1
|
Yeghaian M, Bodalal Z, Tareco Bucho T, Kurilova I, Blank C, Smit E, van der Heijden M, Nguyen-Kim T, van den Broek D, Beets-Tan R, Trebeschi S. Integrated noninvasive diagnostics for prediction of survival in immunotherapy. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100723. [PMID: 39185322 PMCID: PMC11342748 DOI: 10.1016/j.iotech.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Background Integrating complementary diagnostic data sources promises enhanced robustness in the predictive performance of artificial intelligence (AI) models, a crucial requirement for future clinical validation/implementation. In this study, we investigate the potential value of integrating data from noninvasive diagnostic modalities, including chest computed tomography (CT) imaging, routine laboratory blood tests, and clinical parameters, to retrospectively predict 1-year survival in a cohort of patients with advanced non-small-cell lung cancer, melanoma, and urothelial cancer treated with immunotherapy. Patients and methods The study included 475 patients, of whom 444 had longitudinal CT scans and 475 had longitudinal laboratory data. An ensemble of AI models was trained on data from each diagnostic modality, and subsequently, a model-agnostic integration approach was adopted for combining the prediction probabilities of each modality and producing an integrated decision. Results Integrating different diagnostic data demonstrated a modest increase in predictive performance. The highest area under the curve (AUC) was achieved by CT and laboratory data integration (AUC of 0.83, 95% confidence interval 0.81-0.85, P < 0.001), whereas the performance of individual models trained on laboratory and CT data independently yielded AUCs of 0.81 and 0.73, respectively. Conclusions In our retrospective cohort, integrating different noninvasive data modalities improved performance.
Collapse
Affiliation(s)
- M. Yeghaian
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Z. Bodalal
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - T.M. Tareco Bucho
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - I. Kurilova
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C.U. Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E.F. Smit
- Pulmonology Department, Leiden University Medical Center, Leiden, The Netherlands
| | - M.S. van der Heijden
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T.D.L. Nguyen-Kim
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Institute of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - D. van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - R.G.H. Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - S. Trebeschi
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Comes MC, Fucci L, Strippoli S, Bove S, Cazzato G, Colangiuli C, Risi ID, Roma ID, Fanizzi A, Mele F, Ressa M, Saponaro C, Soranno C, Tinelli R, Guida M, Zito A, Massafra R. An artificial intelligence-based model exploiting H&E images to predict recurrence in negative sentinel lymph-node melanoma patients. J Transl Med 2024; 22:838. [PMID: 39267101 PMCID: PMC11391752 DOI: 10.1186/s12967-024-05629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/18/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Risk stratification and treatment benefit prediction models are urgent to improve negative sentinel lymph node (SLN-) melanoma patient selection, thus avoiding costly and toxic treatments in patients at low risk of recurrence. To this end, the application of artificial intelligence (AI) could help clinicians to better calculate the recurrence risk and choose whether to perform adjuvant therapy. METHODS We made use of AI to predict recurrence-free status (RFS) within 2-years from diagnosis in 94 SLN- melanoma patients. In detail, we detected quantitative imaging information from H&E slides of a cohort of 71 SLN- melanoma patients, who registered at Istituto Tumori "Giovanni Paolo II" in Bari, Italy (investigational cohort, IC). For each slide, two expert pathologists firstly annotated two Regions of Interest (ROIs) containing tumor cells alone (TUMOR ROI) or with infiltrating cells (TUMOR + INF ROI). In correspondence of the two kinds of ROIs, two AI-based models were developed to extract information directly from the tiles in which each ROI was automatically divided. This information was then used to predict RFS. Performances of the models were computed according to a 5-fold cross validation scheme. We further validated the prediction power of the two models on an independent external validation cohort of 23 SLN- melanoma patients (validation cohort, VC). RESULTS The TUMOR ROIs have revealed more informative than the TUMOR + INF ROIs. An Area Under the Curve (AUC) value of 79.1% and 62.3%, a sensitivity value of 81.2% and 76.9%, a specificity value of 70.0% and 43.3%, an accuracy value of 73.2% and 53.4%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the IC cohort, respectively. An AUC value of 76.5% and 65.2%, a sensitivity value of 66.7% and 41.6%, a specificity value of 70.0% and 55.9%, an accuracy value of 70.0% and 56.5%, were achieved on the TUMOR and TUMOR + INF ROIs extracted for the VC cohort, respectively. CONCLUSIONS Our approach represents a first effort to develop a non-invasive prognostic method to better define the recurrence risk and improve the management of SLN- melanoma patients.
Collapse
Affiliation(s)
- Maria Colomba Comes
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Livia Fucci
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Sabino Strippoli
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Samantha Bove
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Gerardo Cazzato
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Carmen Colangiuli
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Ivana De Risi
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Ileana De Roma
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Annarita Fanizzi
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Fabio Mele
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Maurizio Ressa
- Unità Operativa Complessa di Chirurgica Plastica e Ricostruttiva, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Concetta Saponaro
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Rosita Tinelli
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Michele Guida
- Unità Operativa Tumori Rari e Melanoma, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| | - Alfredo Zito
- Unità Operativa Complessa di Anatomia Patologica, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaella Massafra
- Laboratorio di Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| |
Collapse
|
3
|
Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, Dampier CH, Stossel C, Patil T, Rajan A, Lassoued W, Strauss J, Bailey S, Allen C, Redman J, Beker T, Jiang P, Golan T, Wilkinson S, Sowalsky AG, Pine SR, Caldas C, Gulley JL, Aldape K, Aharonov R, Stone EA, Ruppin E. A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics. NATURE CANCER 2024; 5:1305-1317. [PMID: 38961276 DOI: 10.1038/s43018-024-00793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an indirect two-step approach consisting of (1) DeepPT, a deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response to targeted and immune therapies from the inferred expression values. We show that DeepPT successfully predicts transcriptomics in all 16 The Cancer Genome Atlas cohorts tested and generalizes well to two independent datasets. ENLIGHT-DeepPT successfully predicts true responders in five independent patient cohorts involving four different treatments spanning six cancer types, with an overall odds ratio of 2.28 and a 39.5% increased response rate among predicted responders versus the baseline rate. Notably, its prediction accuracy, obtained without any training on the treatment data, is comparable to that achieved by directly predicting the response from the images, which requires specific training on the treatment evaluation cohorts.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | - Eldad D Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Leandro C Hermida
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Katherine Caley
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher H Dampier
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Tejas Patil
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shania Bailey
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Clint Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jason Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sharon R Pine
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos Caldas
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - James L Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric A Stone
- Biological Data Science Institute, College of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Williams HL, Frei AL, Koessler T, Berger MD, Dawson H, Michielin O, Zlobec I. The current landscape of spatial biomarkers for prediction of response to immune checkpoint inhibition. NPJ Precis Oncol 2024; 8:178. [PMID: 39138341 PMCID: PMC11322473 DOI: 10.1038/s41698-024-00671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Enabling the examination of cell-cell relationships in tissue, spatially resolved omics technologies have revolutionised our perspectives on cancer biology. Clinically, the development of immune checkpoint inhibitors (ICI) has advanced cancer therapeutics. However, a major challenge of effective implementation is the identification of predictive biomarkers of response. In this review we examine the potential added predictive value of spatial biomarkers of response to ICI beyond current clinical benchmarks.
Collapse
Affiliation(s)
- Hannah L Williams
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland.
| | - Ana Leni Frei
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Thibaud Koessler
- Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
- Swiss Cancer Centre Léman, Lausanne, Geneva, Switzerland
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Heather Dawson
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Olivier Michielin
- Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
- Swiss Cancer Centre Léman, Lausanne, Geneva, Switzerland
- University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Inti Zlobec
- Institute for Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Chakrabarty N, Mahajan A. Imaging Analytics using Artificial Intelligence in Oncology: A Comprehensive Review. Clin Oncol (R Coll Radiol) 2024; 36:498-513. [PMID: 37806795 DOI: 10.1016/j.clon.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
The present era has seen a surge in artificial intelligence-related research in oncology, mainly using deep learning, because of powerful computer hardware, improved algorithms and the availability of large amounts of data from open-source domains and the use of transfer learning. Here we discuss the multifaceted role of deep learning in cancer care, ranging from risk stratification, the screening and diagnosis of cancer, to the prediction of genomic mutations, treatment response and survival outcome prediction, through the use of convolutional neural networks. Another role of artificial intelligence is in the generation of automated radiology reports, which is a boon in high-volume centres to minimise report turnaround time. Although a validated and deployable deep-learning model for clinical use is still in its infancy, there is ongoing research to overcome the barriers for its universal implementation and we also delve into this aspect. We also briefly describe the role of radiomics in oncoimaging. Artificial intelligence can provide answers pertaining to cancer management at baseline imaging, saving cost and time. Imaging biobanks, which are repositories of anonymised images, are also briefly described. We also discuss the commercialisation and ethical issues pertaining to artificial intelligence. The latest generation generalist artificial intelligence model is also briefly described at the end of the article. We believe this article will not only enrich knowledge, but also promote research acumen in the minds of readers to take oncoimaging to another level using artificial intelligence and also work towards clinical translation of such research.
Collapse
Affiliation(s)
- N Chakrabarty
- Department of Radiodiagnosis, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Parel, Mumbai, Maharashtra, India.
| | - A Mahajan
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
6
|
Wang X, Yuan W. Nuclei-level prior knowledge constrained multiple instance learning for breast histopathology whole slide image classification. iScience 2024; 27:109826. [PMID: 38832012 PMCID: PMC11145340 DOI: 10.1016/j.isci.2024.109826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
New breast cancer cases have surpassed lung cancer, becoming the world's most prevalent cancer. Despite advancing medical image analysis, deep learning's lack of interpretability limits its adoption among pathologists. Hence, a nuclei-level prior knowledge constrained multiple instance learning (MIL) (NPKC-MIL) for breast whole slide image (WSI) classification is proposed. NPKC-MIL primarily involves the following steps: Initially, employing the transfer learning to extract patch-level features and aggregate them into slide-level features through attention pooling. Subsequently, abstract the extracted nuclei as nodes, establish nucleus topology using the K-NN (K-Nearest Neighbors, K-NN) algorithm, and create handcrafted features for nodes. Finally, combine patch-level deep learning features with nuclei-level handcrafted features to fine-tune classification results generated by slide-level deep learning features. The experimental results demonstrate that NPKC-MIL outperforms current comparable deep learning models. NPKC-MIL expands the analytical dimension of WSI classification tasks and integrates prior knowledge into deep learning models to improve interpretability.
Collapse
Affiliation(s)
- Xunping Wang
- School of Remote Sensing and Information Engineering, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
| | - Wei Yuan
- Co-Creation Center for Disaster Resilience, International Research Institute of Disaster Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Dixon D, Sattar H, Moros N, Kesireddy SR, Ahsan H, Lakkimsetti M, Fatima M, Doshi D, Sadhu K, Junaid Hassan M. Unveiling the Influence of AI Predictive Analytics on Patient Outcomes: A Comprehensive Narrative Review. Cureus 2024; 16:e59954. [PMID: 38854327 PMCID: PMC11161909 DOI: 10.7759/cureus.59954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
This comprehensive literature review explores the transformative impact of artificial intelligence (AI) predictive analytics on healthcare, particularly in improving patient outcomes regarding disease progression, treatment response, and recovery rates. AI, encompassing capabilities such as learning, problem-solving, and decision-making, is leveraged to predict disease progression, optimize treatment plans, and enhance recovery rates through the analysis of vast datasets, including electronic health records (EHRs), imaging, and genetic data. The utilization of machine learning (ML) and deep learning (DL) techniques in predictive analytics enables personalized medicine by facilitating the early detection of conditions, precision in drug discovery, and the tailoring of treatment to individual patient profiles. Ethical considerations, including data privacy, bias, and accountability, emerge as vital in the responsible implementation of AI in healthcare. The findings underscore the potential of AI predictive analytics in revolutionizing clinical decision-making and healthcare delivery, emphasizing the necessity of ethical guidelines and continuous model validation to ensure its safe and effective use in augmenting human judgment in medical practice.
Collapse
Affiliation(s)
- Diny Dixon
- Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, IND
| | - Hina Sattar
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Natalia Moros
- Medicine, Pontifical Javeriana University Medical School, Bogotá, COL
| | | | - Huma Ahsan
- Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Madiha Fatima
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Dhruvi Doshi
- Medicine, Gujarat Cancer Society Medical College, Hospital & Research Centre, Ahmedabad, IND
| | | | | |
Collapse
|
8
|
Qin Y, Huo M, Liu X, Li SC. Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy. Front Immunol 2024; 15:1368749. [PMID: 38524135 PMCID: PMC10957591 DOI: 10.3389/fimmu.2024.1368749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Numerous studies have shown that immune checkpoint inhibitor (ICI) immunotherapy has great potential as a cancer treatment, leading to significant clinical improvements in numerous cases. However, it benefits a minority of patients, underscoring the importance of discovering reliable biomarkers that can be used to screen for potential beneficiaries and ultimately reduce the risk of overtreatment. Our comprehensive review focuses on the latest advancements in predictive biomarkers for ICI therapy, particularly emphasizing those that enhance the efficacy of programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors immunotherapies. We explore biomarkers derived from various sources, including tumor cells, the tumor immune microenvironment (TIME), body fluids, gut microbes, and metabolites. Among them, tumor cells-derived biomarkers include tumor mutational burden (TMB) biomarker, tumor neoantigen burden (TNB) biomarker, microsatellite instability (MSI) biomarker, PD-L1 expression biomarker, mutated gene biomarkers in pathways, and epigenetic biomarkers. TIME-derived biomarkers include immune landscape of TIME biomarkers, inhibitory checkpoints biomarkers, and immune repertoire biomarkers. We also discuss various techniques used to detect and assess these biomarkers, detailing their respective datasets, strengths, weaknesses, and evaluative metrics. Furthermore, we present a comprehensive review of computer models for predicting the response to ICI therapy. The computer models include knowledge-based mechanistic models and data-based machine learning (ML) models. Among the knowledge-based mechanistic models are pharmacokinetic/pharmacodynamic (PK/PD) models, partial differential equation (PDE) models, signal networks-based models, quantitative systems pharmacology (QSP) models, and agent-based models (ABMs). ML models include linear regression models, logistic regression models, support vector machine (SVM)/random forest/extra trees/k-nearest neighbors (KNN) models, artificial neural network (ANN) and deep learning models. Additionally, there are hybrid models of systems biology and ML. We summarized the details of these models, outlining the datasets they utilize, their evaluation methods/metrics, and their respective strengths and limitations. By summarizing the major advances in the research on predictive biomarkers and computer models for the therapeutic effect and clinical utility of tumor ICI, we aim to assist researchers in choosing appropriate biomarkers or computer models for research exploration and help clinicians conduct precision medicine by selecting the best biomarkers.
Collapse
Affiliation(s)
- Yurong Qin
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Xingwu Liu
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Chen Y, Gao Z, Mohd‐Ibrahim I, Yang H, Wu L, Fu Y, Deng Y. Pan-cancer analyses of bromodomain containing 9 as a novel therapeutic target reveals its diagnostic, prognostic potential and biological mechanism in human tumours. Clin Transl Med 2024; 14:e1543. [PMID: 38303608 PMCID: PMC10835192 DOI: 10.1002/ctm2.1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Mutations in one or more genes responsible for encoding subunits within the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodelling complexes are found in approximately 25% of cancer patients. Bromodomain containing 9 (BRD9) is a more recently identified protein coding gene, which can encode SWI/SNF chromatin-remodelling complexes subunits. Although initial evaluations of the potential of BRD9-based targeted therapy have been explored in the clinical application of a small number of cancer types, more detailed study of the diagnostic and prognostic potential, as well as the detailed biological mechanism of BRD9 remains unreported. METHODS We used various bioinformatics tools to generate a comprehensive, pan-cancer analyses of BRD9 expression in multiple disease types described in The Cancer Genome Atlas (TCGA). Experimental validation was conducted in tissue microarrays and cell lines derived from lung and colon cancers. RESULTS Our study revealed that BRD9 exhibited elevated expression in a wide range of tumours. Analysis of survival data and DNA methylation for BRD9 indicated distinct conclusions for multiple tumours. mRNA splicing and molecular binding were involved in the functional mechanism of BRD9. BRD9 may affect cancer progression through different phosphorylation sites or N6 -methyladenosine site modifications. BRD9 could potentially serve as a novel biomarker for diagnosing different cancer types, especially could accurately forecast the prognosis of melanoma patients receiving anti-programmed cell death 1 immunotherapy. BRD9 has the potential to serve as a therapeutic target, when pairing with etoposide in patients with melanoma. The BRD9/SMARCD1 axis exhibited promising discriminative performance in forecasting the prognosis of patients afflicted with liver hepatocellular carcinoma (LIHC) and mesothelioma. Additionally, this axis appears to potentially influence the immune response in LIHC by regulating the programmed death-ligand 1 immune checkpoint. For experimental validation, high expression levels of BRD9 were observed in tumour tissue samples from both lung and colon cancer patients. Knocking down BRD9 led to the inhibition of lung and colon cancer development, likely via the Wnt/β-catenin signalling pathway. CONCLUSIONS These pan-cancer study revealed the diagnostic and prognostic potential, along with the biological mechanism of BRD9 as a novel therapeutic target in human tumours.
Collapse
Affiliation(s)
- Yu Chen
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Zitong Gao
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Isam Mohd‐Ibrahim
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
- Department of Molecular Biosciences and BioengineeringCollege of Tropical Agriculture and Human ResourcesAgricultural SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Hua Yang
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Lang Wu
- Cancer Epidemiology DivisionPopulation Sciences in the Pacific ProgramUniversity of Hawaii Cancer CenterUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Yuanyuan Fu
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Youping Deng
- Department of Quantitative Health SciencesJohn A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
10
|
Neimy H, Helmy JE, Snyder A, Valdebran M. Artificial Intelligence in Melanoma Dermatopathology: A Review of Literature. Am J Dermatopathol 2024; 46:83-94. [PMID: 37982502 DOI: 10.1097/dad.0000000000002593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
ABSTRACT Pathology serves as a promising field to integrate artificial intelligence into clinical practice as a powerful screening tool. Melanoma is a common skin cancer with high mortality and morbidity, requiring timely and accurate histopathologic diagnosis. This review explores applications of artificial intelligence in melanoma dermatopathology, including differential diagnostics, prognosis prediction, and personalized medicine decision-making.
Collapse
Affiliation(s)
- Hannah Neimy
- College of Medicine, Medical University of South Carolina, Charleston, SC; and
| | - John Elia Helmy
- College of Medicine, Medical University of South Carolina, Charleston, SC; and
| | - Alan Snyder
- Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, SC
| | - Manuel Valdebran
- Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
11
|
Prelaj A, Miskovic V, Zanitti M, Trovo F, Genova C, Viscardi G, Rebuzzi SE, Mazzeo L, Provenzano L, Kosta S, Favali M, Spagnoletti A, Castelo-Branco L, Dolezal J, Pearson AT, Lo Russo G, Proto C, Ganzinelli M, Giani C, Ambrosini E, Turajlic S, Au L, Koopman M, Delaloge S, Kather JN, de Braud F, Garassino MC, Pentheroudakis G, Spencer C, Pedrocchi ALG. Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review. Ann Oncol 2024; 35:29-65. [PMID: 37879443 DOI: 10.1016/j.annonc.2023.10.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/31/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The widespread use of immune checkpoint inhibitors (ICIs) has revolutionised treatment of multiple cancer types. However, selecting patients who may benefit from ICI remains challenging. Artificial intelligence (AI) approaches allow exploitation of high-dimension oncological data in research and development of precision immuno-oncology. MATERIALS AND METHODS We conducted a systematic literature review of peer-reviewed original articles studying the ICI efficacy prediction in cancer patients across five data modalities: genomics (including genomics, transcriptomics, and epigenomics), radiomics, digital pathology (pathomics), and real-world and multimodality data. RESULTS A total of 90 studies were included in this systematic review, with 80% published in 2021-2022. Among them, 37 studies included genomic, 20 radiomic, 8 pathomic, 20 real-world, and 5 multimodal data. Standard machine learning (ML) methods were used in 72% of studies, deep learning (DL) methods in 22%, and both in 6%. The most frequently studied cancer type was non-small-cell lung cancer (36%), followed by melanoma (16%), while 25% included pan-cancer studies. No prospective study design incorporated AI-based methodologies from the outset; rather, all implemented AI as a post hoc analysis. Novel biomarkers for ICI in radiomics and pathomics were identified using AI approaches, and molecular biomarkers have expanded past genomics into transcriptomics and epigenomics. Finally, complex algorithms and new types of AI-based markers, such as meta-biomarkers, are emerging by integrating multimodal/multi-omics data. CONCLUSION AI-based methods have expanded the horizon for biomarker discovery, demonstrating the power of integrating multimodal data from existing datasets to discover new meta-biomarkers. While most of the included studies showed promise for AI-based prediction of benefit from immunotherapy, none provided high-level evidence for immediate practice change. A priori planned prospective trial designs are needed to cover all lifecycle steps of these software biomarkers, from development and validation to integration into clinical practice.
Collapse
Affiliation(s)
- A Prelaj
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy; ESMO Real World Data and Digital Health Working Group, ESMO, Lugano, Switzerland.
| | - V Miskovic
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | - M Zanitti
- Department of Electronic Systems, Aalborg University Copenhagen, Denmark
| | - F Trovo
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | - C Genova
- UO Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa; Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa
| | - G Viscardi
- Precision Medicine Department, Università degli Studi della Campania Luigi Vanvitelli, Naples
| | - S E Rebuzzi
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa; Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
| | - L Mazzeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan; Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | - L Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - S Kosta
- Department of Electronic Systems, Aalborg University Copenhagen, Denmark
| | - M Favali
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | - A Spagnoletti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - L Castelo-Branco
- ESMO European Society for Medical Oncology, Lugano, Switzerland; NOVA National School of Public Health, Lisboa, Portugal
| | - J Dolezal
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - A T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - G Lo Russo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - C Proto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - M Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - C Giani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - E Ambrosini
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| | - S Turajlic
- Cancer Dynamics Laboratory, The Francis Crick Institute, London
| | - L Au
- Renal and Skin Unit, The Royal Marsden NHS Foundation Trust, London, UK; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne; Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Melbourne, Australia
| | - M Koopman
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands; ESMO Real World Data and Digital Health Working Group, ESMO, Lugano, Switzerland
| | - S Delaloge
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; ESMO Real World Data and Digital Health Working Group, ESMO, Lugano, Switzerland
| | - J N Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - F de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan
| | - M C Garassino
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | | | - C Spencer
- Cancer Dynamics Laboratory, The Francis Crick Institute, London.
| | - A L G Pedrocchi
- Nearlab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
12
|
Higgins H, Nakhla A, Lotfalla A, Khalil D, Doshi P, Thakkar V, Shirini D, Bebawy M, Ammari S, Lopci E, Schwartz LH, Postow M, Dercle L. Recent Advances in the Field of Artificial Intelligence for Precision Medicine in Patients with a Diagnosis of Metastatic Cutaneous Melanoma. Diagnostics (Basel) 2023; 13:3483. [PMID: 37998619 PMCID: PMC10670510 DOI: 10.3390/diagnostics13223483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Standard-of-care medical imaging techniques such as CT, MRI, and PET play a critical role in managing patients diagnosed with metastatic cutaneous melanoma. Advancements in artificial intelligence (AI) techniques, such as radiomics, machine learning, and deep learning, could revolutionize the use of medical imaging by enhancing individualized image-guided precision medicine approaches. In the present article, we will decipher how AI/radiomics could mine information from medical images, such as tumor volume, heterogeneity, and shape, to provide insights into cancer biology that can be leveraged by clinicians to improve patient care both in the clinic and in clinical trials. More specifically, we will detail the potential role of AI in enhancing detection/diagnosis, staging, treatment planning, treatment delivery, response assessment, treatment toxicity assessment, and monitoring of patients diagnosed with metastatic cutaneous melanoma. Finally, we will explore how these proof-of-concept results can be translated from bench to bedside by describing how the implementation of AI techniques can be standardized for routine adoption in clinical settings worldwide to predict outcomes with great accuracy, reproducibility, and generalizability in patients diagnosed with metastatic cutaneous melanoma.
Collapse
Affiliation(s)
- Hayley Higgins
- Department of Clinical Medicine, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; (A.L.); (M.B.)
| | - Abanoub Nakhla
- Department of Clinical Medicine, American University of the Caribbean School of Medicine, 33027 Cupecoy, Sint Maarten, The Netherlands;
| | - Andrew Lotfalla
- Department of Clinical Medicine, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; (A.L.); (M.B.)
| | - David Khalil
- Department of Clinical Medicine, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA; (D.K.); (P.D.); (V.T.)
| | - Parth Doshi
- Department of Clinical Medicine, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA; (D.K.); (P.D.); (V.T.)
| | - Vandan Thakkar
- Department of Clinical Medicine, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA; (D.K.); (P.D.); (V.T.)
| | - Dorsa Shirini
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
| | - Maria Bebawy
- Department of Clinical Medicine, Touro College of Osteopathic Medicine, Middletown, NY 10940, USA; (A.L.); (M.B.)
| | - Samy Ammari
- Département d’Imagerie Médicale Biomaps, UMR1281 INSERM, CEA, CNRS, Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
- ELSAN Département de Radiologie, Institut de Cancérologie Paris Nord, 95200 Sarcelles, France
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Lawrence H. Schwartz
- Department of Radiology, New York-Presbyterian, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Michael Postow
- Melanoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Laurent Dercle
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran;
| |
Collapse
|
13
|
Gan J, Wang H, Yu H, He Z, Zhang W, Ma K, Zhu L, Bai Y, Zhou Z, Yullie A, Bai X, Wang M, Yang D, Chen Y, Chen G, Lasenby J, Cheng C, Wu J, Zhang J, Wang X, Chen Y, Wang G, Xia T. Focalizing regions of biomarker relevance facilitates biomarker prediction on histopathological images. iScience 2023; 26:107243. [PMID: 37767002 PMCID: PMC10520807 DOI: 10.1016/j.isci.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/11/2023] [Accepted: 06/26/2023] [Indexed: 09/29/2023] Open
Abstract
Image-based AI has thrived as a potentially revolutionary tool for predicting molecular biomarker statuses, which aids in categorizing patients for appropriate medical treatments. However, many methods using hematoxylin and eosin-stained (H&E) whole-slide images (WSIs) have been found to be inefficient because of the presence of numerous uninformative or irrelevant image patches. In this study, we introduced the region of biomarker relevance (ROB) concept to identify the morphological areas most closely associated with biomarkers for accurate status prediction. We actualized this concept within a framework called saliency ROB search (SRS) to enable efficient and effective predictions. By evaluating various lung adenocarcinoma (LUAD) biomarkers, we showcased the superior performance of SRS compared to current state-of-the-art AI approaches. These findings suggest that AI tools, built on the ROB concept, can achieve enhanced molecular biomarker prediction accuracy from pathological images.
Collapse
Affiliation(s)
- Jiefeng Gan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Hanchen Wang
- Department of Engineering, University of Cambridge, Fitzwilliam House 32 Trumpington Street, Cambridge CB2 1QY, UK
- Computing + Mathematical Sciences Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Hui Yu
- Wuhan Children’s Hospital, Tongji Medical College, Wuhan, Hubei 430000, China
| | - Zitong He
- Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Wenjuan Zhang
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 43000, China
| | - Ke Ma
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianghui Zhu
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yutong Bai
- Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Zongwei Zhou
- Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alan Yullie
- Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Xiang Bai
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 43000, China
| | - Mingwei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanyan Chen
- Department of Information Management, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Guoan Chen
- Wuhan Blood Center, Wuhan, Hubei 43000, China
| | - Joan Lasenby
- Department of Engineering, University of Cambridge, Fitzwilliam House 32 Trumpington Street, Cambridge CB2 1QY, UK
| | - Chao Cheng
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jia Wu
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Palo Alto, CA 94304, USA
| | - Jianjun Zhang
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinggang Wang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Xia
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hoang DT, Dinstag G, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, Dampier CH, Stossel C, Patil T, Rajan A, Lassoued W, Strauss J, Bailey S, Allen C, Redman J, Beker T, Jiang P, Golan T, Wilkinson S, Sowalsky AG, Pine SR, Caldas C, Gulley JL, Aldape K, Aharonov R, Stone EA, Ruppin E. Prediction of cancer treatment response from histopathology images through imputed transcriptomics. RESEARCH SQUARE 2023:rs.3.rs-3193270. [PMID: 37790315 PMCID: PMC10543028 DOI: 10.21203/rs.3.rs-3193270/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin (H&E)-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an approach for predicting response to multiple targeted and immunotherapies from H&E-slides. In difference from existing approaches that aim to predict treatment response directly from the slides, ENLIGHT-DeepPT is an indirect two-step approach consisting of (1) DeepPT, a new deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response based on the DeepPT inferred expression values. DeepPT successfully predicts transcriptomics in all 16 TCGA cohorts tested and generalizes well to two independent datasets. Our key contribution is showing that ENLIGHT-DeepPT successfully predicts true responders in five independent patients' cohorts involving four different treatments spanning six cancer types with an overall odds ratio of 2.44, increasing the baseline response rate by 43.47% among predicted responders, without the need for any treatment data for training. Furthermore, its prediction accuracy on these datasets is comparable to a supervised approach predicting the response directly from the images, which needs to be trained and tested on the same cohort. ENLIGHT-DeepPT future application could provide clinicians with rapid treatment recommendations to an array of different therapies and importantly, may contribute to advancing precision oncology in developing countries.
Collapse
Affiliation(s)
- Danh-Tai Hoang
- Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia
| | | | - Leandro C. Hermida
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Katherine Caley
- Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher H. Dampier
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Tejas Patil
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Arun Rajan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julius Strauss
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shania Bailey
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Clint Allen
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jason Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Peng Jiang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sharon R. Pine
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - James L. Gulley
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric A. Stone
- Biological Data Science Institute, College of Science, Australian National University, Canberra, ACT, Australia
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Meng X, Zou T. Clinical applications of graph neural networks in computational histopathology: A review. Comput Biol Med 2023; 164:107201. [PMID: 37517325 DOI: 10.1016/j.compbiomed.2023.107201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Pathological examination is the optimal approach for diagnosing cancer, and with the advancement of digital imaging technologies, it has spurred the emergence of computational histopathology. The objective of computational histopathology is to assist in clinical tasks through image processing and analysis techniques. In the early stages, the technique involved analyzing histopathology images by extracting mathematical features, but the performance of these models was unsatisfactory. With the development of artificial intelligence (AI) technologies, traditional machine learning methods were applied in this field. Although the performance of the models improved, there were issues such as poor model generalization and tedious manual feature extraction. Subsequently, the introduction of deep learning techniques effectively addressed these problems. However, models based on traditional convolutional architectures could not adequately capture the contextual information and deep biological features in histopathology images. Due to the special structure of graphs, they are highly suitable for feature extraction in tissue histopathology images and have achieved promising performance in numerous studies. In this article, we review existing graph-based methods in computational histopathology and propose a novel and more comprehensive graph construction approach. Additionally, we categorize the methods and techniques in computational histopathology according to different learning paradigms. We summarize the common clinical applications of graph-based methods in computational histopathology. Furthermore, we discuss the core concepts in this field and highlight the current challenges and future research directions.
Collapse
Affiliation(s)
- Xiangyan Meng
- Xi'an Technological University, Xi'an, Shaanxi, 710021, China.
| | - Tonghui Zou
- Xi'an Technological University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
16
|
Sauter D, Lodde G, Nensa F, Schadendorf D, Livingstone E, Kukuk M. Deep learning in computational dermatopathology of melanoma: A technical systematic literature review. Comput Biol Med 2023; 163:107083. [PMID: 37315382 DOI: 10.1016/j.compbiomed.2023.107083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
Deep learning (DL) has become one of the major approaches in computational dermatopathology, evidenced by a significant increase in this topic in the current literature. We aim to provide a structured and comprehensive overview of peer-reviewed publications on DL applied to dermatopathology focused on melanoma. In comparison to well-published DL methods on non-medical images (e.g., classification on ImageNet), this field of application comprises a specific set of challenges, such as staining artifacts, large gigapixel images, and various magnification levels. Thus, we are particularly interested in the pathology-specific technical state-of-the-art. We also aim to summarize the best performances achieved thus far with respect to accuracy, along with an overview of self-reported limitations. Accordingly, we conducted a systematic literature review of peer-reviewed journal and conference articles published between 2012 and 2022 in the databases ACM Digital Library, Embase, IEEE Xplore, PubMed, and Scopus, expanded by forward and backward searches to identify 495 potentially eligible studies. After screening for relevance and quality, a total of 54 studies were included. We qualitatively summarized and analyzed these studies from technical, problem-oriented, and task-oriented perspectives. Our findings suggest that the technical aspects of DL for histopathology in melanoma can be further improved. The DL methodology was adopted later in this field, and still lacks the wider adoption of DL methods already shown to be effective for other applications. We also discuss upcoming trends toward ImageNet-based feature extraction and larger models. While DL has achieved human-competitive accuracy in routine pathological tasks, its performance on advanced tasks is still inferior to wet-lab testing (for example). Finally, we discuss the challenges impeding the translation of DL methods to clinical practice and provide insight into future research directions.
Collapse
Affiliation(s)
- Daniel Sauter
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany.
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Felix Nensa
- Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | | | - Markus Kukuk
- Department of Computer Science, Fachhochschule Dortmund, 44227 Dortmund, Germany
| |
Collapse
|
17
|
Davri A, Birbas E, Kanavos T, Ntritsos G, Giannakeas N, Tzallas AT, Batistatou A. Deep Learning for Lung Cancer Diagnosis, Prognosis and Prediction Using Histological and Cytological Images: A Systematic Review. Cancers (Basel) 2023; 15:3981. [PMID: 37568797 PMCID: PMC10417369 DOI: 10.3390/cancers15153981] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the deadliest cancers worldwide, with a high incidence rate, especially in tobacco smokers. Lung cancer accurate diagnosis is based on distinct histological patterns combined with molecular data for personalized treatment. Precise lung cancer classification from a single H&E slide can be challenging for a pathologist, requiring most of the time additional histochemical and special immunohistochemical stains for the final pathology report. According to WHO, small biopsy and cytology specimens are the available materials for about 70% of lung cancer patients with advanced-stage unresectable disease. Thus, the limited available diagnostic material necessitates its optimal management and processing for the completion of diagnosis and predictive testing according to the published guidelines. During the new era of Digital Pathology, Deep Learning offers the potential for lung cancer interpretation to assist pathologists' routine practice. Herein, we systematically review the current Artificial Intelligence-based approaches using histological and cytological images of lung cancer. Most of the published literature centered on the distinction between lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung carcinoma, reflecting the realistic pathologist's routine. Furthermore, several studies developed algorithms for lung adenocarcinoma predominant architectural pattern determination, prognosis prediction, mutational status characterization, and PD-L1 expression status estimation.
Collapse
Affiliation(s)
- Athena Davri
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| | - Effrosyni Birbas
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.B.); (T.K.)
| | - Theofilos Kanavos
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.B.); (T.K.)
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Nikolaos Giannakeas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Alexandros T. Tzallas
- Department of Informatics and Telecommunications, University of Ioannina, 47100 Arta, Greece;
| | - Anna Batistatou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
18
|
Doeleman T, Hondelink LM, Vermeer MH, van Dijk MR, Schrader AMR. Artificial intelligence in digital pathology of cutaneous lymphomas: a review of the current state and future perspectives. Semin Cancer Biol 2023:S1044-579X(23)00095-0. [PMID: 37331571 DOI: 10.1016/j.semcancer.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Primary cutaneous lymphomas (CLs) represent a heterogeneous group of T-cell lymphomas and B-cell lymphomas that present in the skin without evidence of extracutaneous involvement at time of diagnosis. CLs are largely distinct from their systemic counterparts in clinical presentation, histopathology, and biological behavior and, therefore, require different therapeutic management. Additional diagnostic burden is added by the fact that several benign inflammatory dermatoses mimic CL subtypes, requiring clinicopathological correlation for definitive diagnosis. Due to the heterogeneity and rarity of CL, adjunct diagnostic tools are welcomed, especially by pathologists without expertise in this field or with limited access to a centralized specialist panel. The transition into digital pathology workflows enables artificial intelligence (AI)-based analysis of patients' whole-slide pathology images (WSIs). AI can be used to automate manual processes in histopathology but, more importantly, can be applied to complex diagnostic tasks, especially suitable for rare disease like CL. To date, AI-based applications for CL have been minimally explored in literature. However, in other skin cancers and systemic lymphomas, disciplines that are recognized here as the building blocks for CLs, several studies demonstrated promising results using AI for disease diagnosis and subclassification, cancer detection, specimen triaging, and outcome prediction. Additionally, AI allows discovery of novel biomarkers or may help to quantify established biomarkers. This review summarizes and blends applications of AI in pathology of skin cancer and lymphoma and proposes how these findings can be applied to diagnostics of CL.
Collapse
Affiliation(s)
- Thom Doeleman
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Liesbeth M Hondelink
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marijke R van Dijk
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M R Schrader
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
19
|
Wen Z, Wang S, Yang DM, Xie Y, Chen M, Bishop J, Xiao G. Deep learning in digital pathology for personalized treatment plans of cancer patients. Semin Diagn Pathol 2023; 40:109-119. [PMID: 36890029 DOI: 10.1053/j.semdp.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
20
|
Ghaffari Laleh N, Ligero M, Perez-Lopez R, Kather JN. Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer. Clin Cancer Res 2023; 29:316-323. [PMID: 36083132 DOI: 10.1158/1078-0432.ccr-22-0390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023]
Abstract
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
Collapse
Affiliation(s)
| | - Marta Ligero
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom.,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
21
|
Xie J, Luo X, Deng X, Tang Y, Tian W, Cheng H, Zhang J, Zou Y, Guo Z, Xie X. Advances in artificial intelligence to predict cancer immunotherapy efficacy. Front Immunol 2023; 13:1076883. [PMID: 36685496 PMCID: PMC9845588 DOI: 10.3389/fimmu.2022.1076883] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor immunotherapy, particularly the use of immune checkpoint inhibitors, has yielded impressive clinical benefits. Therefore, it is critical to accurately screen individuals for immunotherapy sensitivity and forecast its efficacy. With the application of artificial intelligence (AI) in the medical field in recent years, an increasing number of studies have indicated that the efficacy of immunotherapy can be better anticipated with the help of AI technology to reach precision medicine. This article focuses on the current prediction models based on information from histopathological slides, imaging-omics, genomics, and proteomics, and reviews their research progress and applications. Furthermore, we also discuss the existing challenges encountered by AI in the field of immunotherapy, as well as the future directions that need to be improved, to provide a point of reference for the early implementation of AI-assisted diagnosis and treatment systems in the future.
Collapse
Affiliation(s)
- Jindong Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiyuan Luo
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinpei Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhui Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenwen Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Cheng
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junsheng Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yutian Zou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,*Correspondence: Xiaoming Xie, ; Zhixing Guo, ; Yutian Zou,
| | - Zhixing Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,*Correspondence: Xiaoming Xie, ; Zhixing Guo, ; Yutian Zou,
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China,*Correspondence: Xiaoming Xie, ; Zhixing Guo, ; Yutian Zou,
| |
Collapse
|
22
|
Diagnostic and Prognostic Deep Learning Applications for Histological Assessment of Cutaneous Melanoma. Cancers (Basel) 2022; 14:cancers14246231. [PMID: 36551716 PMCID: PMC9776963 DOI: 10.3390/cancers14246231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is among the most devastating human malignancies. Accurate diagnosis and prognosis are essential to offer optimal treatment. Histopathology is the gold standard for establishing melanoma diagnosis and prognostic features. However, discrepancies often exist between pathologists, and analysis is costly and time-consuming. Deep-learning algorithms are deployed to improve melanoma diagnosis and prognostication from histological images of melanoma. In recent years, the development of these machine-learning tools has accelerated, and machine learning is poised to become a clinical tool to aid melanoma histology. Nevertheless, a review of the advances in machine learning in melanoma histology was lacking. We performed a comprehensive literature search to provide a complete overview of the recent advances in machine learning in the assessment of melanoma based on hematoxylin eosin digital pathology images. In our work, we review 37 recent publications, compare the methods and performance of the reviewed studies, and highlight the variety of promising machine-learning applications in melanoma histology.
Collapse
|
23
|
Artificial intelligence for prediction of response to cancer immunotherapy. Semin Cancer Biol 2022; 87:137-147. [PMID: 36372326 DOI: 10.1016/j.semcancer.2022.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Artificial intelligence (AI) indicates the application of machines to imitate intelligent behaviors for solving complex tasks with minimal human intervention, including machine learning and deep learning. The use of AI in medicine improves health-care systems in multiple areas such as diagnostic confirmation, risk stratification, analysis, prognosis prediction, treatment surveillance, and virtual health support, which has considerable potential to revolutionize and reshape medicine. In terms of immunotherapy, AI has been applied to unlock underlying immune signatures to associate with responses to immunotherapy indirectly as well as predict responses to immunotherapy responses directly. The AI-based analysis of high-throughput sequences and medical images can provide useful information for management of cancer immunotherapy considering the excellent abilities in selecting appropriate subjects, improving therapeutic regimens, and predicting individualized prognosis. In present review, we aim to evaluate a broad framework about AI-based computational approaches for prediction of response to cancer immunotherapy on both indirect and direct manners. Furthermore, we summarize our perspectives about challenges and opportunities of further AI applications on cancer immunotherapy relating to clinical practicability.
Collapse
|
24
|
Comes MC, Fucci L, Mele F, Bove S, Cristofaro C, De Risi I, Fanizzi A, Milella M, Strippoli S, Zito A, Guida M, Massafra R. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients. Sci Rep 2022; 12:20366. [PMID: 36437296 PMCID: PMC9701687 DOI: 10.1038/s41598-022-24315-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
The application of deep learning on whole-slide histological images (WSIs) can reveal insights for clinical and basic tumor science investigations. Finding quantitative imaging biomarkers from WSIs directly for the prediction of disease-free survival (DFS) in stage I-III melanoma patients is crucial to optimize patient management. In this study, we designed a deep learning-based model with the aim of learning prognostic biomarkers from WSIs to predict 1-year DFS in cutaneous melanoma patients. First, WSIs referred to a cohort of 43 patients (31 DF cases, 12 non-DF cases) from the Clinical Proteomic Tumor Analysis Consortium Cutaneous Melanoma (CPTAC-CM) public database were firstly annotated by our expert pathologists and then automatically split into crops, which were later employed to train and validate the proposed model using a fivefold cross-validation scheme for 5 rounds. Then, the model was further validated on WSIs related to an independent test, i.e. a validation cohort of 11 melanoma patients (8 DF cases, 3 non-DF cases), whose data were collected from Istituto Tumori 'Giovanni Paolo II' in Bari, Italy. The quantitative imaging biomarkers extracted by the proposed model showed prognostic power, achieving a median AUC value of 69.5% and a median accuracy of 72.7% on the public cohort of patients. These results remained comparable on the validation cohort of patients with an AUC value of 66.7% and an accuracy value of 72.7%, respectively. This work is contributing to the recently undertaken investigation on how treat features extracted from raw WSIs to fulfil prognostic tasks involving melanoma patients. The promising results make this study as a valuable basis for future research investigation on wider cohorts of patients referred to our Institute.
Collapse
Affiliation(s)
- Maria Colomba Comes
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Livia Fucci
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Fabio Mele
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Samantha Bove
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Cristian Cristofaro
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Ivana De Risi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Annarita Fanizzi
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Martina Milella
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Sabino Strippoli
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Alfredo Zito
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Michele Guida
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Raffaella Massafra
- I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
25
|
Dolezal JM, Srisuwananukorn A, Karpeyev D, Ramesh S, Kochanny S, Cody B, Mansfield AS, Rakshit S, Bansal R, Bois MC, Bungum AO, Schulte JJ, Vokes EE, Garassino MC, Husain AN, Pearson AT. Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology. Nat Commun 2022; 13:6572. [PMID: 36323656 PMCID: PMC9630455 DOI: 10.1038/s41467-022-34025-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
A model's ability to express its own predictive uncertainty is an essential attribute for maintaining clinical user confidence as computational biomarkers are deployed into real-world medical settings. In the domain of cancer digital histopathology, we describe a clinically-oriented approach to uncertainty quantification for whole-slide images, estimating uncertainty using dropout and calculating thresholds on training data to establish cutoffs for low- and high-confidence predictions. We train models to identify lung adenocarcinoma vs. squamous cell carcinoma and show that high-confidence predictions outperform predictions without uncertainty, in both cross-validation and testing on two large external datasets spanning multiple institutions. Our testing strategy closely approximates real-world application, with predictions generated on unsupervised, unannotated slides using predetermined thresholds. Furthermore, we show that uncertainty thresholding remains reliable in the setting of domain shift, with accurate high-confidence predictions of adenocarcinoma vs. squamous cell carcinoma for out-of-distribution, non-lung cancer cohorts.
Collapse
Affiliation(s)
- James M Dolezal
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | | | | | - Siddhi Ramesh
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Sara Kochanny
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Brittany Cody
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | - Sagar Rakshit
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Radhika Bansal
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aaron O Bungum
- Divisions of Pulmonary Medicine and Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin at Madison, Madison, WN, USA
| | - Everett E Vokes
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Marina Chiara Garassino
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, USA.
| |
Collapse
|
26
|
Lee SH, Jang HJ. Deep learning-based prediction of molecular cancer biomarkers from tissue slides: A new tool for precision oncology. Clin Mol Hepatol 2022; 28:754-772. [PMID: 35443570 PMCID: PMC9597228 DOI: 10.3350/cmh.2021.0394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular tests are necessary to stratify cancer patients for targeted therapy. However, high cost and technical barriers limit the application of these tests, hindering optimal treatment. Recently, deep learning (DL) has been applied to predict molecular test results from digitized images of tissue slides. Furthermore, treatment response and prognosis can be predicted from tissue slides using DL. In this review, we summarized DL-based studies regarding the prediction of genetic mutation, microsatellite instability, tumor mutational burden, molecular subtypes, gene expression, treatment response, and prognosis directly from hematoxylin- and eosin-stained tissue slides. Although performance needs to be improved, these studies clearly demonstrated the feasibility of DL-based prediction of key molecular features in cancer tissues. With the accumulation of data and technical advances, the performance of the DL system could be improved in the near future. Therefore, we expect that DL could provide cost- and time-effective alternative tools for patient stratification in the era of precision oncology.
Collapse
Affiliation(s)
- Sung Hak Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun-Jong Jang
- Catholic Big Data Integration Center, Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea,Corresponding author : Hyun-Jong Jang Department of Physiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-7274, Fax: +82-2-532-9575, E-mail:
| |
Collapse
|
27
|
Dercle L, McGale J, Sun S, Marabelle A, Yeh R, Deutsch E, Mokrane FZ, Farwell M, Ammari S, Schoder H, Zhao B, Schwartz LH. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-005292. [PMID: 36180071 PMCID: PMC9528623 DOI: 10.1136/jitc-2022-005292] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 11/04/2022] Open
Abstract
Immunotherapy offers the potential for durable clinical benefit but calls into question the association between tumor size and outcome that currently forms the basis for imaging-guided treatment. Artificial intelligence (AI) and radiomics allow for discovery of novel patterns in medical images that can increase radiology’s role in management of patients with cancer, although methodological issues in the literature limit its clinical application. Using keywords related to immunotherapy and radiomics, we performed a literature review of MEDLINE, CENTRAL, and Embase from database inception through February 2022. We removed all duplicates, non-English language reports, abstracts, reviews, editorials, perspectives, case reports, book chapters, and non-relevant studies. From the remaining articles, the following information was extracted: publication information, sample size, primary tumor site, imaging modality, primary and secondary study objectives, data collection strategy (retrospective vs prospective, single center vs multicenter), radiomic signature validation strategy, signature performance, and metrics for calculation of a Radiomics Quality Score (RQS). We identified 351 studies, of which 87 were unique reports relevant to our research question. The median (IQR) of cohort sizes was 101 (57–180). Primary stated goals for radiomics model development were prognostication (n=29, 33.3%), treatment response prediction (n=24, 27.6%), and characterization of tumor phenotype (n=14, 16.1%) or immune environment (n=13, 14.9%). Most studies were retrospective (n=75, 86.2%) and recruited patients from a single center (n=57, 65.5%). For studies with available information on model testing, most (n=54, 65.9%) used a validation set or better. Performance metrics were generally highest for radiomics signatures predicting treatment response or tumor phenotype, as opposed to immune environment and overall prognosis. Out of a possible maximum of 36 points, the median (IQR) of RQS was 12 (10–16). While a rapidly increasing number of promising results offer proof of concept that AI and radiomics could drive precision medicine approaches for a wide range of indications, standardizing the data collection as well as optimizing the methodological quality and rigor are necessary before these results can be translated into clinical practice.
Collapse
Affiliation(s)
- Laurent Dercle
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Jeremy McGale
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Shawn Sun
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Aurelien Marabelle
- Therapeutic Innovation and Early Trials, Gustave Roussy, Villejuif, Île-de-France, France
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Deutsch
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France
| | | | - Michael Farwell
- Division of Nuclear Medicine and Molecular Imaging, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samy Ammari
- Radiation Oncology, Gustave Roussy, Villejuif, Île-de-France, France.,Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Heiko Schoder
- Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Binsheng Zhao
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| | - Lawrence H Schwartz
- Radiology, NewYork-Presbyterian/Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Wang X, Barrera C, Bera K, Viswanathan VS, Azarianpour-Esfahani S, Koyuncu C, Velu P, Feldman MD, Yang M, Fu P, Schalper KA, Mahdi H, Lu C, Velcheti V, Madabhushi A. Spatial interplay patterns of cancer nuclei and tumor-infiltrating lymphocytes (TILs) predict clinical benefit for immune checkpoint inhibitors. SCIENCE ADVANCES 2022; 8:eabn3966. [PMID: 35648850 PMCID: PMC9159577 DOI: 10.1126/sciadv.abn3966] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/14/2022] [Indexed: 05/02/2023]
Abstract
Immune checkpoint inhibitors (ICIs) show prominent clinical activity across multiple advanced tumors. However, less than half of patients respond even after molecule-based selection. Thus, improved biomarkers are required. In this study, we use an image analysis to capture morphologic attributes relating to the spatial interaction and architecture of tumor cells and tumor-infiltrating lymphocytes (TILs) from digitized H&E images. We evaluate the association of image features with progression-free (PFS) and overall survival in non-small cell lung cancer (NSCLC) (N = 187) and gynecological cancer (N = 39) patients treated with ICIs. We demonstrated that the classifier trained with NSCLC alone was associated with PFS in independent NSCLC cohorts and also in gynecological cancer. The classifier was also associated with clinical outcome independent of clinical factors. Moreover, the classifier was associated with PFS even with low PD-L1 expression. These findings suggest that image analysis can be used to predict clinical end points in patients receiving ICI.
Collapse
Affiliation(s)
- Xiangxue Wang
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Cristian Barrera
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Vidya Sankar Viswanathan
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Sepideh Azarianpour-Esfahani
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Can Koyuncu
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Priya Velu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Michael D. Feldman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kurt A. Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Haider Mahdi
- Magee-Womens Hospital and Magee-Womens Research Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cheng Lu
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
| | - Vamsidhar Velcheti
- Department of Hematology and Oncology, NYU Langone Health, New York, NY, USA
| | - Anant Madabhushi
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| |
Collapse
|
29
|
Multi-Omics Approaches for the Prediction of Clinical Endpoints after Immunotherapy in Non-Small Cell Lung Cancer: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061237. [PMID: 35740259 PMCID: PMC9219996 DOI: 10.3390/biomedicines10061237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized the management of locally advanced and advanced non-small lung cancer (NSCLC). With an improvement in the overall survival (OS) as both first- and second-line treatments, ICIs, and especially programmed-death 1 (PD-1) and programmed-death ligands 1 (PD-L1), changed the landscape of thoracic oncology. The PD-L1 level of expression is commonly accepted as the most used biomarker, with both prognostic and predictive values. However, even in a low expression level of PD-L1, response rates remain significant while a significant number of patients will experience hyperprogression or adverse events. The dentification of such subtypes is thus of paramount importance. While several studies focused mainly on the prediction of the PD-L1 expression status, others aimed directly at the development of prediction/prognostic models. The response to ICIs depends on a complex physiopathological cascade, intricating multiple mechanisms from the molecular to the macroscopic level. With the high-throughput extraction of features, omics approaches aim for the most comprehensive assessment of each patient. In this article, we will review the place of the different biomarkers (clinical, biological, genomics, transcriptomics, proteomics and radiomics), their clinical implementation and discuss the most recent trends projecting on the future steps in prediction modeling in NSCLC patients treated with ICI.
Collapse
|
30
|
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Front Oncol 2022; 12:773840. [PMID: 35251962 PMCID: PMC8891653 DOI: 10.3389/fonc.2022.773840] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).
Collapse
Affiliation(s)
- Xingping Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Yanchun Zhang
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, China
| | - Xiaoxia Yin
- Institute of Advanced Cyberspace Technology, Guangzhou University, Guangzhou, China
| | - Liefa Liao
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| |
Collapse
|
31
|
Stiff KM, Franklin MJ, Zhou Y, Madabhushi A, Knackstedt TJ. Artificial Intelligence and Melanoma: A Comprehensive Review of Clinical, Dermoscopic, and Histologic Applications. Pigment Cell Melanoma Res 2022; 35:203-211. [PMID: 35038383 DOI: 10.1111/pcmr.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/24/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022]
Abstract
Melanoma detection, prognosis, and treatment represent challenging and complex areas of cutaneous oncology with considerable impact on patient outcomes and healthcare economics. Artificial intelligence (AI) applications in these tasks are rapidly developing. Neural networks with increasing levels of sophistication are being implemented in clinical image, dermoscopic image, and histopathologic specimen classification of pigmented lesions. These efforts hold promise of earlier and highly accurate melanoma detection, as well as reliable prognostication and prediction of therapeutic response. Herein, we provide a brief introduction to AI, discuss contemporary investigational applications of AI in melanoma, and summarize challenges encountered with AI.
Collapse
Affiliation(s)
| | | | - Yufei Zhou
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Thomas J Knackstedt
- Department of Dermatology, MetroHealth System, Cleveland.,School of Medicine, Case Western Reserve University, Cleveland
| |
Collapse
|
32
|
Domblides C, Rochefort J, Riffard C, Panouillot M, Lescaille G, Teillaud JL, Mateo V, Dieu-Nosjean MC. Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Front Immunol 2021; 12:698604. [PMID: 34276690 PMCID: PMC8279885 DOI: 10.3389/fimmu.2021.698604] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem almost unique to each patient. Most of available therapies target tumor cells according to their molecular characteristics, angiogenesis or immune cells involved in tumor immune-surveillance. Unfortunately, only a limited number of patients benefit in the long-term of these treatments that are often associated with relapses, in spite of the remarkable progress obtained with the advent of immune checkpoint inhibitors (ICP). The presence of “hot” tumors is a determining parameter for selecting therapies targeting the patient immunity, even though some of them still do not respond to treatment. In human studies, an in-depth analysis of the organization and interactions of tumor-infiltrating immune cells has revealed the presence of an ectopic lymphoid organization termed tertiary lymphoid structures (TLS) in a large number of tumors. Their marked similarity to secondary lymphoid organs has suggested that TLS are an “anti-tumor school” and an “antibody factory” to fight malignant cells. They are effectively associated with long-term survival in most solid tumors, and their presence has been recently shown to predict response to ICP inhibitors. This review discusses the relationship between TLS and the molecular characteristics of tumors and the presence of oncogenic viruses, as well as their role when targeted therapies are used. Also, we present some aspects of TLS biology in non-tumor inflammatory diseases and discuss the putative common characteristics that they share with tumor-associated TLS. A detailed overview of the different pre-clinical models available to investigate TLS function and neogenesis is also presented. Finally, new approaches aimed at a better understanding of the role and function of TLS such as the use of spheroids and organoids and of artificial intelligence algorithms, are also discussed. In conclusion, increasing our knowledge on TLS will undoubtedly improve prognostic prediction and treatment selection in cancer patients with key consequences for the next generation immunotherapy.
Collapse
Affiliation(s)
- Charlotte Domblides
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Juliette Rochefort
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Clémence Riffard
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marylou Panouillot
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Géraldine Lescaille
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Jean-Luc Teillaud
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Véronique Mateo
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| |
Collapse
|