1
|
Kuryata O, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Nazarenko S, Solovyova N, Kostenko V. Therapeutic potential of 5-aminolevulinic acid in metabolic disorders: Current insights and future directions. iScience 2024; 27:111477. [PMID: 39720526 PMCID: PMC11667047 DOI: 10.1016/j.isci.2024.111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects. Additionally, it regulates the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, cytochrome c oxidase subunit IV, uncoupling proteins UCP1 and UCP2, glucose transporters GLUT1 and GLUT2, and sterol regulatory element-binding protein 1c in relevant tissues. Randomized controlled trials have confirmed the effects of 5-ALA on glucose control in both prediabetic and diabetic patients, noting its safety and tolerability, as well as the safety of its combined use with oral hypoglycemic agents. Only minor side effects have been reported. However, the impact of 5-ALA on markers of systemic inflammation, oxidative and nitrosative stress, and dyslipidemia was not evaluated in these studies. At the same time, preparations of 5-ALA may potentially be effective not only in the treatment of prediabetes and type 2 diabetes mellitus (T2DM), but also in other conditions associated with systemic inflammation, oxidative or nitrosative stress, mitochondrial dysfunction, as well as disorders of carbohydrate and lipid metabolism. It has been concluded that the promising advancement of formulations containing 5-ALA may pave the way for new strategies in preventing and treating these diseases, with subsequent preclinical and clinical trials likely to follow.
Collapse
Affiliation(s)
- Olexandr Kuryata
- Dnipro State Medical University, Department of Internal Medicine 2, Phthisiology, Occupational Diseases and Clinical Immunology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Internal Medicine 2, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Svetlana Nazarenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
2
|
Kotb A, Hafeji Z, Jesry F, Lintern N, Pathak S, Smith AM, Lutchman KRD, de Bruin DM, Hurks R, Heger M, Khaled YS. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers (Basel) 2024; 16:3803. [PMID: 39594758 PMCID: PMC11592681 DOI: 10.3390/cancers16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgical resection for pancreatic ductal adenocarcinoma (PDAC) entails the excision of the primary tumour and regional lymphadenectomy. This traditional strategy is challenged by the high rate of early recurrence, suggesting inadequate disease staging. Novel methods of intra-operative staging are needed to allow surgical resection to be tailored to the disease's biology. METHODS A search of published articles on the PubMed and Embase databases was performed using the terms 'pancreas' OR 'pancreatic' AND 'intra-operative staging/detection' OR 'guided surgery'. Articles published between January 2000 and June 2023 were included. Technologies that offered intra-operative staging and tailored treatment were curated and summarised in the following integrative review. RESULTS lymph node (LN) mapping and radioimmunoguided surgery have shown promising results but lacked practicality to facilitate real-time intra-operative staging for PDAC. Fluorescence-guided surgery (FGS) offers high contrast and sensitivity, enabling the identification of cancerous tissue and positive LNs with improved precision following intravenous administration of a fluorescent agent. The unique properties of optical coherence tomography and ultrasound elastography lend themselves to be platforms for virtual biopsy intra-operatively. CONCLUSIONS Accurate intra-operative staging of PDAC, localisation of metastatic LNs, and identification of extra-pancreatic disease remain clinically unmet needs under current detection methods and staging standards. Tumour-specific FGS combined with other diagnostic and therapeutic modalities could improve tumour detection and staging in patients with PDAC.
Collapse
Affiliation(s)
- Ahmed Kotb
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Zaynab Hafeji
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Fadel Jesry
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Lintern
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Samir Pathak
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Andrew M. Smith
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Kishan R. D. Lutchman
- Department of Surgery, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Daniel M. de Bruin
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Rob Hurks
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
3
|
Spring BQ, Watanabe K, Ichikawa M, Mallidi S, Matsudaira T, Timerman D, Swain JWR, Mai Z, Wakimoto H, Hasan T. Red light-activated depletion of drug-refractory glioblastoma stem cells and chemosensitization of an acquired-resistant mesenchymal phenotype. Photochem Photobiol 2024:10.1111/php.13985. [PMID: 38922889 PMCID: PMC11664018 DOI: 10.1111/php.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma stem cells (GSCs) are potent tumor initiators resistant to radiochemotherapy, and this subpopulation is hypothesized to re-populate the tumor milieu due to selection following conventional therapies. Here, we show that 5-aminolevulinic acid (ALA) treatment-a pro-fluorophore used for fluorescence-guided cancer surgery-leads to elevated levels of fluorophore conversion in patient-derived GSC cultures, and subsequent red light-activation induces apoptosis in both intrinsically temozolomide chemotherapy-sensitive and -resistant GSC phenotypes. Red light irradiation of ALA-treated cultures also exhibits the ability to target mesenchymal GSCs (Mes-GSCs) with induced temozolomide resistance. Furthermore, sub-lethal light doses restore Mes-GSC sensitivity to temozolomide, abrogating GSC-acquired chemoresistance. These results suggest that ALA is not only useful for fluorescence-guided glioblastoma tumor resection, but that it also facilitates a GSC drug-resistance agnostic, red light-activated modality to mop up the surgical margins and prime subsequent chemotherapy.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Kohei Watanabe
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Healthcare Optics Research Laboratory, Canon USA, Inc., Cambridge MA 02139, USA
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Tatsuyuki Matsudaira
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dmitriy Timerman
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joseph W. R. Swain
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center and Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149:17607-17634. [PMID: 37776358 DOI: 10.1007/s00432-023-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, Kherva, 384012, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
5
|
Bandzeviciute R, Steiner G, Liedel K, Golde J, Koch E, Welsch T, Kahlert C, Stange DE, Distler M, Weitz J, Ceponkus J, Sablinskas V, Teske C. Fast and label-free intraoperative discrimination of malignant pancreatic tissue by attenuated total reflection infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:045004. [PMID: 37122477 PMCID: PMC10142231 DOI: 10.1117/1.jbo.28.4.045004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Significance Pancreatic surgery is a highly demanding and routinely applied procedure for the treatment of several pancreatic lesions. The outcome of patients with malignant entities crucially depends on the margin resection status of the tumor. Frozen section analysis for intraoperative evaluation of tissue is still time consuming and laborious. Aim We describe the application of fiber-based attenuated total reflection infrared (ATR IR) spectroscopy for label-free discrimination of normal pancreatic, tumorous, and pancreatitis tissue. A pilot study for the intraoperative application was performed. Approach The method was applied for unprocessed freshly resected tissue samples of 58 patients, and a classification model for differentiating between the distinct tissue classes was established. Results The developed three-class classification model for tissue spectra allows for the delineation of tumors from normal and pancreatitis tissues using a probability score for class assignment. Subsequently, the method was translated into intraoperative application. Fiber optic ATR IR spectra were obtained from freshly resected pancreatic tissue directly in the operating room. Conclusion Our study shows the possibility of applying fiber-based ATR IR spectroscopy in combination with a supervised classification model for rapid pancreatic tissue identification with a high potential for transfer into intraoperative surgical diagnostics.
Collapse
Affiliation(s)
- Rimante Bandzeviciute
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerald Steiner
- Department of Anaesthesiology and Critical Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Katja Liedel
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jonas Golde
- Department of Anaesthesiology and Critical Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Edmund Koch
- Department of Anaesthesiology and Critical Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thilo Welsch
- Department of General, Visceral und Thoracic Surgery, St. Elisabethen-Klinikum Ravensburg, Academic Teaching Hospital of the University of Ulm, Ravensburg, Germany
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Justinas Ceponkus
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Valdas Sablinskas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Christian Teske
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Address all correspondence to Christian Teske,
| |
Collapse
|
6
|
Stewart HL, Birch DJS. Fluorescence Guided Surgery. Methods Appl Fluoresc 2021; 9. [PMID: 34399409 DOI: 10.1088/2050-6120/ac1dbb] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Fluorescence guided surgery (FGS) is an imaging technique that allows the surgeon to visualise different structures and types of tissue during a surgical procedure that may not be as visible under white light conditions. Due to the many potential advantages of fluorescence guided surgery compared to more traditional clinical imaging techniques such as its higher contrast and sensitivity, less subjective use, and ease of instrument operation, the research interest in fluorescence guided surgery continues to grow over various key aspects such as fluorescent probe development and surgical system development as well as its potential clinical applications. This review looks to summarise some of the emerging opportunities and developments that have already been made in fluorescence guided surgery in recent years while highlighting its advantages as well as limitations that need to be overcome in order to utilise the full potential of fluorescence within the surgical environment.
Collapse
Affiliation(s)
- Hazel L Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - David J S Birch
- Department of Physics, The Photophysics Research Group, University of Strathclyde, SUPA, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
7
|
Lee J, Kim B, Park B, Won Y, Kim SY, Lee S. Real-time cancer diagnosis of breast cancer using fluorescence lifetime endoscopy based on the pH. Sci Rep 2021; 11:16864. [PMID: 34413447 PMCID: PMC8376886 DOI: 10.1038/s41598-021-96531-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
A biopsy is often performed for the diagnosis of cancer during a surgical operation. In addition, pathological biopsy is required to discriminate the margin between cancer tissues and normal tissues in surgical specimens. In this study, we presented a novel method for discriminating between tumor and normal tissues using fluorescence lifetime endoscopy (FLE). We demonstrated the relationship between the fluorescence lifetime and pH in fluorescein using the proposed fluorescence lifetime measurement system. We also showed that cancer could be diagnosed based on this relationship by assessing differences in pH based fluorescence lifetime between cancer and normal tissues using two different types of tumor such as breast tumors (MDA-MB-361) and skin tumors (A375), where cancer tissues have ranged in pH from 4.5 to 7.0 and normal tissues have ranged in pH from 7.0 to 7.4. To support this approach, we performed hematoxylin and eosin (H&E) staining test of normal and cancer tissues within a certain area. From these results, we showed the ability to diagnose a cancer using FLE technique, which were consistent with the diagnosis of a cancer with H&E staining test. In summary, the proposed pH-based FLE technique could provide a real time, in vivo, and in-situ clinical diagnostic method for the cancer surgical and could be presented as an alternative to biopsy procedures.
Collapse
Affiliation(s)
- Jooran Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea
- Intek-Medi, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
8
|
Luan S, Tran NT, Xue HY, Wong HL. Development of a high payload, cancer-targeting liposomes of methyl aminolevulinate for intraoperative photodynamic diagnosis/therapy of peritoneal carcinomatosis. Int J Pharm 2021; 602:120612. [PMID: 33905866 DOI: 10.1016/j.ijpharm.2021.120612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/05/2023]
Abstract
Methyl aminolevulinate (MAL) is a photosensitizer topically used for photodynamic diagnosis (PDD) and photodynamic therapy (PDT) of skin pre-cancers and cancers. In this study, our goal is to expand the application of MAL to dual intraoperative PDD and PDT of peritoneal carcinomatosis. A new liposomal MAL formulation (lipMAL) designed for systemic or intraperitoneal administration was developed. LipMALs prepared by ammonium sulfate gradient technique achieved MAL payload up to 18% (w/w) with drug encapsulation efficiency in the range of 15.1-31.5%. All lipMALs demonstrated controlled MAL release behavior, and achieved strong fluorescence in cancer cells (SKOV3) but minimal fluorescence in non-cancer peritoneal cells (B14FAF28-G3). LipMALs led to significantly higher fluorescence levels than free MAL groups (P < 0.05), up to 6.8-fold of the free MAL fluorescence levels in SKOV3 cells. The PDD performance of lipMALs was also compared with free MAL in SKOV3/ B14FAF28-G3 co-cultures simulating ovarian cancer micrometastases on peritoneal surface. The lipMAL-treated cancer colonies glew more brightly than the free MAL treated colonies and were clearly distinguishable from the dim peritoneum background with unaided eyes. LipMAL also achieved significantly stronger anticancer PDT effects than free MAL both in terms of cell viability and colony-formation (P < 0.05) while demonstrating minimal dark toxicity. To conclude, a new promising aid for the surgeons to achieve more complete resection of tumors and PC micrometastases and clean up any residual cancer cells undetected was developed.
Collapse
Affiliation(s)
- Shijie Luan
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Ngoc T Tran
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui-Yi Xue
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | - Ho-Lun Wong
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|