1
|
Sequeda-Castañeda LG, Suárez-Carvajal LF, Téllez-Corral MA, Gutiérrez-Prieto SJ, Méndez-Pinzón HA. Evaluation of Ilex guayusa and Piper marginatum Extract Cytotoxicity on Human Dental Pulp Mesenchymal Stem Cells. Dent J (Basel) 2024; 12:189. [PMID: 38920890 PMCID: PMC11202831 DOI: 10.3390/dj12060189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Amelogenesis imperfecta is a hereditary disorder affecting dental enamel. Among its phenotypes, hypocalcified AI is characterized by mineral deficiency, leading to tissue wear and, consequently, dental sensitivity. Excessive fluoride intake (through drinking water, fluoride supplements, toothpaste, or by ingesting products such as pesticides or insecticides) can lead to a condition known as dental fluorosis, which manifests as stains and teeth discoloration affecting their structure. Our recent studies have shown that extracts from Colombian native plants, Ilex guayusa and Piper marginatum, deposit mineral ions such as phosphate and orthophosphate into the dental enamel structure; however, it is unknown whether these extracts produce toxic effects on the dental pulp. OBJECTIVE To assess cytotoxicity effects on human dental pulp stem cells (hDPSCs) exposed to extracts isolated from I. guayusa and P. marginatum and, hence, their safety for clinical use. METHODS Raman spectroscopy, fluorescence microscopy, and flow cytometry techniques were employed. For Raman spectroscopy, hDPSCs were seeded onto nanobiochips designed to provide surface-enhanced Raman spectroscopy (SERS effect), which enhances their Raman signal by several orders of magnitude. After eight days in culture, I. guayusa and P. marginatum extracts at different concentrations (10, 50, and 100 ppm) were added. Raman measurements were performed at 0, 12, and 24 h following extract application. Fluorescence microscopy was conducted using an OLIMPUS fv1000 microscope, a live-dead assay was performed using a kit employing a BD FACS Canto TM II flow cytometer, and data analysis was determined using a FlowJo program. RESULTS The Raman spectroscopy results showed spectra consistent with viable cells. These findings were corroborated using fluorescence microscopy and flow cytometry techniques, confirming high cellular viability. CONCLUSIONS The analyzed extracts exhibited low cytotoxicity, suggesting that they could be safely applied on enamel for remineralization purposes. The use of nanobiochips for SERS effect improved the cell viability assessment.
Collapse
Affiliation(s)
- Luis G. Sequeda-Castañeda
- Department of Chemistry, School of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Luisa F. Suárez-Carvajal
- Oral Rehabilitation, School of Dentistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | | | | | - Henry A. Méndez-Pinzón
- Department of Physics, School of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
2
|
Wu Y, Sun J, Wang W, Wang Y, Friedrich RE. How to make full use of dental pulp stem cells: an optimized cell culture method based on explant technology. Front Bioeng Biotechnol 2024; 12:1324049. [PMID: 38562666 PMCID: PMC10982513 DOI: 10.3389/fbioe.2024.1324049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Dental pulp stem cells from humans possess self-renewal and versatile differentiation abilities. These cells, known as DPSC, are promising for tissue engineering due to their outstanding biological characteristics and ease of access without significant donor site trauma. Existing methods for isolating DPSC mainly include enzyme digestion and explant techniques. Compared with the enzymatic digestion technique, the outgrowth method is less prone to cell damage and loss during the operation, which is essential for DPSC with fewer tissue sources. Methods In order to maximize the amount of stem cells harvested while reducing the cost of DPSC culture, the feasibility of the optimized explant technique was evaluated in this experiment. Cell morphology, minimum cell emergence time, the total amount of cells harvested, cell survival, and proliferative and differentiation capacity of DPSC obtained with different numbers of explant attachments (A1-A5) were evaluated. Results There was a reduction in the survival rate of the cells in groups A2-A5, and the amount of harvested DPSC decreased in A3-A5 groups, but the DPSC harvested in groups A1-A4 had similar proliferative and differentiation abilities. However, starting from group A5, the survival rate, proliferation and differentiation ability of DPSC decreased significantly, and the adipogenic trend of the cells became more apparent, indicating that the cells had begun to enter the senescence state. Discussion The results of our study demonstrated that the DPSC obtained by the optimized explant method up to 4 times had reliable biological properties and is available for tissue engineering.
Collapse
Affiliation(s)
- You Wu
- Department of Stomatology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wang Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yao Wang
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Deng W, Jo JI, Morikuni H, Sasayama S, Hashimoto Y, Matsumoto N, Honda Y. Senescence-associated secretory phenotypes in rat-derived dedifferentiated fat cells with replicative senescence. Dent Mater J 2023. [PMID: 36775334 DOI: 10.4012/dmj.2022-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Senescence-associated secretory phenotype (SASPs) secreted from senescent cells often cause the deleterious damages to the surrounding tissues. Although dedifferentiated fat (DFAT) cells prepared are considered a promising cell source for regenerative therapies, SASPs from DFAT cells undergoing long-term cell culture, which latently induce replicative senescence, have barely been explored. The present study was designed to investigate senescent behaviors in rat-derived DFAT cells at high passage numbers and to analyze the possible types of SASPs. Our data show that DFAT cells undergo senescence during replicative passaging, as determined by multiple senescent hallmarks including morphological changes in cell shape and nucleus. Moreover, RT2 PCR array analysis indicated that senescent DFAT cells expressed higher levels of 16 inflammatory cytokines (Ccl11, Ccl12, Ccl21, Ccl5, Csf2, Cxcl1, Cxcl12, Ifna2, IL11, IL12a, IL13, IL1a, IL1rn, IL6, Mif, and Tnf) associated with SASPs than non-senescent cells. This study implicates that rat DFAT cells undergo cellular senescence after long-term cell culture; cautious consideration should be paid to treat SASP secretion when senescent DFAT cells are used in regenerative medicine.
Collapse
Affiliation(s)
- Wenqi Deng
- Department of Orthodontics, Osaka Dental University
| | | | | | | | | | | | | |
Collapse
|
4
|
Kwack KH, Lee HW. Clinical Potential of Dental Pulp Stem Cells in Pulp Regeneration: Current Endodontic Progress and Future Perspectives. Front Cell Dev Biol 2022; 10:857066. [PMID: 35478967 PMCID: PMC9035692 DOI: 10.3389/fcell.2022.857066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Dental caries is a common disease that not only destroys the rigid structure of the teeth but also causes pulp necrosis in severe cases. Once pulp necrosis has occurred, the most common treatment is to remove the damaged pulp tissue, leading to a loss of tooth vitality and increased tooth fragility. Dental pulp stem cells (DPSCs) isolated from pulp tissue exhibit mesenchymal stem cell-like characteristics and are considered ideal candidates for regenerating damaged dental pulp tissue owing to their multipotency, high proliferation rate, and viability after cryopreservation. Importantly, DPSCs do not elicit an allogeneic immune response because they are non-immunogenic and exhibit potent immunosuppressive properties. Here, we provide an up-to-date review of the clinical applicability and potential of DPSCs, as well as emerging trends in the regeneration of damaged pulp tissue. In addition, we suggest the possibility of using DPSCs as a resource for allogeneic transplantation and provide a perspective for their clinical application in pulp regeneration.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
- *Correspondence: Hyeon-Woo Lee,
| |
Collapse
|
5
|
Liu D, Bobrovskaya L, Zhou XF. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. BIOLOGY 2021; 10:1142. [PMID: 34827135 PMCID: PMC8614777 DOI: 10.3390/biology10111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. However, none of the studies has led to a promising therapy for patients with neurological disorders, despite the ongoing and completed clinical trials. There are many factors that may affect the outcome of cell therapy for neurological disorders due to the complexity of the nervous system, especially cell types for transplantation and the specific disease for treatment. This paper provides a review of the various cell types from humans that may be clinically used for neurological disorders, based on their characteristics and current progress in related studies.
Collapse
Affiliation(s)
| | | | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; (D.L.); (L.B.)
| |
Collapse
|
6
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
7
|
Fageeh HN. Preliminary Evaluation of Proliferation, Wound Healing Properties, Osteogenic and Chondrogenic Potential of Dental Pulp Stem Cells Obtained from Healthy and Periodontitis Affected Teeth. Cells 2021; 10:cells10082118. [PMID: 34440887 PMCID: PMC8393753 DOI: 10.3390/cells10082118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Dental pulp tissue within the central cavity of the tooth is composed of dental pulp stem cells (DPSC). These mesenchymal stem cells have good proliferative as well as differentiation potential. DPSC has been isolated even from teeth with inflamed pulps and is found to retain their proliferative and differentiation potential. Little research is available about the viability and differentiation potential of DPSC obtained from teeth with periodontitis. In the present study, the aim was to compare the morphological features, stem cell marker (MSC) expression, proliferation rate, migratory and wound healing properties, osteogenic and chondrogenic differentiation potential of DPSCs obtained from periodontally healthy teeth (hDPSCs) and periodontitis affected teeth (pDPSCs). Methods: Dental pulp tissue was obtained from periodontally healthy volunteers (n = 3) and patients with periodontitis undergoing extraction of mobile teeth (n = 3). DPSC were isolated using the explant technique and cultured. All the experiments were performed at early passage (Passage 2), late passage (Passage 6) and after cryopreservation. Morphological features of the hDPSCs and pDPSCs were ascertained using microscopy. The expression of cell surface stem cell markers was assessed by the flow cytometry method. The proliferation and growth rate of the cells were assayed by plotting a growth curve from 0–13 days of culture. The migratory characteristics were assessed by wound scratch assay. Osteogenic and chondrogenic differentiation of the cells was assessed using standard protocols with and without induction. Results: DPSCs were successfully obtained from periodontally healthy teeth (hDPSC) and periodontitis-affected teeth (pDPSCs). The data suggests that there were no morphological differences observed in early passage cells between the two cohorts. Cryopreservation did change the morphology of pDSPCs. There was no significant difference in the positive expression of mesenchymal markers CD73, CD90 and CD105 in early passage cells. However, serial passaging and cryopreservation affected the marker expression in pDPSCs. A faint expression of hematopoietic stem cell markers CD34, CD45 and MHC class II antigen HLA-DR was observed in both the cell types. The expression of HLA-DR is upregulated in pDPSCs compared to hDPSC. A significantly slower growth rate and slower wound healing properties was observed in pDPSCs compared to hDPSC. In late passage and after cryopreservation, the migratory ability of pDPSCs was found to be increased drastically. There was no significant difference in osteogenic potential between the two cell types. However, the chondrogenic potential of pDPSCs was significantly lower compared to hDPSc. Yet, pDPSCs showed enhanced osteogenesis and chondrogenesis at late passage as well as after cryopreservation. Conclusion: The results of this novel study shed light on the isolation of viable DPSC from periodontitis-affected teeth. These cells exhibit a slower growth rate and migratory characteristics compared to their healthy counterparts. There was no difference in osteogenic potential but a reduction in chondrogenic potential was seen in pDPSCs compared to hDPSC. The findings reveal that DPSC from periodontitis-affected teeth presents an easy and viable option for regenerative medicine application. Some additional nutritive factors and protocols may be required to attain better regenerative benefits while using pDPSCs.
Collapse
Affiliation(s)
- Hytham N Fageeh
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Khaseb S, Orooji M, Pour MG, Safavi SM, Eghbal MJ, Rezai Rad M. Dental stem cell banking: Techniques and protocols. Cell Biol Int 2021; 45:1851-1865. [PMID: 33979004 DOI: 10.1002/cbin.11626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Dental tissue-derived stem cells (DSCs) provide an easy, accessible, relatively noninvasive promising source of adult stem cells (ASCs), which brought encouraging prospective for their clinical applications. DSCs provide a perfect opportunity to apply for a patient's own ASC, which poses a low risk of immune rejection. However, problems associated with the long-term culture of stem cells, including loss of proliferation and differentiation capacities, senescence, genetic instability, and the possibility of microbial contamination, make cell banking necessary. With the rapid development of advanced cryopreservation technology, various international DSC banks have been established for both research and clinical applications around the world. However, few studies have been published that provide step-by-step guidance on DSCs isolation and banking methods. The purpose of this review is to present protocols and technical details for all steps of cryopreserved DSCs, from donor selection, isolation, cryopreservation, to characterization and quality control. Here, the emphasis is on presenting practical principles in accordance with the available valid guidelines.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mahdi Orooji
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Ghasemian Pour
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammadreza Safavi
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sasaki R, Watanabe Y, Yamato M, Okamoto T. Tissue-engineered nerve guides with mesenchymal stem cells in the facial nerve regeneration. Neurochem Int 2021; 148:105062. [PMID: 34004239 DOI: 10.1016/j.neuint.2021.105062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022]
Abstract
Nerve guides with mesenchymal stem cells have been investigated in the rat facial nerve defect model to promote peripheral nerve regeneration and shorten recovery time to improve patients' quality of life. A 7-mm facial nerve gap experimental rat model is frequently employed in facial nerve regeneration studies. Facial nerve regeneration with nerve guides is evaluated by (1) assessing myelinated fiber counts using toluidine blue staining, (2) immunohistological analysis, (3) determining the g-ratio (axon diameter/total outer diameter) of regenerated nerve on transmission electron microscopic images, (4) retrograde nerve tracing in the facial nucleus, (5) electrophysiological evaluations using compound muscle action potential, and (6) functional evaluations using rat facial palsy scores. Dental pulp and adipose-derived stem cells, easily harvested using a minimally invasive procedure, possess characteristics of mesenchymal tissue lineages and can differentiate into Schwann-like cells. Cultured dental pulp-derived cells can produce neurotrophic factors, including nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. These neurotrophic factors promote peripheral nerve regeneration and afford protection against facial motor neuron death. Moreover, artificial nerve guides can maneuver axonal regrowth, and dental pulp-derived cells and adipose-derived Schwann cells may supply neurotrophic factors, promoting axonal regeneration. In the present review, the authors discuss facial nerve regeneration using nerve guides with mesenchymal stem cells.
Collapse
Affiliation(s)
- Ryo Sasaki
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yorikatsu Watanabe
- Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshihiro Okamoto
- Department of Oral and Maxillofacial Surgery, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Paes SM, Pupo YM, Cavenago BC, Fonseca-Silva T, Santos CCDO. Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review. Restor Dent Endod 2021; 46:e26. [PMID: 34123762 PMCID: PMC8170376 DOI: 10.5395/rde.2021.46.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022] Open
Abstract
Objectives The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.
Collapse
Affiliation(s)
- Sabrina Moreira Paes
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | - Yasmine Mendes Pupo
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil
| | | | - Thiago Fonseca-Silva
- Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| | - Carolina Carvalho de Oliveira Santos
- Department of Restorative Dentistry, Universidade Federal do Paraná, Curitiba/PR, Brazil.,Department of Dentistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina/MG, Brazil
| |
Collapse
|
11
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
12
|
Assessment of a PCL-3D Printing-Dental Pulp Stem Cells Triplet for Bone Engineering: An In Vitro Study. Polymers (Basel) 2021; 13:polym13071154. [PMID: 33916576 PMCID: PMC8038447 DOI: 10.3390/polym13071154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022] Open
Abstract
The search of suitable combinations of stem cells, biomaterials and scaffolds manufacturing methods have become a major focus of research for bone engineering. The aim of this study was to test the potential of dental pulp stem cells to attach, proliferate, mineralize and differentiate on 3D printed polycaprolactone (PCL) scaffolds. A 100% pure Mw: 84,500 ± 1000 PCL was selected. 5 × 10 × 5 mm3 parallelepiped scaffolds were designed as a wood-pilled structure composed of 20 layers of 250 μm in height, in a non-alternate order ([0,0,0,90,90,90°]). 3D printing was made at 170 °C. Swine dental pulp stem cells (DPSCs) were extracted from lower lateral incisors of swine and cultivated until the cells reached 80% confluence. The third passage was used for seeding on the scaffolds. Phenotype of cells was determined by flow Cytometry. Live and dead, Alamar blue™, von Kossa and alizarin red staining assays were performed. Scaffolds with 290 + 30 μm strand diameter, 938 ± 80 μm pores in the axial direction and 689 ± 13 μm pores in the lateral direction were manufactured. Together, cell viability tests, von Kossa and Alizarin red staining indicate the ability of the printed scaffolds to support DPSCs attachment, proliferation and enable differentiation followed by mineralization. The selected material-processing technique-cell line (PCL-3D printing-DPSCs) triplet can be though to be used for further modelling and preclinical experiments in bone engineering studies.
Collapse
|
13
|
Cryopreservation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Yoshida S, Tomokiyo A, Hasegawa D, Hamano S, Sugii H, Maeda H. Insight into the Role of Dental Pulp Stem Cells in Regenerative Therapy. BIOLOGY 2020; 9:biology9070160. [PMID: 32659896 PMCID: PMC7407391 DOI: 10.3390/biology9070160] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Shinichiro Yoshida
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Correspondence: ; Tel.: +81-92-642-6432
| | - Atsushi Tomokiyo
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Daigaku Hasegawa
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Sayuri Hamano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sugii
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (A.T.); (D.H.); (H.S.); (H.M.)
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Zeitlin BD. Banking on teeth - Stem cells and the dental office. Biomed J 2020; 43:124-133. [PMID: 32381462 PMCID: PMC7283549 DOI: 10.1016/j.bj.2020.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022] Open
Abstract
Science and commerce advance together and the stem cell field is no exception. With the promise of cures for conditions as diverse as cancer, autism, neural degeneration, organ replacement and addiction, long-term preservation of dental stem cells is a growth market. The discovery nearly twenty years ago, of viable, multipotent, stem cells in dental pulp from both baby and adult teeth initiated, and drives, this market.The dental stem cell preservation services, "tooth banks", focus on the collection of a child's baby teeth, as they are shed naturally, and storage of the stem cells from within the pulp for therapeutic use in later years should the child require them. This review focuses on the procedures related to these stem cell storage services and may serve as an introduction for many to the practice of "tooth banking".
Collapse
Affiliation(s)
- Benjamin D Zeitlin
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, USA.
| |
Collapse
|
16
|
Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Soltani A, Hashemzadeh-Chaleshtori M, Jami MS. Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci 2019; 130:107-116. [PMID: 31599165 DOI: 10.1080/00207454.2019.1664518] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and objectives: With regard to their ease of harvest and common developmental origin, dental pulp stem cells (DPSCs) may act as a favorable source of stem cells in generation of nerves. Moreover; cellular migration and differentiation as well as survival, self-renewal, and proliferation of neuroprogenitor species require the presence of the central nervous system (CNS) mitogens including EGF and bFGF. Accordingly, the possibility of the induction of neuronal differentiation of DPSCs by EGF and bFGF was evaluated in the present study.Materials and methods: DPSCs were treated with 20 ng/ml EGF, 20 ng/ml bFGF, and 10 µg/ml heparin. In order to further induce the neuroprogenitor differentiation, DPSC-derived spheres were also incubated in serum-free media for three days. The resulting spheres were then cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS. The morphology of the cells and the expression of the differentiation markers were correspondingly analyzed by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescence (IF).Results: The EGF/bFGF-treated DPSCs showed significant increase in the expression of the neuroprogenitor markers of Nestin and SRY (sex determining region Y)-box 2 (SOX2), 72 h after treatment. The up-regulation of Nestin and SOX2 induced by growth factors was confirmed using western blotting and IF. The cultures also yielded some neuron-like cells with a significant rise in Nestin, microtubule-associated protein 2 (MAP2), and Neurogenin 1 (Ngn1) transcript levels; compared with cells maintained in the control media (p < 0.05).Conclusion: DPSCs seemed to potentially differentiate into neuron-like cells under the herein-mentioned treatment conditions.
Collapse
Affiliation(s)
- Fatemeh Rafiee
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Pilbauerová N, Suchánek J. Cryopreservation of Dental Stem Cells. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018; 61:1-7. [PMID: 30012243 DOI: 10.14712/18059694.2018.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nowadays, regenerative and reparative medicine has grown in popularity. Dental stem cells are easily accessible source of adult stem cells. They can be harvested by a tooth extraction or spontaneous deciduous tooth exfoliation. They have to be isolated, expanded and stored until time they would be needed for individual stem cell therapy. Cryopreservation is both a short-term and long-term storage of tissues or cells at sub-zero temperatures. There are several methods of cryopreservation requiring different technologies. The objective of this review is to compare them and highlight their advantages and disadvantages.
Collapse
Affiliation(s)
- Nela Pilbauerová
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic.
| | - Jakub Suchánek
- Department of Dentistry, Charles University, Faculty of Medicine in Hradec Králové, and University Hospital, Hradec Králové, Czech Republic
| |
Collapse
|
18
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018; 13:207-218. [PMID: 29553875 DOI: 10.2217/rme-2017-0112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
19
|
Cristaldi M, Mauceri R, Tomasello L, Pizzo G, Pizzolanti G, Giordano C, Campisi G. Dental pulp stem cells for bone tissue engineering: a review of the current literature and a look to the future. Regen Med 2018. [DOI: 10.2217/rme-2017-0112 10.2217/rme-2017-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aim of this narrative review is to investigate the implication of mesenchymal stem cells harvested from human dental pulp in in vivo bone tissue regeneration. We focused on studies related to roles of human dental pulp stem cells in in vivo bone regeneration. A total of 1021 studies were identified; after the assessment of eligibility, only 39 studies were included in the review. The evaluated information of the studies regards the experimental strategies (e.g., the isolation method, the scaffold, the in vivo animal models). The overall main evidences highlighted from the analysis are that dental pulp stem cells and human-exfoliated deciduous teeth stem cells supported by a suitable scaffold should be considered a valuable source for bone tissue regeneration.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Laura Tomasello
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzo
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal & Specialist Medicine (DIBIMIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology & Metabolism, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological & Oral Sciences, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| |
Collapse
|
20
|
Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20:479-498. [PMID: 29449086 DOI: 10.1016/j.jcyt.2017.12.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
The field of tissue engineering is emerging as a multidisciplinary area with promising potential for regenerating new tissues and organs. This approach requires the involvement of three essential components: stem cells, scaffolds and growth factors. To date, dental pulp stem cells have received special attention because they represent a readily accessible source of stem cells. Their high plasticity and multipotential capacity to differentiate into a large array of tissues can be explained by its neural crest origin, which supports applications beyond the scope of oral tissues. Many isolation, culture and cryopreservation protocols have been proposed that are known to affect cell phenotype, proliferation rate and differentiation capacity. The clinical applications of therapies based on dental pulp stem cells demand the development of new biomaterials suitable for regenerative purposes that can act as scaffolds to handle, carry and implant stem cells into patients. Currently, the development of xeno-free culture media is emerging as a means of standardization to improve safe and reproducibility. The present review aims to describe the current knowledge of dental pulp stem cells, considering in depth the key aspects related to the characterization, establishment, maintenance and cryopreservation of primary cultures and their involvement in the multilineage differentiation potential. The main clinical applications for these stem cells and their combination with several biomaterials is also covered.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology UIRMI, UPV/EHU-Fundación Eduardo Anitua, Vitoria, Spain
| |
Collapse
|
21
|
Huynh NCN, Le SH, Doan VN, Ngo LTQ, Tran HLB. Simplified conditions for storing and cryopreservation of dental pulp stem cells. Arch Oral Biol 2017; 84:74-81. [PMID: 28957734 DOI: 10.1016/j.archoralbio.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study aimed to simplify the collection, isolation and cryopreservation procedure of human dental pulp stem cells (DPSCs) to ease the establishment of dental stem cell banking. DESIGN Extracted third molars were collected and stored either in growth medium or in gentamicin-saline (480μg/ml) for 6, 9 or 12h. DPSCs were isolated and subjected to cryopreservation by a controlled-rate or rapid freezing method in 5 or 10% DMSO. Flow cytometry and growth pattern of DPSCs before and after cryopreservation were conducted. RESULTS Rate of contamination by which the extracted teeth were stored in control and gentamicin-saline were 9.1% (N=33) and 2.3% (N=43), respectively. Successful cell isolation rate of teeth preserved in gentamicin-saline at 6h (92.9%) was comparable to those of growth media group (90.3%). At 9 and 12h, the rates dropped significantly to 75% and 54%, respectively. Cryopreservation by controlled-rate freezing either in 5 or 10% DMSO resulted in a significantly higher percentage of viable cells than by rapid freezing. Cells conserved by controlled-rate freezing in 5% DMSO showed a pattern of growth similar to control unfrozen cells; 10% DMSO significantly deteriorated the growth pattern of the cells. After thawing, DPSCs conserved by controlled-rate freezing still expressed stemness characteristics, although hematopoietic stem cell markers were slightly increased. CONCLUSION Gentamicin-saline was effective in preserving human teeth for DPSC isolation. Controlled-rate freezing in 5% DMSO gave the highest rate of cell viability. This study simplifies the storage conditions and proposes a simple method for cryopreservation of DPSCs.
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam
| | - Son Hoang Le
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam
| | - Vu Nguyen Doan
- Department of Physiology and Animal Biotechnology, Laboratory of Tissue Engineering and Biomedical Materials, Faculty of Biology - Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Lan Thi Quynh Ngo
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam
| | - Ha Le Bao Tran
- Department of Physiology and Animal Biotechnology, Laboratory of Tissue Engineering and Biomedical Materials, Faculty of Biology - Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Conde MCM, Chisini LA, Grazioli G, Francia A, Carvalho RVD, Alcázar JCB, Tarquinio SBC, Demarco FF. Does Cryopreservation Affect the Biological Properties of Stem Cells from Dental Tissues? A Systematic Review. Braz Dent J 2017; 27:633-640. [PMID: 27982171 DOI: 10.1590/0103-6440201600980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/12/2016] [Indexed: 01/09/2023] Open
Abstract
This systematic review evaluated if different cryopreservation protocols could affect biological properties (Cell survival rate (CSR), proliferation, differentiation, maintenance of stem cell markers) of stem cells obtained from dental tissues (DSC) post-thaw. An electronic search was carried out within PubMed and ISI Web Science by using specific keyword. Two independent reviewers read the titles and abstracts of all reports respecting predetermined inclusion/exclusion criteria. Data were extracted considering the biological properties of previously cryopreserved DSCs and previously cryopreserved dental tissues. DSCs cryopreserved as soon as possible after their isolation presents a CSR quite similar to the non-cryopreserved DSC. Dimethyl sulfoxide (DMSO) [10%] showed good results related to cell recovery post-thaw to cryopreserve cells and tissues for periods of up to 2 years. The cryopreservation of DSC in a mechanical freezer (-80°C) allows the recovery of stem cells post-thaw. The facilities producing magnetic field (MF), demand a lower concentration of cryoprotectant, but their use is not dispensable. It is possible to isolate and cryopreserve dental pulp stem cell (DPSC) from healthy and diseased vital teeth. Cryopreservation of dental tissues for late DSC isolation, combined with MF dispensability, could be valuable to reduce costs and improve the logistics to develop teeth banks.
Collapse
Affiliation(s)
| | - Luiz Alexandre Chisini
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Guillermo Grazioli
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Alejandro Francia
- School of Dentistry, University of the Republic, Montevideo, Uruguay
| | | | - Jose Carlos Bernedo Alcázar
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Science and Material Engineering, Federal University of Pelotas, Pelotas, Brazil
| | - Sandra Beatriz Chavez Tarquinio
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Brazil
| | - Flávio Fernando Demarco
- Post-Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post-Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
23
|
Rodas-Junco BA, Villicaña C. Dental Pulp Stem Cells: Current Advances in Isolation, Expansion and Preservation. Tissue Eng Regen Med 2017; 14:333-347. [PMID: 30603490 DOI: 10.1007/s13770-017-0036-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells with high self-renewal potential that have the ability to differentiate into several cell types. Thus, DPSCs have become a promising source of cells for several applications in regenerative medicine, tissue engineering, and stem cell therapy. Numerous methods have been reported for the isolation, expansion, and preservation of DPSCs. However, methods are diverse and do not follow specific rules or parameters, which can affect stem cell properties, adding more variation to experimental results. In this review, we compare and analyze current experimental evidence to propose some factors that can be useful to establish better methods or improved protocols to prolong the quality of DPSCs. In addition, we highlight other factors related to biological aspects of dental tissue source (e.g., age, genetic background) that should be considered before tooth selection. Although current methods have reached significant advances, optimization is still required to improve culture stability and its maintenance for an extended period without losing stem cell properties. In addition, there is still much that needs to be done toward clinical application due to the fact that most of DPSCs procedures are not currently following good manufacturing practices. The establishment of optimized general or tailored protocols will allow obtaining well-defined DPSCs cultures with specific properties, which enable more reproducible results that will be the basis to develop effective and safe therapies.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| | - Claudia Villicaña
- CONACYT - Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán (UADY), Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615 Chuburná de Hidalgo Inn, CP 97203 Mérida, Yucatán México
| |
Collapse
|
24
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
25
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
26
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Malekfar A, Valli KS, Kanafi MM, Bhonde RR. Isolation and Characterization of Human Dental Pulp Stem Cells from Cryopreserved Pulp Tissues Obtained from Teeth with Irreversible Pulpitis. J Endod 2015; 42:76-81. [PMID: 26577871 DOI: 10.1016/j.joen.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Human dental pulp stem cells (DPSCs) are becoming an attractive target for therapeutic purposes because of their neural crest origin and propensity. Although DPSCs can be successfully cryopreserved, there are hardly any reports on cryopreservation of dental pulp tissues obtained from teeth diagnosed with symptomatic irreversible pulpitis during endodontic treatment and isolation and characterization of DPSCs from such cryopreserved pulp. The aim of this study was to cryopreserve the said pulp tissues to propagate and characterize isolated DPSCs. METHODS A medium consisting of 90% fetal bovine serum and 10% dimethyl sulfoxide was used for cryopreservation of pulp tissues. DPSCs were isolated from fresh and cryopreserved pulp tissues using an enzymatic method. Cell viability and proliferation were determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. DPSC migration and interaction were analyzed with the wound healing assay. Mesenchymal characteristics of DPSCs were verified by flow cytometric analysis of cell surface CD markers. The osteogenic and adipogenic potential of DPSCs was shown by von Kossa and oil red O staining methods, respectively, and the polymerase chain reaction method. RESULT We found no significant difference in CD marker expression and osteogenic and adipogenic differentiation potential of DPSCs obtained from fresh and cryopreserved dental pulp tissue. CONCLUSIONS Our study shows that dental pulp can be successfully cryopreserved without losing normal characteristics and differentiation potential of their DPSCs, thus making them suitable for dental banking and future therapeutic purposes.
Collapse
Affiliation(s)
- Azin Malekfar
- Department of Conservative Dentistry and Endodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bangalore, India
| | - Kusum S Valli
- Department of Conservative Dentistry and Endodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bangalore, India
| | | | - Ramesh R Bhonde
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India.
| |
Collapse
|
28
|
Lee HS, Jeon M, Jeon MJ, Kim SO, Kim SH, Lee JH, Lee JH, Ahn SJ, Shin Y, Song JS. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71:374-83. [PMID: 26506257 DOI: 10.1016/j.cryobiol.2015.10.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023]
Abstract
The aim of this study is to compare the characteristics of stem cells derived from human exfoliated deciduous teeth (SHED) from cryopreserved intact deciduous teeth with those of fresh SHED. In total, 20 exfoliated deciduous teeth were randomly divided into a fresh group (f-SHED; n = 11) and cryopreserved group (c-SHED; n = 9; stored for 1-8 months). Following thawing and separation of the pulp, the SHED cells were cultured, and the characteristics as mesenchymal stem cells were investigated using proliferation assays, cell-cycle analysis, colony-forming unit-fibroblast (CFU-F) assays, and flow cytometry analyses. Furthermore, differentiation into adipogenic and osteogenic lineages was investigated in vitro as well as in vivo via transplantation in mice. We found no significant differences between the two groups in the proliferation analyses, in the expression of mesenchymal stem cell markers, or in the adipogenic and osteogenic differentiation in vitro (p < 0.05). Furthermore, the in vivo transplantation results showed no significant differences in the quantity of bone tissue that formed or in histochemistry performance (p < 0.05). In conclusion, cryopreservation of intact exfoliated deciduous teeth appears to be a useful method for preserving SHED.
Collapse
Affiliation(s)
- Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | - Mi Jung Jeon
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seong-Oh Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Seung-Hye Kim
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | | | - Jea-Ho Lee
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Su-Jin Ahn
- Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Yooseok Shin
- Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, College of Dentistry, Yonsei University, Seoul, South Korea.
| |
Collapse
|
29
|
Potdar PD, Jethmalani YD. Human dental pulp stem cells: Applications in future regenerative medicine. World J Stem Cells 2015; 7:839-851. [PMID: 26131314 PMCID: PMC4478630 DOI: 10.4252/wjsc.v7.i5.839] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/09/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine.
Collapse
|
30
|
Electrophysiologic and functional evaluations of regenerated facial nerve defects with a tube containing dental pulp cells in rats. Plast Reconstr Surg 2015; 134:970-978. [PMID: 25347632 DOI: 10.1097/prs.0000000000000602] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Dental pulp tissue contains Schwann and neural progenitor cells. Tissue-engineered nerve conduits with dental pulp cells promote facial nerve regeneration in rats. However, no nerve functional or electrophysiologic evaluations were performed. This study investigated the compound muscle action potential recordings and facial functional analysis of dental pulp cell regenerated nerve in rats. METHODS A silicone tube containing rat dental pulp cells in type I collagen gel was transplanted into a 7-mm gap of the buccal branch of the facial nerve in Lewis rats; the same defect was created in the marginal mandibular branch, which was ligatured. Compound muscle action potential recordings of vibrissal muscles and facial functional analysis with facial palsy score of the nerve were performed. RESULTS Tubulation with dental pulp cells showed significantly lower facial palsy scores than the autograft group between 3 and 10 weeks postoperatively. However, the dental pulp cell facial palsy scores showed no significant difference from those of autograft after 11 weeks. Amplitude and duration of compound muscle action potentials in the dental pulp cell group showed no significant difference from those of the intact and autograft groups, and there was no significant difference in the latency of compound muscle action potentials between the groups at 13 weeks postoperatively. However, the latency in the dental pulp cell group was prolonged more than that of the intact group. CONCLUSION Tubulation with dental pulp cells could recover facial nerve defects functionally and electrophysiologically, and the recovery became comparable to that of nerve autografting in rats.
Collapse
|
31
|
Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL. Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 2015; 4:276-85. [PMID: 25713466 PMCID: PMC4339846 DOI: 10.5966/sctm.2014-0115] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue-engineered, corneal stromal-like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness.
Collapse
Affiliation(s)
- Fatima N Syed-Picard
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiqin Du
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Kira L Lathrop
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Mary M Mann
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - Martha L Funderburgh
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| | - James L Funderburgh
- Departments of Ophthalmology and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Kumar A, Bhattacharyya S, Rattan V. Effect of uncontrolled freezing on biological characteristics of human dental pulp stem cells. Cell Tissue Bank 2015; 16:513-22. [PMID: 25663639 DOI: 10.1007/s10561-015-9498-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023]
Abstract
Human dental pulp stem cells (hDPSCs) hold great promise as a source of adult stem cells for utilization in regenerative medicine. Successful storage and post thaw recovery of DPSCs without loss of function is a key issue for future clinical application. Most of the cryopreservation methods use controlled rate freezing and vapor phase nitrogen to store stem cells. But these methods are both expensive and laborious. In this study, we isolated DPSCs from a patient undergoing impacted mandibular third molar extraction. We adopted eight different methods of cryopreservation at -80 °C for long term storage of the DPSC aliquots. Various parameters like proliferation, cell death, cell cycle, retention of stemness markers and differentiation potential were studied post cryopreservation period of 1 year. We observed successful recovery of stem cells in every method and a significant difference in proliferation potential and cell death between samples stored by different methods. However, post thaw, all cells retained their stemness markers. All DPSCs stored by different methods were able to differentiate into osteoblast like cells, adipocytes and neural cells. Based on these parameters we concluded that uncontrolled freezing at a temperature of -80 °C is as effective as controlled freezing using ethanol vessels and other cryopreservation methods. To the best of our knowledge, our study provides the first proof of concept that long term storage in uncontrolled freezing of cells at -80 °C in 10 % DMSO does not affect the revival capacity of hDPSCs. This implies that DPSCs may be used successfully for tissue engineering and cell based therapeutics even after long term, uncontrolled cryopreservation.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biophysics, PGIMER, Chandigarh, 160012, India
| | | | - Vidya Rattan
- Unit of Oral and Maxillofacial Surgery, Oral Health Science Centre, PGIMER, Chandigarh, India
| |
Collapse
|
33
|
Park BW, Jang SJ, Byun JH, Kang YH, Choi MJ, Park WU, Lee WJ, Rho GJ. Cryopreservation of human dental follicle tissue for use as a resource of autologous mesenchymal stem cells. J Tissue Eng Regen Med 2014; 11:489-500. [PMID: 25052907 DOI: 10.1002/term.1945] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 01/06/2023]
Abstract
The main purpose of this study was to develop a cryopreservation method for human dental follicle tissue to maintain autologous stem cells as a resource. A modified cryoprotectant, consisting of 0.05 m glucose, 0.05 m sucrose and 1.5 m ethylene glycol in phosphate-buffered saline (PBS) was employed, with a slow-ramp freezing rate. We observed > 70% of cell survival rate after 3 months of tissue storage. Isolated and cultured human dental stem cells (hDSCs) from cryopreserved dental follicles expressed mesenchymal stem cell markers at a level similar to that of hDSCs from fresh tissue. They also successfully differentiated in vitro into the mesenchymal lineage, osteocytes, adipocytes and chondrocytes under specific inductions. Using immunohistochemistry, the early transcription factors OCT4, NANOG and SOX2 were moderately or weakly detected in the nucleus of both fresh and cryopreserved dental follicles. In addition, p63, CCND1, BCL2 and BAX protein expression levels were the same in both fresh and cryopreserved tissues. However, the positive-cell ratio and intensity of p53 protein was higher in cryopreserved tissues than in fresh tissues, indicating direct damage of the freeze-thawing process. Real-time PCR analysis of hDSCs at passage 2 from both fresh and cryopreserved dental follicles showed similar levels of mRNA for apoptosis- and transcription-related genes. Based on these results, a newly developed cryoprotectant, along with a slow ramp rate freezing procedure allows for long-term dental tissue preservation for later use as an autologous stem cell resource in regenerative cell therapy. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Mun-Jeong Choi
- Department of Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Uk Park
- Department of Ceramic Engineering, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Jae Lee
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- OBS/Theriogenology and Biotechnology, Gyeongsang National University, Jinju, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
34
|
Kabir R, Gupta M, Aggarwal A, Sharma D, Sarin A, Kola MZ. Imperative role of dental pulp stem cells in regenerative therapies: a systematic review. Niger J Surg 2014; 20:1-8. [PMID: 24665194 PMCID: PMC3953626 DOI: 10.4103/1117-6806.127092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cells are primitive cells that can differentiate and regenerate organs in different parts of the body such as heart, bones, muscles and nervous system. This has been a field of great clinical interest with immense possibilities of using the stem cells in regeneration of human organ those are damaged due to disease, developmental defects and accident. The knowledge of stem cell technology is increasing quickly in all medical specialties and in dental field too. Stem cells of dental origin appears to hold the key to various cell-based therapies in regenerative medicine, but most avenues are in experimental stages and many procedures are undergoing standardization and validation. Long-term preservation of SHED cells or DPSC is becoming a popular consideration, similar to the banking of umbilical cord blood. Dental pulp stem cells (DPSCs) are the adult multipotent cells that reside in the cell rich zone of the dental pulp. The multipotent nature of these DPSCs may be utilized in both dental and medical applications. A systematic review of the literature was performed using various internet based search engines (PubMed, Medline Plus, Cochrane, Medknow, Ebsco, Science Direct, Hinari, WebMD, IndMed, Embase) using keywords like “dental pulp stem cells”, “regeneration”, “medical applications”, “tissue engineering”. DPSCs appears to be a promising innovation for the re-growth of tissues however, long term clinical studies need to be carried out that could establish some authentic guidelines in this perspective.
Collapse
Affiliation(s)
- Ramchandra Kabir
- Department of Conservative Dentistry and Endodontics, Seema Dental College and Hospital, Rishikesh, India
| | - Manish Gupta
- Department of Oral Medicine and Radiology, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - Avanti Aggarwal
- Department of Oral Medicine and Radiology, Rajasthan Dental College, Jaipur, Rajasthan, India
| | - Deepak Sharma
- Department of Conservative Dentistry and Endodontics, College of Dental Science and Hospital, Rau, Indore, Madhya Pradesh, India
| | - Anurag Sarin
- Department of Conservative Dentistry, Shree Bankey Bihari Dental College and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - Mohammed Zaheer Kola
- Department of Prosthodontics, College of Dentistry, Salman bin Abdulaziz University, Alkharj (KSA)
| |
Collapse
|
35
|
Effects of cryopreservation on the characteristics of dental pulp stem cells of intact deciduous teeth. Arch Oral Biol 2014; 59:970-6. [PMID: 24949827 DOI: 10.1016/j.archoralbio.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to isolate and cultivate cells from the pulp of 7-day-cryopreserved intact deciduous human teeth and evaluate the effect of cryopreservation on dental pulp stem cell (DPSC) characteristics. DESIGN Twenty-six deciduous teeth were collected and allocated in two groups: immediate cell isolation (non-cryopreserved group) and intact cryopreserved (cryopreserved group). The teeth were cryopreserved in dimethylsulfoxide solution and recovered after 7 days. The success rate of isolation, proliferation, surface markers (CD14, CD29, CD34, CD45, CD73, CD90, and HLA-DR), differentiation capacity, and morphology were evaluated. RESULTS Isolation success rate was 61% and 30% for the non-cryopreserved and cryopreserved groups, respectively. There were no statistical differences between the groups for the tested surface markers. The cells in both groups were capable of differentiating into three mesenchymal lineages. No statistical differences between the groups were observed through the time course proliferation assay (0, 1, 3, 5, and 7 days); however, the mean time between isolation and the fifth passage was shorter for the non-cryopreserved group (p=0.035). The morphology of the cells was considered altered in the cryopreserved group. CONCLUSION DPSCs were obtained from cryopreserved intact deciduous teeth without changes in the immunophenotypical characteristics and differentiation ability; however, lower culture rates, proliferation potential, and morphological alterations were observed in relation to the control group.
Collapse
|
36
|
Viability of pulp stromal cells in cryopreserved deciduous teeth. Cell Tissue Bank 2013; 15:67-74. [PMID: 23670172 DOI: 10.1007/s10561-013-9375-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
The cryopreservation of exfoliated deciduous teeth and harvesting of stem cells from them as required would reduce the costs and efforts associated with banking stem cells from primary teeth. The aim of this study was determine whether the viability of pulp stromal cells from deciduous teeth was influenced by the cryopreservation process itself or the period of cryopreservation. In total, 126 deciduous teeth were divided into three groups: (1) fresh, (2) cryopreserved for <3 months (cryo<3), and (3) cryopreserved for 3-9 months (cryo3-9). The viability of the pulp tissues was compared among the three groups by evaluating the outgrowth from pulp tissues and cell activity within those pulp tissues. In addition, the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay was performed to compare cell apoptosis within fresh pulp tissue and pulp tissue that had been cryopreserved for 4 months. The outgrowth from and cell activity within the pulp tissues did not differ significantly between the fresh and cryo<3 pulp tissues. However, these parameters were significantly reduced in the cryo3-9 pulp tissue. In TUNEL assay, 4-month cryopreserved pulp tissues has more apoptotic cells than fresh group. In conclusion, it is possible to acquire pulp stromal cells from cryopreserved deciduous teeth. However, as the period of cryopreservation becomes longer, it is difficult to get pulp cells due to reduced cell viability.
Collapse
|
37
|
|