radiation effects. However, field inhomogeneities and experimental setup components considerably affect the delivered irradiation doses. For this reason, strict dosimetric monitoring of experimental irradiation setups is mandatory for reliable studies.
Collapse
Affiliation(s)
- Martin Bucher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Sebastian Trinkl
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Tina Weiss
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Maria Gomolka
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Juliane Pätzold
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ursula Lechel
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Ute Roessler
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Hugo de Las Heras Gala
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Augusto Giussani
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, Oberschleissheim, Germany
| |
Collapse
|
13
|
Buchsbaum JC, Coleman CN, Bernhard EJ, Espey MG, Vikram B. Overview and Lessons From the Preclinical Chemoradiotherapy Testing Consortium. Int J Radiat Oncol Biol Phys 2021; 111:1126-1130. [PMID: 34348172 DOI: 10.1016/j.ijrobp.2021.07.1709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In the current molecular-targeted cancer treatment era, many new agents are being developed so that optimizing therapy with a combination of radiation and drugs is complex. The use of emerging laboratory technologies to further biological understanding of drug-radiation mechanisms of action will enhance the efficiency of the progression from preclinical studies to clinical trials. In 2017, the National Cancer Institute (NCI) solicited proposals through PAR 16-111 to conduct preclinical research combining targeted anticancer agents in the Cancer Therapy Evaluation Program's portfolio with chemoradiation. METHODS AND MATERIALS The Preclinical Chemo-Radiotherapy Testing Consortium (PCRTC) was formed with 4 U01 programs supported to generate validated high-quality preclinical data on the effects of molecular therapeutics when added to standard-of-care therapies with a concentration on cancers of the pancreas, lung, head and neck, gastrointestinal tract, and brain. RESULTS The PCRTC provides a rational basis for prioritizing NCI-supported investigational new drugs or agents most likely to have clinical activity with chemoradiotherapy and accelerate the pace at which combined modality treatments with greater efficacy are identified and incorporated into standard treatment practices. CONCLUSIONS Herein, we introduce and summarize the course of the PCRTC to date and report 3 preliminary observations from the consortium's work to date.
Collapse
Affiliation(s)
- Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael G Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Willers H, Pan X, Borgeaud N, Korovina I, Koi L, Egan R, Greninger P, Rosenkranz A, Kung J, Liss AS, Parsels LA, Morgan MA, Lawrence TS, Lin SH, Hong TS, Yeap BY, Wirth L, Hata AN, Ott CJ, Benes CH, Baumann M, Krause M. Screening and Validation of Molecular Targeted Radiosensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e63-e74. [PMID: 34343607 DOI: 10.1016/j.ijrobp.2021.07.1694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022]
Abstract
The development of molecular targeted drugs with radiation and chemotherapy are critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of inter-tumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have employed 3D cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the NCI CTEP portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with/without relevant biomarker and utilizing clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts to be successfully incorporated into the standard management of hard-to-treat tumors.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Xiao Pan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nathalie Borgeaud
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden
| | - Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lydia Koi
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Regina Egan
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Aliza Rosenkranz
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jong Kung
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Leslie A Parsels
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lori Wirth
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Christopher J Ott
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Core center Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Dresden; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumour Diseases (NCT), Partner site Dresden, Germany
| |
Collapse
|
15
|
Gill SJ, Wijnhoven PWG, Fok JHL, Lloyd RL, Cairns J, Armenia J, Nikkilä J, Lau A, Bakkenist CJ, Galbraith SM, Vens C, O'Connor MJ. Radiopotentiation Profiling of Multiple Inhibitors of the DNA Damage Response for Early Clinical Development. Mol Cancer Ther 2021; 20:1614-1626. [PMID: 34158341 DOI: 10.1158/1535-7163.mct-20-0502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
Radiotherapy is an effective anticancer treatment, but combinations with targeted agents that maximize efficacy while sparing normal tissue are needed. Here, we assess the radiopotentiation profiles of DNA damage response inhibitors (DDRi) olaparib (PARP1/2), ceralasertib (ATR), adavosertib (WEE1), AZD0156 (ATM), and KU-60648 (DNA-PK). We performed a radiotherapy combination screen and assessed how drug concentration and cellular DDR deficiencies influence the radiopotentiation ability of DDRi. We pre-selected six lung cancer cell lines with different genetic/signaling aberrations (including mutations in TP53 and ATM) and assessed multiple concentrations of DDRi in combination with a fixed radiotherapy dose by clonogenic assay. The effective concentration of DDRi in radiotherapy combinations is lower than that required for single-agent efficacy. This has the potential to be exploited further in the context of DDR deficiencies to increase therapeutic index and we demonstrate that low concentrations of AZD0156 preferentially sensitized p53-deficient cells. Moreover, testing multiple concentrations of DDRi in radiotherapy combinations indicated that olaparib, ceralasertib, and adavosertib have a desirable safety profile showing moderate increases in radiotherapy dose enhancement with increasing inhibitor concentration. Small increases in concentration of AZD0156 and particularly KU-60648, however, result in steep increases in dose enhancement. Radiopotentiation profiling can inform on effective drug doses required for radiosensitization in relation to biomarkers, providing an opportunity to increase therapeutic index. Moreover, multiple concentration testing demonstrates a relationship between drug concentration and radiotherapy effect that provides valuable insights that, with future in vivo validation, can guide dose-escalation strategies in clinical trials.
Collapse
Affiliation(s)
- Sonja J Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Rebecca L Lloyd
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Cairns
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jenni Nikkilä
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Conchita Vens
- Department of Radiation Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
17
|
Coleman CN, Buchsbaum JC, Prasanna PGS, Capala J, Obcemea C, Espey MG, Ahmed MM, Hong JA, Vikram B. Moving Forward in the Next Decade: Radiation Oncology Sciences for Patient-Centered Cancer Care. JNCI Cancer Spectr 2021; 5:pkab046. [PMID: 34350377 PMCID: PMC8328099 DOI: 10.1093/jncics/pkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
In a time of rapid advances in science and technology, the opportunities for radiation oncology are undergoing transformational change. The linkage between and understanding of the physical dose and induced biological perturbations are opening entirely new areas of application. The ability to define anatomic extent of disease and the elucidation of the biology of metastases has brought a key role for radiation oncology for treating metastatic disease. That radiation can stimulate and suppress subpopulations of the immune response makes radiation a key participant in cancer immunotherapy. Targeted radiopharmaceutical therapy delivers radiation systemically with radionuclides and carrier molecules selected for their physical, chemical, and biochemical properties. Radiation oncology usage of “big data” and machine learning and artificial intelligence adds the opportunity to markedly change the workflow for clinical practice while physically targeting and adapting radiation fields in real time. Future precision targeting requires multidimensional understanding of the imaging, underlying biology, and anatomical relationship among tissues for radiation as spatial and temporal “focused biology.” Other means of energy delivery are available as are agents that can be activated by radiation with increasing ability to target treatments. With broad applicability of radiation in cancer treatment, radiation therapy is a necessity for effective cancer care, opening a career path for global health serving the medically underserved in geographically isolated populations as a substantial societal contribution addressing health disparities. Understanding risk and mitigation of radiation injury make it an important discipline for and beyond cancer care including energy policy, space exploration, national security, and global partnerships.
Collapse
Affiliation(s)
- C Norman Coleman
- Correspondence to: C. Norman Coleman, MD, Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, MSC 9727, Bethesda, MD 20892-9727, USA (e-mail: )
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacek Capala
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ceferino Obcemea
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael G Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julie A Hong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Vatner R, James CD, Sathiaseelan V, Bondra KM, Kalapurakal JA, Houghton PJ. Radiation therapy and molecular-targeted agents in preclinical testing for immunotherapy, brain tumors, and sarcomas: Opportunities and challenges. Pediatr Blood Cancer 2021; 68 Suppl 2:e28439. [PMID: 32827353 DOI: 10.1002/pbc.28439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/07/2023]
Abstract
Despite radiation therapy (RT) being an integral part of the treatment of most pediatric cancers and the recent discovery of novel molecular-targeted agents (MTAs) in this era of precision medicine with the potential to improve the therapeutic ratio of modern chemoradiotherapy regimens, there are only a few preclinical trials being conducted to discover novel radiosensitizers and radioprotectors. This has resulted in a paucity of translational clinical trials combining RT and novel MTAs. This report describes the opportunities and challenges of investigating RT together with MTAs in preclinical testing for immunotherapy, brain tumors, and sarcomas in pediatric oncology. We discuss the need for improving the collaboration between radiation oncologists, biologists, and physicists to improve the reliability, reproducibility, and translational potential of RT-based preclinical research. Current translational clinical trials using RT and MTAs for immunotherapy, brain tumors, and sarcomas are described. The technologic advances in experimental RT, availability of novel experimental tumor models, advances in immunology and tumor biology, and the discovery of novel MTAs together hold considerable promise for good quality preclinical and clinical multimodality research to improve the current rates of survival and toxicity in children afflicted with cancer.
Collapse
Affiliation(s)
- Ralph Vatner
- Radiation Oncology, University of Cincinnati and Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | | | - Kathryn M Bondra
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| | | | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas, San Antonio, Texas
| |
Collapse
|
19
|
Lee CL, Lee JW, Daniel AR, Holbrook M, Hasapis S, Wright AO, Brownstein J, Da Silva Campos L, Ma Y, Mao L, Abraham D, Badea CT, Kirsch DG. Characterization of cardiovascular injury in mice following partial-heart irradiation with clinically relevant dose and fractionation. Radiother Oncol 2021; 157:155-162. [DOI: 10.1016/j.radonc.2021.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
|
20
|
Poirier Y, Becker S, Decesaris C, Culberson W, Draeger E, Gerry AJ, Johnstone CD, Gibbs A, Vujaskovic Z, Jackson IL. The Impact of Radiation Energy on Dose Homogeneity and Organ Dose in the Göttingen Minipig Total-Body Irradiation Model. Radiat Res 2020; 194:544-556. [PMID: 33045066 DOI: 10.1667/rade-20-00135.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/10/2020] [Indexed: 11/03/2022]
Abstract
Animal models of total-body irradiation (TBI) are used to elucidate normal tissue damage and evaluate the efficacy of medical countermeasures (MCM). The accuracy of these TBI models depends on the reproducibility of the radiation dose-response relationship for lethality, which in turn is highly dependent on robust radiation physics and dosimetry. However, the precise levels of radiation each organ absorbs can change dramatically when different photon beam qualities are used, due to the interplay between their penetration and the natural variation of animal sizes and geometries. In this study, we evaluate the effect of varying the radiation energy, namely cobalt-60 (Co-60); of similar penetration to a 4-MV polyenergetic beam), 6 MV and 15 MV, in the absorbed dose delivered by TBI to individual organs of eight Göttingen minipigs of varying weights (10.3-24.1 kg) and dimensions (17.5-25 cm width). The main organs, i.e. heart, lungs, esophagus, stomach, bowels, liver, kidneys and bladder, were contoured by an experienced radiation oncologist, and the volumetric radiation dose distribution was calculated using a commercial treatment planning system commissioned and validated for Co-60, 6-MV and 15-MV teletherapy units. The dose is normalized to the intended prescription at midline in the abdomen. For each animal and each energy, the body and organ dose volume histograms (DVHs) were computed. The results show that more penetrating photon energies produce dose distributions that are systematically and consistently more homogeneous and more uniform, both within individual organs and between different organs, across all animals. Thoracic organs (lungs, heart) received higher dose than prescribed while pelvic organs (bowel, bladder) received less dose than prescribed, due to smaller and wider separations, respectively. While these trends were slightly more pronounced in the smallest animals (10.3 kg, 19 cm abdominal width) and largest animals (>20 kg, ∼25 cm abdominal width), they were observed in all animals, including those in the 9-15 kg range typically used in MCM models. Some organs received an average absorbed dose representing <80% of prescribed dose when Co-60 was used, whereas all organs received average doses of >87% and >93% when 6 and 15 MV were used, respectively. Similarly, average dose to the thoracic organs reached as high as 125% of the intended dose with Co-60, compared to 115% for 15 MV. These results indicate that Co-60 consistently produces less uniform dose distributions in the Göttingen minipig compared to 6 and 15 MV. Moreover, heterogeneity of dose distributions for Co-60 is accentuated by anatomical and geometrical variations across various animals, leading to different absorbed dose delivered to organs for different animals. This difference in absorbed radiation organ doses, likely caused by the lower penetration of Co-60 and 6 MV compared to 15 MV, could potentially lead to different biological outcomes. While the link between the dose distribution and variation of biological outcome in the Göttingen minipig has never been explicitly studied, more pronounced dose heterogeneity within and between organs treated with Co-60 teletherapy units represents an additional confounding factor which can be easily mitigated by using a more penetrating energy.
Collapse
Affiliation(s)
- Yannick Poirier
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland.,Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Stewart Becker
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Cristina Decesaris
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Wesley Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin - Madison, Madison Wisconsin
| | - Emily Draeger
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland.,Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| | - Andrew J Gerry
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Christopher D Johnstone
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland.,Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Allison Gibbs
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
21
|
Poirier Y, Prado C, Prado K, Draeger E, Jackson IL, Vujaskovic Z. Use of CT simulation and 3-D radiation therapy treatment planning system to develop and validate a total-body irradiation technique for the New Zealand White rabbit. Int J Radiat Biol 2020; 97:S10-S18. [DOI: 10.1080/09553002.2019.1665215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yannick Poirier
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charlotte Prado
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl Prado
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Medical Physics, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily Draeger
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Human Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Isabel L Jackson
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zeljko Vujaskovic
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Xia L, Wang H, Xiao H, Lan B, Liu J, Yang Z. EEF1A2 and ERN2 could potentially discriminate metastatic status of mediastinal lymph node in lung adenocarcinomas harboring EGFR 19Del/L858R mutations. Thorac Cancer 2020; 11:2755-2766. [PMID: 32881299 PMCID: PMC7529558 DOI: 10.1111/1759-7714.13554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Early data has indicated that EGFR 19Del mutation and EGFR L585R mutation are two different types of non‐small cell lung cancer (NSCLC). However, how the different molecular mechanisms participate in the process of mediastinal lymph node metastasis (MLNM) in lung adenocarcinoma (LA) harboring EGFR 19Del and EGFR L858R mutation remains unknown. We thus explored the genes responsible for MLNM in LA with EGFR 19Del or L858R mutation. Methods We performed transcriptome sequencing and bioinformatics analysis from 10 patients with LA resection specimens of primary tumors. Quantitative reverse transcription‐polymerase chain reaction was used to validate gene expressions. Results There were 69 mRNAs upregulated and 100 mRNAs downregulated in five samples with MLNM compared with samples without MLN metastasis. EEF1A2 and ERN2 were observed exhibiting different expression patterns in EGFR 19Del and EGFR L858R samples with MLNM. In samples harboring EGFR 19Del mutation, the expression of EEF1A2 gene in samples with MLNM was significantly lower compared with samples without MLN metastasis, and in samples with EGFR L858R, it was significantly higher in samples with MLNM. The expression pattern of ERN2 was opposite to EEF1A2. In addition, several other genes including SLC6A11, IGHV3‐48, IGHV3‐43, DUSP9, and HOXA9 were also shown to be associated with invasion and metastasis and exhibited an expression pattern similar to EEF1A2 and ERN2 in EGRF 19Del and L858R mutation tumors. Conclusions EEF1A2 and ERN2 were for the first time observed exhibiting distinct expression patterns in MLNM in lung adenocarcinomas harboring EGFR 19Del and EGFR L858R mutation by interindividual DEGs analysis. Key points Significant findings of the study In our study, we focused on the mechanisms of metastasis and invasion that different EGFR mutations conferred and identified two critical genes separately involved in this process in EGFR 19Del and L858R mutation tumors. What this study adds Our findings not only reinforced theoretical foundations that the EGFR 19Del and L858R mutation tumors should be considered as two kinds of diseases, but also laid the fundamentals for precise determination of the mediastinal lymph node radiation field and improvement of clinical outcome.
Collapse
Affiliation(s)
- Lei Xia
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Hui Wang
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Xiao
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Baohua Lan
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Jie Liu
- Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Zhenzhou Yang
- Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| |
Collapse
|
23
|
Silvestre Patallo I, Subiel A, Westhorpe A, Gouldstone C, Tulk A, Sharma RA, Schettino G. Development and Implementation of an End-To-End Test for Absolute Dose Verification of Small Animal Preclinical Irradiation Research Platforms. Int J Radiat Oncol Biol Phys 2020; 107:587-596. [DOI: 10.1016/j.ijrobp.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
24
|
Vollert J, Schenker E, Macleod M, Bespalov A, Wuerbel H, Michel M, Dirnagl U, Potschka H, Waldron AM, Wever K, Steckler T, van de Casteele T, Altevogt B, Sil A, Rice ASC. Systematic review of guidelines for internal validity in the design, conduct and analysis of preclinical biomedical experiments involving laboratory animals. BMJ OPEN SCIENCE 2020; 4:e100046. [PMID: 35047688 PMCID: PMC8647591 DOI: 10.1136/bmjos-2019-100046] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 02/01/2023] Open
Abstract
Over the last two decades, awareness of the negative repercussions of flaws in the planning, conduct and reporting of preclinical research involving experimental animals has been growing. Several initiatives have set out to increase transparency and internal validity of preclinical studies, mostly publishing expert consensus and experience. While many of the points raised in these various guidelines are identical or similar, they differ in detail and rigour. Most of them focus on reporting, only few of them cover the planning and conduct of studies. The aim of this systematic review is to identify existing experimental design, conduct, analysis and reporting guidelines relating to preclinical animal research. A systematic search in PubMed, Embase and Web of Science retrieved 13 863 unique results. After screening these on title and abstract, 613 papers entered the full-text assessment stage, from which 60 papers were retained. From these, we extracted unique 58 recommendations on the planning, conduct and reporting of preclinical animal studies. Sample size calculations, adequate statistical methods, concealed and randomised allocation of animals to treatment, blinded outcome assessment and recording of animal flow through the experiment were recommended in more than half of the publications. While we consider these recommendations to be valuable, there is a striking lack of experimental evidence on their importance and relative effect on experiments and effect sizes.
Collapse
Affiliation(s)
- Jan Vollert
- Pain Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Esther Schenker
- Institut de Recherches Internationales Servier, Suresnes, Île-de-France, France
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice, Heidelberg, Germany
- Valdman Institute of Pharmacology, Pavlov First State Medical University of Saint Petersburg, Sankt Petersburg, Russian Federation
| | - Hanno Wuerbel
- Division of Animal Welfare, Vetsuisse Faculty, VPH Institute, University of Bern, Bern, Switzerland
| | - Martin Michel
- Universitätsmedizin Mainz, Johannes Gutenberg Universität Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universitat Munchen, Munchen, Bayern, Germany
| | - Ann-Marie Waldron
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universitat Munchen, Munchen, Bayern, Germany
| | - Kimberley Wever
- Systematic Review Centre for Laboratory Animal Experimentation, Department for Health Evidence, Nijmegen Institute for Health Sciences, Radboud Universiteit, Nijmegen, Gelderland, Netherlands
| | | | | | | | - Annesha Sil
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew S C Rice
- Pain Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
25
|
Gronberg MP, Tailor RC, Smith SA, Kry SF, Followill DS, Stojadinovic S, Niedzielski JS, Lindsay PE, Krishnan S, Aguirre F, Fujimoto TN, Taniguchi CM, Howell RM. A Mail Audit Independent Peer Review System for Dosimetry Verification of a Small Animal Irradiator. Radiat Res 2020; 193:341-350. [PMID: 32068498 DOI: 10.1667/rr15220.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dedicated precision orthovoltage small animal irradiators have become widely available in the past decade and are commonly used for radiation biology research. However, there is a lack of dosimetric standardization among these irradiators, which affects the reproducibility of radiation-based animal studies. The purpose of this study was to develop a mail-based, independent peer review system to verify dose delivery among institutions using X-RAD 225Cx irradiators (Precision X-Ray, North Branford, CT). A robust, user-friendly mouse phantom was constructed from high-impact polystyrene and designed with dimensions similar to those of a typical laboratory mouse. The phantom accommodates three thermoluminescent dosimeters (TLDs) to measure dose. The mouse peer review system was commissioned in a small animal irradiator using anterior-posterior and posterior-anterior beams of 225 kVp and then mailed to three institutions to test the feasibility of the audit service. The energy correction factor for TLDs in the mouse phantom was derived to validate the delivered dose using this particular animal irradiation system. This feasibility study indicated that three institutions were able to deliver a radiation dose to the mouse phantom within ±10% of the target dose. The developed mail audit independent peer review system for the verification of mouse dosimetry can be expanded to characterize other commercially available orthovoltage irradiators, thereby enhancing the reproducibility of studies employing these irradiators.
Collapse
Affiliation(s)
- Mary P Gronberg
- Departments of Radiation Physics.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramesh C Tailor
- Departments of Radiation Physics.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Stephen F Kry
- Departments of Radiation Physics.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Followill
- Departments of Radiation Physics.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Strahinja Stojadinovic
- Departments of Radiation Oncology.,Departments of Health Care Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Patricia E Lindsay
- Departments of Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Sunil Krishnan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, Texas.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Tara N Fujimoto
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, Texas
| | - Cullen M Taniguchi
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Science, Houston, Texas.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca M Howell
- Departments of Radiation Physics.,Departments of The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Cosper PF, Abel L, Lee YS, Paz C, Kaushik S, Nickel KP, Alexandridis R, Scott JG, Bruce JY, Kimple RJ. Patient Derived Models to Study Head and Neck Cancer Radiation Response. Cancers (Basel) 2020; 12:E419. [PMID: 32059418 PMCID: PMC7072508 DOI: 10.3390/cancers12020419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 01/23/2023] Open
Abstract
Patient-derived model systems are important tools for studying novel anti-cancer therapies. Patient-derived xenografts (PDXs) have gained favor over the last 10 years as newer mouse strains have improved the success rate of establishing PDXs from patient biopsies. PDXs can be engrafted from head and neck cancer (HNC) samples across a wide range of cancer stages, retain the genetic features of their human source, and can be treated with both chemotherapy and radiation, allowing for clinically relevant studies. Not only do PDXs allow for the study of patient tissues in an in vivo model, they can also provide a renewable source of cancer cells for organoid cultures. Herein, we review the uses of HNC patient-derived models for radiation research, including approaches to establishing both orthotopic and heterotopic PDXs, approaches and potential pitfalls to delivering chemotherapy and radiation to these animal models, biological advantages and limitations, and alternatives to animal studies that still use patient-derived tissues.
Collapse
Affiliation(s)
- Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Lindsey Abel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Yong-Syu Lee
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Cristina Paz
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Saakshi Kaushik
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (P.F.C.); (L.A.); (Y.-S.L.); (C.P.); (S.K.); (K.P.N.)
| | - Roxana Alexandridis
- Department of Biostatistics and Medical Informatics, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Jacob G. Scott
- Departments of Translational Hematology and Oncology Research and Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Justine Y. Bruce
- Department of Medicine, Division of Hematology and Oncology, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Randall J. Kimple
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
27
|
A Dose of Reality: How 20 Years of Incomplete Physics and Dosimetry Reporting in Radiobiology Studies May Have Contributed to the Reproducibility Crisis. Int J Radiat Oncol Biol Phys 2020; 106:243-252. [DOI: 10.1016/j.ijrobp.2019.06.2545] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/20/2019] [Accepted: 06/29/2019] [Indexed: 11/17/2022]
|
28
|
Marples B. The Need for Accurate Reporting of Dosimetric Conditions in Radiobiology Studies. Int J Radiat Oncol Biol Phys 2020; 106:253-254. [DOI: 10.1016/j.ijrobp.2019.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
|
29
|
Stripay JL, Merchant TE, Roussel MF, Tinkle CL. Preclinical Models of Craniospinal Irradiation for Medulloblastoma. Cancers (Basel) 2020; 12:cancers12010133. [PMID: 31948065 PMCID: PMC7016884 DOI: 10.3390/cancers12010133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Medulloblastoma is an embryonal tumor that shows a predilection for distant metastatic spread and leptomeningeal seeding. For most patients, optimal management of medulloblastoma includes maximum safe resection followed by adjuvant craniospinal irradiation (CSI) and chemotherapy. Although CSI is crucial in treating medulloblastoma, the realization that medulloblastoma is a heterogeneous disease comprising four distinct molecular subgroups (wingless [WNT], sonic hedgehog [SHH], Group 3 [G3], and Group 4 [G4]) with distinct clinical characteristics and prognoses has refocused efforts to better define the optimal role of CSI within and across disease subgroups. The ability to deliver clinically relevant CSI to preclinical models of medulloblastoma offers the potential to study radiation dose and volume effects on tumor control and toxicity in these subgroups and to identify subgroup-specific combination adjuvant therapies. Recent efforts have employed commercial image-guided small animal irradiation systems as well as custom approaches to deliver accurate and reproducible fractionated CSI in various preclinical models of medulloblastoma. Here, we provide an overview of the current clinical indications for, and technical aspects of, irradiation of pediatric medulloblastoma. We then review the current literature on preclinical modeling of and treatment interventions for medulloblastoma and conclude with a summary of challenges in the field of preclinical modeling of CSI for the treatment of leptomeningeal seeding tumors.
Collapse
Affiliation(s)
- Jennifer L. Stripay
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Thomas E. Merchant
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Martine F. Roussel
- Departments of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.L.S.); (M.F.R.)
| | - Christopher L. Tinkle
- Departments of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Correspondence: ; Tel.: +1-(901)-595-8735; Fax: +1-(901)-595-3113
| |
Collapse
|
30
|
DuRoss AN, Neufeld MJ, Rana S, Thomas CR, Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 2019; 144:35-56. [PMID: 31279729 PMCID: PMC6745263 DOI: 10.1016/j.addr.2019.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/06/2023]
Abstract
While the advancement of clinical radiotherapy was driven by technological innovations throughout the 20th century, continued improvement relies on rational combination therapies derived from biological insights. In this review, we highlight the importance of combination radiotherapy in the era of precision medicine. Specifically, we survey and summarize the areas of research where improved understanding in cancer biology will propel the field of radiotherapy forward by allowing integration of novel nanotechnology-based treatments.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Megan J Neufeld
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Shushan Rana
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA; Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
31
|
Integrating Small Animal Irradiators withFunctional Imaging for Advanced Preclinical Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11020170. [PMID: 30717307 PMCID: PMC6406472 DOI: 10.3390/cancers11020170] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Translational research aims to provide direct support for advancing novel treatment approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in this process and the ability to accurately model biological and physical aspects of the clinical scenario in radiation oncology is critical to translational success. The use of small animal irradiators with disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate to improvements in clinical outcomes. The present review highlights the current technology and applications of small animal irradiators, and explores how these can be combined with molecular and functional imaging in advanced preclinical radiotherapy research.
Collapse
|
32
|
Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers (Basel) 2019; 11:cancers11010044. [PMID: 30621226 PMCID: PMC6356812 DOI: 10.3390/cancers11010044] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive primary brain tumor in adults, remains one of the least treatable cancers. Current standard of care—combining surgical resection, radiation, and alkylating chemotherapy—results in a median survival of only 15 months. Despite decades of investment and research into the development of new therapies, most candidate anti-glioma compounds fail to translate into effective treatments in clinical trials. One key issue underlying this failure of therapies that work in pre-clinical models to generate meaningful improvement in human patients is the profound mismatch between drug discovery systems—cell cultures and mouse models—and the actual tumors they are supposed to imitate. Indeed, current strategies that evaluate the effects of novel treatments on GBM cells in vitro fail to account for a wide range of factors known to influence tumor growth. These include secreted factors, the brain’s unique extracellular matrix, circulatory structures, the presence of non-tumor brain cells, and nutrient sources available for tumor metabolism. While mouse models provide a more realistic testing ground for potential therapies, they still fail to account for the full complexity of tumor-microenvironment interactions, as well as the role of the immune system. Based on the limitations of current models, researchers have begun to develop and implement novel culture systems that better recapitulate the complex reality of brain tumors growing in situ. A rise in the use of patient derived cells, creative combinations of added growth factors and supplements, may provide a more effective proving ground for the development of novel therapies. This review will summarize and analyze these exciting developments in 3D culturing systems. Special attention will be paid to how they enhance the design and identification of compounds that increase the efficacy of radiotherapy, a bedrock of GBM treatment.
Collapse
|
33
|
Seltzsam S, Ziemann F, Dreffke K, Preising S, Arenz A, Schötz U, Engenhart-Cabillic R, Dikomey E, Wittig A. In HPV-Positive HNSCC Cells, Functional Restoration of the p53/p21 Pathway by Proteasome Inhibitor Bortezomib Does Not Affect Radio- or Chemosensitivity. Transl Oncol 2018; 12:417-425. [PMID: 30554133 PMCID: PMC6370941 DOI: 10.1016/j.tranon.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) associated squamous cell carcinomas of the head and neck region (HPV+ HNSCCs) harbor diverging biological features as compared to classical noxa-induced (HPV−) HNSCC. One striking difference between subtypes is that the tumor suppressor gene TP53 is usually not mutated in HPV+ HNSCCs. However, p53 is inhibited by viral oncoprotein E6, leading to premature proteasomal degradation. We asked whether bortezomib (BZM), a clinically approved inhibitor of the proteasome, can functionally restore p53 and investigated in how far this will result in an enhanced radio- or chemosensitivity of HPV+ HNSCC cell lines. For all four HPV+ cell lines tested, BZM led to functional restoration of p53 and transactivation of downstream protein p21. In HPV+ cells, BZM also restored the radiation-induced p53/p21 transactivation. Consistently, in HPV+ cells, a restored G1 arrest as well as enhanced apoptosis were seen when BZM was given prior to irradiation (IR) or cisplatin (CDDP). BZM alone reduced the clonogenic survival of both HPV− and HPV+ cells. However, if BZM was combined with IR or CDDP, BZM did not significantly enhance radio- or chemosensitivity of HPV+ or HPV− HNSCC cell lines.
Collapse
Affiliation(s)
- Steve Seltzsam
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Frank Ziemann
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Kristin Dreffke
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Stefanie Preising
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Andrea Arenz
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Ulrike Schötz
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany.
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany; Laboratory for Radiobiology & Experimental Radiooncology, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, Philipps University of Marburg, University Hospital Gießen and Marburg, Baldingerstrasse, 35043 Marburg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Bachstrasse 18, 07743 Jena, Germany.
| |
Collapse
|
34
|
Falls KC, Sharma RA, Lawrence YR, Amos RA, Advani SJ, Ahmed MM, Vikram B, Coleman CN, Prasanna PG. Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities: Current Challenges and New Approaches: Report of the Symposium Held at the 63rd Annual Meeting of the Radiation Research Society, 15-18 October 2017; Cancun, Mexico. Radiat Res 2018; 190:350-360. [PMID: 30280985 PMCID: PMC6322391 DOI: 10.1667/rr15121.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The National Cancer Institute's (NCI) Radiation Research Program (RRP) is endeavoring to increase the relevance of preclinical research to improve outcomes of radiation therapy for cancer patients. These efforts include conducting symposia, workshops and educational sessions at annual meetings of professional societies, including the American Association of Physicists in Medicine, American Society of Radiation Oncology, Radiation Research Society (RRS), Radiosurgery Society, Society of Nuclear Medicine and Molecular Imaging, Society for Immunotherapy of Cancer and the American Association of Immunology. A symposium entitled "Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities" was conducted by the NCI's RRP during the 63rd Annual Meeting of the RRS on October 16, 2017 in Cancun, Mexico. In this symposium, discussions were held to address the challenges in developing radiation-drug combinations, optimal approaches with scientific evidence to replace standard-of-care, approaches to reduce normal tissue toxicities and enhance post-treatment quality-of-life and recent advances in antibody-drug conjugates. The symposium included two broad overview talks followed by two talks illustrating examples of radiation-drug combinations under development. The overview talks identified the essential preclinical infrastructure necessary to accelerate progress in the development of evidence and important challenges in the translation of drug combinations to the clinic from the laboratory. Also addressed, in the example talks (in light of the suggested guidelines and identified challenges), were the development and translation of novel antibody drug conjugates as well as repurposing of drugs to improve efficacy and reduce normal tissue toxicities. Participation among a cross section of clinicians, scientists and scholars-in-training alike who work in this focused area highlighted the importance of continued discussions to identify and address complex challenges in this emerging area in radiation oncology.
Collapse
Affiliation(s)
- Kelly C. Falls
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242
- Scholar-in-Training, Radiation Research Society
| | - Ricky A. Sharma
- NHR University College of London Hospitals Biomedical Research Center, UCL Cancer Institute, University College London, United Kingdom
| | - Yaacov R. Lawrence
- Center for Translational Research in Radiation Oncology, Department of Radiation Oncology, Sheba Medical Center affiliated with Tel Aviv University, Tel HaShomer 5265601, Israel
| | - Richard A. Amos
- Proton and Advanced Radiotherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, Moores Cancer Center, La Jolla, California 92093
| | - Mansoor M. Ahmed
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - Bhadrasain Vikram
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - C. Norman Coleman
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - Pataje G. Prasanna
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R, Demaria S, Eke I, Griffin RJ, Haas-Kogan D, Higgins GS, Kimmelman AC, Kimple RJ, Lombaert IM, Ma L, Marples B, Pajonk F, Park CC, Schaue D, Tran PT, Willers H, Wouters BG, Bernhard EJ. The Future of Radiobiology. J Natl Cancer Inst 2018; 110:329-340. [PMID: 29126306 PMCID: PMC5928778 DOI: 10.1093/jnci/djx231] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.
Collapse
Affiliation(s)
- David G Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Max Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Robert Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Iris Eke
- Radiation Oncology Branch, National Institutes of Health, Bethesda, MD
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, MA
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Alec C Kimmelman
- Perlmutter Cancer Center and Department of Radiation Oncology, New York University Langone Medical Center, New York, NY
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Isabelle M Lombaert
- Department of Biologic and Materials Sciences, Biointerfaces Institute, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL
| | - Frank Pajonk
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Catherine C Park
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Dörthe Schaue
- Division of Molecular and Cellular Oncology, University of California, Los Angeles, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Brad G. Wouters
- Department of Radiation Oncology (RB), Princess Margaret Cancer Center
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Gaustad JV, Simonsen TG, Andersen LMK, Rofstad EK. The Effect of Sunitinib Treatment in Human Melanoma Xenografts: Associations with Angiogenic Profiles. Transl Oncol 2017; 10:158-167. [PMID: 28167241 PMCID: PMC5293738 DOI: 10.1016/j.tranon.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
The effect of antiangiogenic agents targeting the vascular endothelial growth factor A (VEGF-A) pathway has been reported to vary substantially in preclinical studies. The purpose of this study was to investigate the effect of sunitinib treatment on tumor vasculature and oxygenation in melanoma xenografts with different angiogenic profiles. A-07, U-25, D-12, or R-18 melanoma xenografts were grown in dorsal window chambers and given daily treatments of sunitinib (40 mg/kg) or vehicle. Morphologic parameters of tumor vascular networks were assessed from high-resolution transillumination images, and tumor blood supply times (BSTs) were assessed from first-pass imaging movies. Tumor hypoxia was assessed with immunohistochemistry by using pimonidazole as hypoxia marker, and the gene expression and the protein secretion rate of angiogenic factors were assessed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The melanoma lines differed substantially in the expression of VEGF-A, VEGF-C, and platelet-derived growth factor A. Sunitinib treatment reduced vessel densities and induced hypoxia in all melanoma lines, and the magnitude of the effect was associated with the gene expression and protein secretion rate of VEGF-A. Sunitinib treatment also increased vessel segment lengths, reduced the number of small-diameter vessels, and inhibited growth-induced increases in the diameter of surviving vessels but did not change BST. In conclusion, sunitinib treatment did not improve vascular function but reduced vessel density and induced hypoxia in human melanoma xenografts. The magnitude of the treatment-induced effect was associated with the VEGF-A expression of the melanoma lines.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Ahmed MM, Narendra A, Prasanna P, Coleman CN, Krishnan S. Current Insights in Radiation Combination Therapies: Influence of Omics and Novel Targeted Agents in Defining New Concepts in Radiation Biology and Clinical Radiation Oncology. Semin Radiat Oncol 2016; 26:251-3. [DOI: 10.1016/j.semradonc.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Ford E, Deye J. Current Instrumentation and Technologies in Modern Radiobiology Research—Opportunities and Challenges. Semin Radiat Oncol 2016; 26:349-55. [DOI: 10.1016/j.semradonc.2016.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Dant T, Stricklin D, Millage K. Comments on "Subject-Based versus Population-Based Care after Radiation Exposure" by Yu et al. (Radiation Research 184, 46-55, 2015). Radiat Res 2016; 186:322. [PMID: 27541950 DOI: 10.1667/rr14487.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tyler Dant
- Applied Research Associates, Inc., Arlington, Virginia 22203
| | | | - Kyle Millage
- Applied Research Associates, Inc., Arlington, Virginia 22203
| |
Collapse
|
40
|
Coleman CN, Higgins GS, Brown JM, Baumann M, Kirsch DG, Willers H, Prasanna PGS, Dewhirst MW, Bernhard EJ, Ahmed MM. Improving the Predictive Value of Preclinical Studies in Support of Radiotherapy Clinical Trials. Clin Cancer Res 2016; 22:3138-47. [PMID: 27154913 PMCID: PMC4930691 DOI: 10.1158/1078-0432.ccr-16-0069] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
There is an urgent need to improve reproducibility and translatability of preclinical data to fully exploit opportunities for molecular therapeutics involving radiation and radiochemotherapy. For in vitro research, the clonogenic assay remains the current state-of-the-art of preclinical assays, whereas newer moderate and high-throughput assays offer the potential for rapid initial screening. Studies of radiation response modification by molecularly targeted agents can be improved using more physiologic 3D culture models. Elucidating effects on the cancer stem cells (CSC, and CSC-like) and developing biomarkers for defining targets and measuring responses are also important. In vivo studies are necessary to confirm in vitro findings, further define mechanism of action, and address immunomodulation and treatment-induced modification of the microenvironment. Newer in vivo models include genetically engineered and patient-derived xenograft mouse models and spontaneously occurring cancers in domesticated animals. Selection of appropriate endpoints is important for in vivo studies; for example, regrowth delay measures bulk tumor killing, whereas local tumor control assesses effects on CSCs. The reliability of individual assays requires standardization of procedures and cross-laboratory validation. Radiation modifiers must be tested as part of clinical standard of care, which includes radiochemotherapy for most tumors. Radiation models are compatible with but also differ from those used for drug screening. Furthermore, the mechanism of a drug as a chemotherapeutic agent may be different from its interaction with radiation and/or radiochemotherapy. This provides an opportunity to expand the use of molecular-targeted agents. Clin Cancer Res; 22(13); 3138-47. ©2016 AACR.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland.
| | - Geoff S Higgins
- Cancer Research UK/Medical Research Council, Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Baumann
- OncoRay National Center for Radiation Research, Technische Universität Dresden/Helmholtz-Zenrtum Dresden-Rossendorf, Dresden, Germany and German Cancer Consortium, Dresden/German Cancer Research Center (DKFZ)
| | - David G Kirsch
- Departments of Radiation Oncology and Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pataje G S Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Mark W Dewhirst
- Departments of Radiation Oncology, Pathology and Biomedical Engineering, Duke University, Durham, North Carolina
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| |
Collapse
|