1
|
Tang HY, Cao YZ, Zhou YW, Ma YS, Jiang H, Zhang H, Jiang L, Yang QX, Tang XM, Yang C, Liu XY, Liu FX, Liu JB, Fu D, Wang YF, Yu H. The power and the promise of CAR-mediated cell immunotherapy for clinical application in pancreatic cancer. J Adv Res 2025; 67:253-267. [PMID: 38244773 DOI: 10.1016/j.jare.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/24/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Pancreatic cancer, referred to as the "monarch of malignancies," is a neoplastic growth mostly arising from the epithelial cells of the pancreatic duct and acinar cells. This particular neoplasm has a highly unfavorable prognosis due to its marked malignancy, inconspicuous initial manifestation, challenging early detection, rapid advancement, and limited survival duration. Cellular immunotherapy is the ex vivo culture and expansion of immune effector cells, granting them the capacity to selectively target malignant cells using specialized techniques. Subsequently, these modified cells are reintroduced into the patient's organism with the purpose of eradicating tumor cells and providing therapeutic intervention for cancer. PRESENT SITUATION Presently, the primary cellular therapeutic modalities employed in the treatment of pancreatic cancer encompass CAR T-cell therapy, TCR T-cell therapy, NK-cell therapy, and CAR NK-cell therapy. AIM OF REVIEW This review provides a concise overview of the mechanisms and primary targets associated with various cell therapies. Additionally, we will explore the prospective outlook of cell therapy in the context of treating pancreatic cancer.
Collapse
Affiliation(s)
- Hao-Yu Tang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Zhi Cao
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yi-Wei Zhou
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, Shanghai, China
| | - Hong Jiang
- Department of Thoracic Surgery, The 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, Shanghai, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China
| | - Lin Jiang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Xiao-Mei Tang
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Fu-Xing Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China.
| | - Da Fu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong 226631, Jiangsu, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai 201299, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, Jiangsu, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, Jiangsu, China.
| |
Collapse
|
2
|
Huang J, Peng H, Yang D. Research advances in protein lysine 2-hydroxyisobutyrylation: From mechanistic regulation to disease relevance. J Cell Physiol 2024; 239:e31435. [PMID: 39351825 DOI: 10.1002/jcp.31435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 12/18/2024]
Abstract
Histone lysine 2-hydroxyisobutyrylation (Khib) was identified as a novel posttranslational modification in 2014. Significant progress has been made in understanding its roles in reproduction, development, and disease. Although 2-hydroxyisobutyrylation shares some overlapping modification sites and regulatory factors with other lysine residue modifications, its unique structure suggests distinct functions. This review summarizes the latest advancements in Khib, including its regulatory mechanisms, roles in mammalian physiological processes, and its relationship with diseases. This provides direction for further research on Khib and offers new perspectives for developing treatment strategies for related diseases.
Collapse
Affiliation(s)
- Jinglei Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, People's Republic of China
| |
Collapse
|
3
|
Bhamidipati P, Nagaraju GP, Malla R. Immunoglobulin-binding protein and Toll-like receptors in immune landscape of breast cancer. Life Sci 2024; 358:123196. [PMID: 39481836 DOI: 10.1016/j.lfs.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Breast cancer (BC) is a complex disease exhibiting significant heterogeneity and encompassing various molecular subtypes. Among these, triple-negative breast cancer (TNBC) stands out as one of the most challenging types, characterized by its aggressive nature and poor prognosis. This review embarks on a comprehensive exploration of the immune landscape of BC, with a primary focus on the functional and structural characterization of immunoglobulin-binding protein (BiP) and its pivotal role in regulating the unfolded response (UPR) pathway of proteins. Moreover, we unravel the multifaceted functions of BiP in BC, with a special emphasis on the involvement of cell surface BiP in TNBC metastasis, drug resistance, and its contribution to the formation of the tumor microenvironment (TME). We also provide mechanistic insights into how ER-resident BiP mediates the sensitization of drug-resistant BC to different treatment strategies, thereby offering promising avenues for therapeutic intervention. We also delve into the role of Toll-like receptors (TLRs), shedding light on their diverse expression patterns across BC and their influence on modulating the tumor immune response. Understanding the interplay between BiP, TLRs, and the immune response, especially in TNBC, opens avenues for novel immunotherapies. Future research should focus on developing targeted therapies that activate ER-resident BiP or inhibit cell surface BiP, and modulate TLR signaling. Moreover, exploring BiP as a biomarker for TNBC diagnosis, prognosis, and treatment response will be crucial for personalized medicine.
Collapse
Affiliation(s)
- Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - RamaRao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh 530045, India.
| |
Collapse
|
4
|
Zeng X, Zhang H, Guo J, Yang D, Zhu Y, Liu N, Tang J, Liu T, Zhao X. A novel bispecific T-cell engager using the ligand-target csGRP78 against acute myeloid leukemia. Cell Mol Life Sci 2024; 81:371. [PMID: 39196413 PMCID: PMC11358366 DOI: 10.1007/s00018-024-05410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Current medical therapies for treating acute myeloid leukemia (AML) remain unmet, and AML patients may benefit from targeted immunotherapy approaches that focus on specific tumor antigens. GRP78, which is upregulated in various malignant tumors such as AML, is partially expressed as cell surface GRP78 (csGRP78) on the cell membrane, making it an ideal target for redirecting T cells, including T-cell engagers. However, considering the conventional approach of using two scFv segments to construct a bispecific T-cell engager (BiTE), we have undertaken the development of a novel BiTE that utilizes a cyclic peptide ligand to specifically target csGRP78, which we refer to as GRP78-CD3/BiTE. We studied the effects of GRP78-CD3/BiTE on treatments for AML in vitro and in vivo and assessed the pharmacokinetics of this engager. Our findings demonstrated that GRP78-CD3/BiTE could not only effectively mediate the cytotoxicity of T cells against csGRP78-expressing AML cells but also specifically eliminate primary AML tumor cells in vitro. Furthermore, GRP78-CD3/BiTE exhibited a longer half-life despite having a lower molecular weight than CD19-CD3/BiTE. In a xenograft mouse model of AML, treatment with GRP78-CD3/BiTE prolonged the survival time of the mice. Our findings demonstrate that GRP78-CD3/BiTE is effective and selective for eliminating csGRP78-expressing AML cells and suggest that this approach to targeted immunotherapy could lead to effective new treatments for AML.
Collapse
MESH Headings
- Endoplasmic Reticulum Chaperone BiP
- Humans
- Animals
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- CD3 Complex/immunology
- Heat-Shock Proteins/immunology
- Heat-Shock Proteins/metabolism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ligands
- Female
- Mice, SCID
- Immunotherapy/methods
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Xiaozhu Zeng
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Guo
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nan Liu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Hu B, Liu G, Zhao K, Zhang G. Diversity of extracellular HSP70 in cancer: advancing from a molecular biomarker to a novel therapeutic target. Front Oncol 2024; 14:1388999. [PMID: 38646439 PMCID: PMC11026673 DOI: 10.3389/fonc.2024.1388999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 70 (HSP70) is a highly conserved protein functioning as a "molecular chaperone", which is integral to protein folding and maturation. In addition to its high expression within cells upon stressful challenges, HSP70 can be translocated to the cell membrane or released from cells in free form or within extracellular vesicles (EVs). Such trafficking of HSP70 is also present in cancer cells, as HSP70 is overexpressed in various types of patient samples across a range of common malignancies, signifying that extracellular HSP70 (eHSP70) can serve as a tumor biomarker. eHSP70 is involved in a broad range of cancer-related events, including cell proliferation and apoptosis, extracellular matrix (ECM) remodeling, epithelial-mesenchymal transition (EMT), angiogenesis, and immune response. eHSP70 can also induce cancer cell resistance to various treatments, such as chemotherapy, radiotherapy, and anti-programmed death-1 (PD-1) immunotherapy. Though the role of eHSP70 in tumors is contradictory, characterized by both pro-tumor and anti-tumor effects, eHSP70 serves as a promising target in cancer treatment. In this review, we comprehensively summarized the current knowledge about the role of eHSP70 in cancer progression and treatment resistance and discussed the feasibility of eHSP70 as a cancer biomarker and therapeutic target.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guihong Liu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu, Sichuan, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Wang Y, Wang J, Liu Y, Wang X, Ren M. Multidimensional pan-cancer analysis of HSPA5 and its validation in the prognostic value of bladder cancer. Heliyon 2024; 10:e27184. [PMID: 38496902 PMCID: PMC10944199 DOI: 10.1016/j.heliyon.2024.e27184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Endoplasmic reticulum (ER) stress-related genes are closely related to the occurrence, development, and immunotherapy response of tumors. This study provides a comprehensive assessment of HSPA5 from a pan-cancer perspective using multi-omics data. We analyzed the function of HSPA5 in multiple tumor types using multiple databases. Finally, immunohistochemistry was used to examine the relationship between HSPA5 expression in tissue microarrays from 100 patients with bladder cancer and the prognosis of patients with bladder cancer. Using the TCGA database, we were able to determine that HSPA5 is significantly elevated in a number of common malignancies and is linked with a bad prognosis. Cox regression analysis showed that the high expression of HSPA5 was correlated with OS, progression free survival (PFS), disease free survival (DFS), and disease special survival (DSS) of adrenocortical carcinoma (ACC). In addition, we discovered significant disparities in HSPA5 methylation and phosphorylation levels between various malignancies and normal tissues. HSPA5 expression was significantly correlated with the levels of infiltrating cells and immune checkpoint genes. HSPA5 is highly expressed in bladder cancer and patients with high HSPA5 expression have a poor prognosis. Our study provides a basis for further understanding of the role of ER stress-related gene HSPA5 in different tumor genesis and development. HSPA5 has also been shown to be a prognostic biomarker for bladder cancer patients.
Collapse
Affiliation(s)
- YaXuan Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jinfeng Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yang Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - XiaoLin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, 226361, China
| | - MingHua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
8
|
Zhong G, Zhang X, Guo Z, Gao Y, Zhao B, Liu X, Chen L, Qiao J, Yu C, Wang L, Li Y, Yu L. Complete remission of advanced pancreatic cancer induced by claudin18.2-targeted CAR-T cell therapy: a case report. Front Immunol 2024; 15:1325860. [PMID: 38487523 PMCID: PMC10937427 DOI: 10.3389/fimmu.2024.1325860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most malignant tumors in digestive system due to its highly invasive and metastatic properties. At present, conventional treatment strategies for PC show the limited clinical efficacy. Therefore, novel effective therapeutic strategies are urgently needed. Here, we report a case of complete remission of advanced PC induced by claudin18.2-targeted CAR-T cell therapy. The patient was a 72-year-old man who was diagnosed with pancreatic ductal adenocarcinoma 2 years ago, and he experienced tumor recurrence and multiple metastases after pancreaticoduodenectomy and multi-line chemotherapies, including liver, peritoneum, and cervical lymph node metastases. Then, the patient was referred to our department for further treatment of metastatic PC, and he was enrolled in a clinical trial of claudin18.2-targeted CAR-T cell therapy. After lymphodepleting chemotherapy, the patient received claudin18.2-targeted CAR-T cell infusion at a dose of 1.2 × 106 cells/kg on November 21, 2022. During CAR-T cell therapy, the patient experienced grade 2 cytokine release syndrome (CRS) and gastric mucosa injury, which were controlled by tocilizumab and conventional symptomatic and supportive treatment. The patient achieved a complete response (CR) 1 month after claudin18.2-targeted CAR-T cell therapy, and remained in clinical remission for 8 months. Unfortunately, the patient experienced claudin18.2-negative relapse in July, 2023. Despite antigen-negative relapse after claudin18.2-targeted CAR-T cell infusion, the patient achieved sustained remission for 8 months, which indicates that claudin18.2-targeted CAR-T cell therapy is an extremely effective therapeutic strategy for the treatment of advanced PC.
Collapse
Affiliation(s)
- Guocheng Zhong
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomin Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Zheng Guo
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yujie Gao
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Bochen Zhao
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Xianhao Liu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Lei Chen
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Jingqiao Qiao
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Chuan Yu
- R&D Department, Shenzhen Haoshi Biotechnology Co., Ltd, Shenzhen, China
- Biomedical Laboratory, Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China
| | - Lixin Wang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yisheng Li
- R&D Department, Shenzhen Haoshi Biotechnology Co., Ltd, Shenzhen, China
- Biomedical Laboratory, Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- Biomedical Laboratory, Shenzhen University-Haoshi Cell Therapy Institute, Shenzhen, China
| |
Collapse
|
9
|
Wang S, Wei W, Yuan Y, Guo J, Liang D, Zhao X. Cell-Surface GRP78-Targeted Chimeric Antigen Receptor T Cells Eliminate Lung Cancer Tumor Xenografts. Int J Mol Sci 2024; 25:564. [PMID: 38203736 PMCID: PMC10779323 DOI: 10.3390/ijms25010564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is one of the most common and intractable malignancies. It is associated with low survival rates despite existing treatments, indicating that new and more effective therapies are urgently needed such as the chimeric antigen receptor-T (CAR-T) cell immunotherapy. The cell-surface glucose-regulated protein 78 (csGRP78) is expressed in various hematological malignancies and solid tumor cells including lung cancer in response to cancer-related endoplasmic reticulum stress, while GRP78 is restricted to inside the normal cells. Here, we detected the prominent expression of csGRP78 in both lung cancer cell lines, A549 and H1299, as well as cancer stemlike cells derived from A549 by immunofluorescence. Next, a csGRP78-targeted CAR was constructed, and the transduced CAR-T cells were tested for their potency to kill the two lung cancer cell lines and derived stemlike cells, which was correlated with specific interferon γ release in vitro. Finally, we found that csGRP78 CAR-T cells also efficiently killed both lung cancer cells and cancer stemlike cells, resulting into the elimination of tumor xenografts in vivo, neither with any evidence of relapse after 63 days of tumor clearance nor any detrimental impact on other body organs we examined. Our study reveals the capacity of csGRP78 as a therapeutic target and offers valuable insight into the development of csGRP78 CAR-T cells as potential therapy for lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.W.); (Y.Y.); (J.G.); (D.L.)
| |
Collapse
|