1
|
Luo L, Luo F, Wu C, Zhang H, Jiang Q, He S, Li W, Zhang W, Cheng Y, Yang P, Li Z, Li M, Bao Y, Jiang F. Identification of potential biomarkers in the peripheral blood of neonates with bronchopulmonary dysplasia using WGCNA and machine learning algorithms. Medicine (Baltimore) 2024; 103:e37083. [PMID: 38277517 PMCID: PMC10817126 DOI: 10.1097/md.0000000000037083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is often seen as a pulmonary complication of extreme preterm birth, resulting in persistent respiratory symptoms and diminished lung function. Unfortunately, current diagnostic and treatment options for this condition are insufficient. Hence, this study aimed to identify potential biomarkers in the peripheral blood of neonates affected by BPD. The Gene Expression Omnibus provided the expression dataset GSE32472 for BPD. Initially, using this database, we identified differentially expressed genes (DEGs) in GSE32472. Subsequently, we conducted gene set enrichment analysis on the DEGs and employed weighted gene co-expression network analysis (WGCNA) to screen the most relevant modules for BPD. We then mapped the DEGs to the WGCNA module genes, resulting in a gene intersection. We conducted detailed functional enrichment analyses on these overlapping genes. To identify hub genes, we used 3 machine learning algorithms, including SVM-RFE, LASSO, and Random Forest. We constructed a diagnostic nomogram model for predicting BPD based on the hub genes. Additionally, we carried out transcription factor analysis to predict the regulatory mechanisms and identify drugs associated with these biomarkers. We used differential analysis to obtain 470 DEGs and conducted WGCNA analysis to identify 1351 significant genes. The intersection of these 2 approaches yielded 273 common genes. Using machine learning algorithms, we identified CYYR1, GALNT14, and OLAH as potential biomarkers for BPD. Moreover, we predicted flunisolide, budesonide, and beclomethasone as potential anti-BPD drugs. The genes CYYR1, GALNT14, and OLAH have the potential to serve as diagnostic biomarkers for BPD. This may prove beneficial in clinical diagnosis and prevention of BPD.
Collapse
Affiliation(s)
- Liyan Luo
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Fei Luo
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Zhang
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Qiaozhi Jiang
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Sixiang He
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Weibi Li
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Wenlong Zhang
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Yurong Cheng
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Pengcheng Yang
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Zhenghu Li
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Min Li
- Department of Neonatology, Dali Bai Autonomous Prefecture Maternal and Child Health Care Hospital, Dali, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
He M, Wang L, Yue Z, Feng C, Dai G, Jiang J, Huang H, Ji Q, Zhou M, Li D, Chai W. Development and validation of glycosyltransferase related-gene for the diagnosis and prognosis of head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:1750-1766. [PMID: 38244579 PMCID: PMC10866440 DOI: 10.18632/aging.205455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous cancer characterized by difficulties in early diagnosis and outcome prediction. Aberrant glycosylated structures produced by the aberrant expression of glycosyltransferases are prevalent in HNSCC. In this study, we aim to construct glycosyltransferase-related gene signatures with diagnostic and prognostic value to better stratify patients with HNSCC and improve their diagnosis and prognosis. METHODS Bioinformatic tools were used to process data of patients with HNSCC from The Cancer Genome Atlas (TCGA) database. The prognostic model was formatted using univariate and multivariate Cox regression methods, while the diagnostic signature was constructed using support vector machine (SVM) and LASSO analysis. The results were verified using the Gene Expression Omnibus (GEO) cohort. The tumor microenvironment and benefits of immune checkpoint inhibitor (ICI) therapy in subgroups defined by glycosyltransferase-related genes were analyzed. Molecular biology experiments, including western blotting, cell counting kit (CCK)-8, colony formation, wound healing, and Transwell assays, were conducted to confirm the oncogenic function of beta-1,4-galactosyltransferase 3 (B4GALT3) in HNSCC. RESULTS We established a five-gene prognostic signature and a 15-gene diagnostic model. Based on the median risk score, patients with low risk had longer overall survival than those in the high-risk group, which was consistent with the results of the GEO cohort. The concrete results suggested that high-risk samples were related to a high tumor protein (TP)53 mutation rate, high infiltration of resting memory cluster of differentiation (CD)4 T cells, resting natural killer (NK) cells, and M0 macrophages, and benefited from ICI therapy. In contrast, the low-risk subgroup was associated with a low TP53 mutation rate; and high infiltration of naive B cells, plasma cells, CD8 T cells, and resting mast cells; and benefited less from ICI therapy. In addition, the diagnostic model had an area under curve (AUC) value of 0.997 and 0.978 in the training dataset and validation cohort, respectively, indicating the high diagnostic potential of the model. Ultimately, the depletion of B4GALT3 significantly hindered the proliferation, migration, and invasion of HNSCC cells. CONCLUSIONS We established two new biomarkers that could provide clinicians with diagnostic, prognostic, and treatment guidance for patients with HNSCC.
Collapse
Affiliation(s)
- Miao He
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Li Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Zihan Yue
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Chunbo Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Guosheng Dai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Jinsong Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Hui Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Qingjun Ji
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Minglang Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Dapeng Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| | - Wei Chai
- Department of Otorhinolaryngology, Head and Neck Surgery, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
- Scientific Research and Experiment Center, The People’s Hospital of Bozhou, Bozhou 236000, Anhui, China
| |
Collapse
|
3
|
Hashemi Sheikhshabani S, Amini‐Farsani Z, Kazemifard N, Modarres P, Amini‐Farsani Z, Omrani MD, Ghafouri‐Fard S. Meta-analysis of microarray data to determine gene indicators involved in the cisplatin resistance in ovarian cancer. Cancer Rep (Hoboken) 2023; 6:e1884. [PMID: 37937323 PMCID: PMC10728535 DOI: 10.1002/cnr2.1884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Significant miss-expressed gene indicators contributing to cisplatin resistance in ovarian cancer have not been completely understood. It seems that several regulatory genes and signaling pathways are associated with the emergence of the chemo-resistant phenotype. AIMS Here, a meta-analysis approach was adopted to assess deregulated genes involved in relapse after the first line of chemotherapy (cisplatin). METHODS AND RESULTS To do so, six ovarian cancer libraries were gathered from GEO repository. Batch effect removal and quality assessment, and boxplots and PCA were performed using SVA and ggplot2 packages in R, respectively. Cisplatin-resistant and -sensitive ovarian cancer groups were compared with find genes with significant expression changes using linear regression models in the LIMMA R package. The significance threshold for DEGs was taken as adj p-value < .05 and - 1 > logFC > 1. A total of 261 genes were identified to have significant differential expression levels in the cisplatin-resistant versus cisplatin-sensitive group. Among the 10 top up-regulated and down-regulated genes, PITX2, SNCA, and EPHA7 (up), as well as TMEM98 (down) are indirect upstream regulators of PI3K/AKT signaling pathway, contributing greatly to the development of chemo-resistance in cancer via promoting cell proliferation, survival, and cell cycle progression as well as inhibiting apoptosis. Moreover, a comprehensive assessment of DEGs revealed the dysregulation of not only membrane ion channels KCa1.1, Kv4, and CACNB4, affecting cell excitability, proliferation, and apoptosis but also cell adhesion proteins COL4A6, EPHA3, and CD9, affecting the attachment of normal cells to ECM and apoptosis, introducing good options to reverse cisplatin resistance. CONCLUSION Our results predict and suggest that upstream regulators of PI3K/AKT signaling pathway, ion channels, and cell adhesion proteins play important roles in cisplatin resistance development in ovarian cancer.
Collapse
Affiliation(s)
- Somayeh Hashemi Sheikhshabani
- Student Research Committee, Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Amini‐Farsani
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Nesa Kazemifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Parastoo Modarres
- Department of Cell and Molecular Biology and MicrobiologyUniversity of IsfahanIsfahanIran
| | - Zahra Amini‐Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute for StatisticsLudwig‐Maximilians‐Universität MünchenMunichGermany
- Statistics DepartmentSchool of Science, Lorestan UniversityKhorramabadIran
| | - Mir Davood Omrani
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
- Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Soudeh Ghafouri‐Fard
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
5
|
Czyrnik ED, Wiesehöfer M, Dankert JT, Wach S, Wagner M, Spahn M, Kruithof de Julio M, Wennemuth G. Stromal-epithelial interaction induces GALNT14 in prostate carcinoma cells. Front Oncol 2023; 13:1212585. [PMID: 37671061 PMCID: PMC10475991 DOI: 10.3389/fonc.2023.1212585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Cell-cell communication is an important process in healthy tissue but also gains enhanced attention regarding pathological tissue. To date, the tumor microenvironment is gradually brought into focus when studying tumorigenesis. In the prostate gland, stromal and epithelial cells greatly interact to maintain homeostasis or tissue integrity. This study focuses on an indirect communication via soluble factors. Methods To investigate the cell-cell interaction via soluble factors, the prostate carcinoma cell line LNCaP and the stromal primary cells p21 were co-cultured without direct contact and RNA was isolated at defined time points. Differences in gene expression were finally analyzed by RNA sequencing. Results RNA sequencing revealed a time-depending differential expression profile. Selected factors were subsequently characterized at molecular level and analyzed in human prostate tissue of different developmental stages as well as pathology. GALNT14 was one of the highest induced co-culture-specific genes in LNCaP cells. Detection in healthy tissue and BPH revealed an age-dependent decrease in GALNT14 expression. Moreover, in prostate carcinoma, GALNT14 expression heavily varied independent of the Gleason score. Conclusion Overall, this work provides a basis for further studies related to paracrine stromal-epithelial interaction in prostate carcinoma and highlights the importance of GALNT14.
Collapse
Affiliation(s)
- Elena D. Czyrnik
- University Hospital Essen, Department of Anatomy, Essen, Germany
| | - Marc Wiesehöfer
- University Hospital Essen, Department of Anatomy, Essen, Germany
| | | | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Mathias Wagner
- University Hospital Saarland, Department of General and Special Pathology, Homburg, Germany
| | - Martin Spahn
- Lindenhofspital Bern, Department of Urology, Bern, Switzerland
- University Hospital Essen, Department of Urology, Essen, Germany
| | - Marianna Kruithof de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | | |
Collapse
|
6
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
7
|
Ma X, Tao Z, Chen L, Duan S, Zhou G, Ma Y, Xiong Z, Zhu L, Ma X, Mao Y, Hu Y, Zeng N, Wang J, Bao Y, Luo F, Wu C, Jiang F. Genetic analysis of potential biomarkers and therapeutic targets associated with ferroptosis from bronchopulmonary dysplasia. Medicine (Baltimore) 2023; 102:e34371. [PMID: 37478211 PMCID: PMC10662800 DOI: 10.1097/md.0000000000034371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
Ferroptosis is a recently identified form of cell death that is distinct from the conventional modes such as necrosis, apoptosis, and autophagy. Its role in bronchopulmonary dysplasia (BPD) remains inadequately understood. To address this gap, we obtained BPD-related RNA-seq data and ferroptosis-related genes (FRGs) from the GEO database and FerrDb, respectively. A total of 171 BPD-related differentially expressed ferroptosis-related genes (DE-FRGs) linked to the regulation of autophagy and immune response were identified. Least absolute shrinkage and selection operator and SVM-RFE algorithms identified 23 and 14 genes, respectively, as marker genes. The intersection of these 2 sets yielded 9 genes (ALOX12B, NR1D1, LGMN, IFNA21, MEG3, AKR1C1, CA9, ABCC5, and GALNT14) with acceptable diagnostic capacity. The results of the functional enrichment analysis indicated that these identified marker genes may be involved in the pathogenesis of BPD through the regulation of immune response, cell cycle, and BPD-related pathways. Additionally, we identified 29 drugs that target 5 of the marker genes, which could have potential therapeutic implications. The ceRNA network we constructed revealed a complex regulatory network based on the marker genes, further highlighting their potential roles in BPD. Our findings offer diagnostic potential and insight into the mechanism underlying BPD. Further research is needed to assess its clinical utility.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Ziyu Tao
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Leiming Chen
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shaozhi Duan
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Guoping Zhou
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yunxia Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Zhenqin Xiong
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Lan Zhu
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Xuejiao Ma
- Department of Neonatology, Yongping County People’s Hospital, Dali, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ni Zeng
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Luo
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
8
|
Fonseca LMD, Diniz-Lima I, da Costa Santos MAR, Franklim TN, da Costa KM, Santos ACD, Morrot A, Decote-Ricardo D, Valente RDC, Freire-de-Lima CG, Dos Reis JS, Freire-de-Lima L. Bittersweet Sugars: How Unusual Glycan Structures May Connect Epithelial-to-Mesenchymal Transition and Multidrug Resistance in Cancer. MEDICINES (BASEL, SWITZERLAND) 2023; 10:36. [PMID: 37367731 DOI: 10.3390/medicines10060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Tatiany Nunes Franklim
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ariely Costa Dos Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fiocruz, Laboratório de Imunoparasitologia, Rio de Janeiro 21040-360, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro 25250-470, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Chu YD, Fan TC, Lai MW, Yeh CT. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis 2022; 13:956. [PMID: 36376274 PMCID: PMC9663550 DOI: 10.1038/s41419-022-05419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The single nucleotide polymorphism (SNP) rs9679162 located on GALNT14 gene predicts therapeutic outcomes in patients with intermediate and advanced hepatocellular carcinoma (HCC), but the molecular mechanism remains unclear. Here, the associations between SNP genotypes, GALNT14 expression, and downstream molecular events were determined. A higher GALNT14 cancerous/noncancerous ratio was associated with the rs9679162-GG genotype, leading to an unfavorable postoperative prognosis. A novel exon-6-skipped GALNT14 mRNA variant was identified in patients carrying the rs9679162-TT genotype, which was associated with lower GALNT14 expression and favorable prognosis. Cell-based experiments showed that elevated levels of GALNT14 promoted HCC growth, migration, and resistance to anticancer drugs. Using a comparative lectin-capture glycoproteomic approach, PHB2 was identified as a substrate for GALNT14-mediated O-glycosylation. Site-directed mutagenesis experiments revealed that serine-161 (Ser161) was the O-glycosylation site. Further analysis showed that O-glycosylation of PHB2-Ser161 was required for the GALNT14-mediated growth-promoting phenotype. O-glycosylation of PHB2 was positively correlated with GALNT14 expression in HCC, resulting in increased interaction between PHB2 and IGFBP6, which in turn led to the activation of IGF1R-mediated signaling. In conclusion, the GALNT14-rs9679162 genotype was associated with differential expression levels of GALNT14 and the generation of a novel exon-6-skipped GALNT14 mRNA variant, which was associated with a favorable prognosis in HCC. The GALNT14/PHB2/IGF1R cascade modulated the growth, migration, and anticancer drug resistance of HCC cells, thereby opening the possibility of identifying new therapeutic targets against HCC.
Collapse
Affiliation(s)
- Yu-De Chu
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tan-Chi Fan
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Lai
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Wu J, Jin Z, Lin J, Fu Y, Wang J, Shen Y. Vessel state and immune infiltration of the angiogenesis subgroup and construction of a prediction model in osteosarcoma. Front Immunol 2022; 13:992266. [PMID: 36405691 PMCID: PMC9666676 DOI: 10.3389/fimmu.2022.992266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Angiogenesis has been recognized as a pivotal contributor to tumorigenesis and progression. However, the role of angiogenesis-related genes (ARGs) in vessel state, immune infiltration, and prognosis remains unknown in osteosarcoma (OS). Bulk RNA sequencing data of osteosarcoma patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database, and patients were divided into two angiogenesis subgroups according to the expression of ARGs. We compared their vessel state and used two independent algorithms to evaluate the tumor microenvironment (TME) in the two subgroups. Furthermore, hub genes of differentially expressed genes (DEGs) in the two subgroups were selected to perform LASSO regression and multivariate Cox stepwise regression, and two prognostic hub genes were found. An ARG_score based on prognostic hub genes was calculated and proved to be reliable in the overall survival prediction in OS patients. Furthermore, the ARG_score was significantly associated with ARGs, immune infiltration, response to immunotherapy, and drug sensitivity. To make our prediction model perform well, clinical features were added and a highly accurate interactive nomogram was constructed. Immunohistochemistry and qRT-PCR were utilized to verify the expression of prognostic hub genes. GSE21257 from the Gene Expression Omnibus (GEO) database was used as a validation dataset to verify its robustness. In conclusion, our comprehensive analysis of angiogenesis subgroups in OS illustrated that angiogenesis may lead to different vessel states and further affect immune infiltration and prognosis of OS patients. Our findings may bring a novel perspective for the immunotherapy strategies for OS patients.
Collapse
Affiliation(s)
- Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Jin
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yucheng Fu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Lin NC, Shih YH, Chiu KC, Li PJ, Yang HW, Lan WC, Hsia SM, Wang TH, Shieh TM. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14174217. [PMID: 36077753 PMCID: PMC9454803 DOI: 10.3390/cancers14174217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy was performed before surgery. Because the tumor itself and the surrounding vascular bed were not damaged, the chemotherapy we performed could have good drug delivery. After the operation, the volume of the tumor can be reduced to facilitate surgery or radiotherapy. However, neoadjuvant chemotherapy also delays the patient’s time to receive main therapy. The physician must make sure that it has a good response and does not allow disease progression in the patient during neoadjuvant chemotherapy. Therefore, predicting the treatment response of neoadjuvant chemotherapy can shorten the treatment time, reduce the harm of chemotherapy side effects, and avoid the occurrence of drug resistance. The results of this study showed that GALNT14-rs9679162 and mRNA expression were associated with post-treatment survival in head and neck cancer. It can be used as an indicator to predict the treatment response of neoadjuvant chemotherapy. Abstract The polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) rs9679162 and mRNA expression were associated with treatment outcome in various cancers. However, the relation of GALNT14 and head and neck cancer were nuclear. A total of 199 patients with head and neck squamous cell carcinoma (HNSCC) were collected in this study, including oral SCC (OSCC), oropharyngeal SCC (OPSCC), laryngeal SCC (LSCC), and others. The DNA and RNA of cancer tissues were extracted using the TRI Reagent method. The rs9679162 was analyzed using polymerase chain reaction (PCR) and sequencing methods in 199 DNA specimens, and the mRNA expression was analyzed using quantitative reverse transcription PCR (RT-qPCR) methods in 68 paired RNA specimens of non-cancerous matched tissues (NCMT) and tumor tissues. The results showed that the genotype of TT, TG, and GG appeared at 30%, 44%, and 26%, respectively. Non-TT genotype or G alleotype were associated with alcohol, betel nut, and cigarette using among patients with OSCC, and it also affected the treatment and survival of patients with OSCC and LSCC. High GALNT14 mRNA expression levels increased lymphatic metastasis of patients with HNSCC, and treatment and survival in patients with OPSCC. Overall, the GALNT14-rs9679162 genotype and mRNA expression level can be used as indicators of HNSCC treatment prognosis.
Collapse
Affiliation(s)
- Nan-Chin Lin
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 500009, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Po-Jung Li
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wu Yang
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| | - Tong-Hong Wang
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33305, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Correspondence: (S.-M.H.); (T.-M.S.); Tel.: +886-4-2205-3366 (ext. 2316) (T.-M.S.)
| |
Collapse
|
12
|
Bagaria J, Kim KO, Bagyinszky E, An SSA, Baek JH. Discriminating Potential Genetic Markers for Complete Response and Non-Complete Response Patients to Neoadjuvant Chemotherapy with Locally Advanced Rectal Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074008. [PMID: 35409691 PMCID: PMC8997875 DOI: 10.3390/ijerph19074008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Background: Neoadjuvant chemoradiotherapy (nCRT) prior to surgery is considered standard therapy for locally advanced rectal cancer. Unfortunately, most patients with rectal cancer are resistant to radiotherapy. This might be a genetic cause. The role of certain rectal cancer-causing genes has not been completely elucidated. This study aims to investigate the genes responsible for locally advanced rectal cancer patients not reacting to radiotherapy. Methods: Whole exome sequencing of the DNA samples was performed on the samples. Bioinformatic analysis on the subjects was established. Individual genetic information was screened to identify differently expressed genes that more frequently appeared in non-complete response (NCR) compared to complete response (CR) patients after nCRT. All variations were verified by Sanger sequencing. Results: Genotyping information and pathway analyses of the samples indicated genes such as FLCN, CALML5, and ANTXR1 to be commonly mutated in CR group, whereas genes such as GALNTL14, CNKSR1, ACD, and CUL3 were more commonly mutated in the NCR group. Chi-square test revealed some significant variants (<0.05) such as rs3744124 (FLCN), rs28365986 (ANTXR1), rs10904516 (CALML5), rs3738952 (CUL3), rs13394 and rs2293013 (PIH1D1), rs2274531 (GPA33), rs4963048 (BRSK2), rs17883366 (IL3RA), rs2297575 (PSMD5), rs2288101 (GALNT14), and rs11954652 (DCTN4). Conclusion: Identifying an array of genes that separate NCRs from CRs would lead to finding genetic biomarkers for early detection of rectal cancer patients that are resistant to nCRT. A further investigation to validate the significance of genetic biomarkers to segregate NCRs from CRs should be performed with a larger CRC dataset. Protein expression levels, as well as transcriptomic analysis, would also help us understand the mechanism of how these genes could play a role in preventing radiation therapy to patients. This would be essential to prevent redundant radiation therapy.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Kyung-Ok Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Eva Bagyinszky
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Korea; (J.B.); (E.B.)
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| | - Jeong-Heum Baek
- Division of Colon and Rectal Surgery, Department of Surgery, Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.S.A.A.); (J.-H.B.); Tel.: +82-10-4344-9633 (S.S.A.A.); +82-10-5248-6656 (J.-H.B.)
| |
Collapse
|
13
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance. Blood 2021; 137:2347-2359. [PMID: 33152759 DOI: 10.1182/blood.2020005381] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.
Collapse
|
15
|
Connectivity map-based drug repositioning of bortezomib to reverse the metastatic effect of GALNT14 in lung cancer. Oncogene 2020; 39:4567-4580. [PMID: 32388539 DOI: 10.1038/s41388-020-1316-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Despite the continual discovery of promising new cancer targets, drug discovery is often hampered by the poor druggability of these targets. As such, repurposing FDA-approved drugs based on cancer signatures is a useful alternative to cancer precision medicine. Here, we adopted an in silico approach based on large-scale gene expression signatures to identify drug candidates for lung cancer metastasis. Our clinicogenomic analysis identified GALNT14 as a putative driver of lung cancer metastasis, leading to poor survival. To overcome the poor druggability of GALNT14 in the control of metastasis, we utilized the Connectivity Map and identified bortezomib (BTZ) as a potent metastatic inhibitor, bypassing the direct inhibition of the enzymatic activity of GALNT14. The antimetastatic effect of BTZ was verified both in vitro and in vivo. Notably, both BTZ treatment and GALNT14 knockdown attenuated TGFβ-mediated gene expression and suppressed TGFβ-dependent metastatic genes. These results demonstrate that our in silico approach is a viable strategy for the use of undruggable targets in cancer therapies and for revealing the underlying mechanisms of these targets.
Collapse
|
16
|
Lin WR, Yeh CT. GALNT14: An Emerging Marker Capable of Predicting Therapeutic Outcomes in Multiple Cancers. Int J Mol Sci 2020; 21:ijms21041491. [PMID: 32098271 PMCID: PMC7073045 DOI: 10.3390/ijms21041491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023] Open
Abstract
Members of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family function as the initiating enzymes that catalyze mucin-type O-glycosylation of proteins, and their dysregulated expression can alter cancer cell behaviors such as de novo occurrence, proliferation, migration, metastasis, and drug resistance. Recent studies have demonstrated that one of the family’s members, GALNT14, is aberrantly expressed in multiple cancers and involved in a variety of biological functions. Moreover, the single nucleotide polymorphisms (SNPs) of GALNT14-rs9679162 have been shown to predict therapeutic outcomes in patients with hepatocellular carcinoma as well as several other different types of gastrointestinal cancer. This review summarizes the structural features of GANLT14, its functional roles, and the predictive values of GALNT14 genotypes and enzyme levels in multiple cancers receiving distinct anticancer therapies.
Collapse
Affiliation(s)
- Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence:
| |
Collapse
|