1
|
Paul PK, Das R, Drow TJ, de Souza AH, Balamurugan AN, Belt Davis D, Galipeau J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:630-643. [PMID: 35438788 PMCID: PMC9216495 DOI: 10.1093/stcltm/szac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Travis J Drow
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnaldo H de Souza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jacques Galipeau
- Corresponding author: Jacques Galipeau, Don and Marilyn Anderson Professor in Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, WI, USA. Tel: +1 608-263-0078;
| |
Collapse
|
2
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
3
|
Gaetani R, Aude S, DeMaddalena LL, Strassle H, Dzieciatkowska M, Wortham M, Bender RHF, Nguyen-Ngoc KV, Schmid-Schöenbein GW, George SC, Hughes CCW, Sander M, Hansen KC, Christman KL. Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue Eng Part C Methods 2020; 24:697-708. [PMID: 30398401 DOI: 10.1089/ten.tec.2018.0180] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Different approaches have investigated the effects of different extracellular matrices (ECMs) and three-dimensional (3D) culture on islet function, showing encouraging results. Ideally, the proper scaffold should mimic the biochemical composition of the native tissue as it drives numerous signaling pathways involved in tissue homeostasis and functionality. Tissue-derived decellularized biomaterials can preserve the ECM composition of the native tissue making it an ideal scaffold for 3D tissue engineering applications. However, the decellularization process may affect the retention of specific components, and the choice of a proper detergent is fundamental in preserving the native ECM composition. In this study, we evaluated the effect of different decellularization protocols on the mechanical properties and biochemical composition of pancreatic ECM (pECM) hydrogels. Fresh porcine pancreas tissue was harvested, cut into small pieces, rinsed in water, and treated with two different detergents (sodium dodecyl sulfate [SDS] or Triton X-100) for 1 day followed by 3 days in water. Effective decellularization was confirmed by PicoGreen assay, Hoescht, and H&E staining, showing no differences among groups. Use of a protease inhibitor (PI) was also evaluated. Effective decellularization was confirmed by PicoGreen assay and hematoxylin and eosin (H&E) staining, showing no differences among groups. Triton-treated samples were able to form a firm hydrogel under appropriate conditions, while the use of SDS had detrimental effects on the gelation properties of the hydrogels. ECM biochemical composition was characterized both in the fresh porcine pancreas and all decellularized pECM hydrogels by quantitative mass spectrometry analysis. Fibrillar collagen was the major ECM component in all groups, with all generated hydrogels having a higher amount compared with fresh pancreas. This effect was more pronounced in the SDS-treated hydrogels when compared with the Triton groups, showing very little retention of other ECM molecules. Conversely, basement membrane and matricellular proteins were better retained when the tissue was pretreated with a PI and decellularized in Triton X-100, making the hydrogel more similar to the native tissue. In conclusion, we showed that all the protocols evaluated in the study showed effective tissue decellularization, but only when the tissue was pretreated with a PI and decellularized in Triton detergent, the biochemical composition of the hydrogel was closer to the native tissue ECM. Impact Statement The article compares different methodologies for the generation of a pancreas-derived hydrogel for tissue engineering applications. The biochemical characterization of the newly generated hydrogel shows that the material retains all the extracellular molecules of the native tissue and is capable of sustaining functionality of the encapsulated beta-cells.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Soraya Aude
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Lea Lara DeMaddalena
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Heinz Strassle
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Matthew Wortham
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Kim-Vy Nguyen-Ngoc
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | | | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, Irvine, California.,Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, California.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California.,Center for Complex Biological Systems, University of California, Irvine, Irvine, California.,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California
| | - Maike Sander
- Departments of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado
| | - Karen L Christman
- Department of Bioengineering, University of California San Diego, La Jolla, California.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
4
|
Chaimov D, Baruch L, Krishtul S, Meivar-levy I, Ferber S, Machluf M. Innovative encapsulation platform based on pancreatic extracellular matrix achieve substantial insulin delivery. J Control Release 2017; 257:91-101. [DOI: 10.1016/j.jconrel.2016.07.045] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/11/2023]
|
5
|
Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, Wang X, Song H, Liu H, Luo X. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med 2016; 39:167-173. [PMID: 27909715 PMCID: PMC5179187 DOI: 10.3892/ijmm.2016.2814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines.
Collapse
Affiliation(s)
- Dan Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Tian
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Wang
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huanjin Song
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Liu
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohui Luo
- Department of Renal Transplantation, Center of Nephropathy, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Sojoodi M, Farrokhi A, Moradmand A, Baharvand H. Enhanced maintenance of rat islets of Langerhans on laminin-coated electrospun nanofibrillar matrix in vitro. Cell Biol Int 2013; 37:370-9. [DOI: 10.1002/cbin.10045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/07/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ali Farrokhi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR, P.O. Box 19395-4644, Tehran; Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR, P.O. Box 19395-4644, Tehran; Iran
| | | |
Collapse
|
7
|
Andrée B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:279-91. [PMID: 23216258 DOI: 10.1089/ten.teb.2012.0583] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue engineering (TE) is an emerging interdisciplinary field aiming at the restoration or improvement of impaired tissue function. A combination of cells, scaffold materials, engineering methods, and biochemical and physiological factors is employed to generate the desired tissue substitute. Scaffolds often play a pivotal role in the engineering process supporting a three-dimensional tissue formation. The ideal scaffold should mimic the native extracellular environment providing mechanical and biological properties to allow cell attachment, migration, and differentiation, as well as remodeling by the host organism. The scaffold should be nonimmunogenic and should ideally be resorbed by the host over time, leaving behind only the regenerated tissue. More than 40 years ago, a preparation of the small intestine was introduced for the replacement of vascular structures. Since then the small intestinal submucosa (SIS) has gained a lot of interest in TE and subsequent clinical applications, as this material exhibits key features of a highly supportive scaffold. This review will focus on the general properties of the SIS and its applications in therapeutical approaches as well as in generating tissue substitutes in vitro. Furthermore, the main problem of TE, which is the insufficient nourishment of cells within three-dimensional, artificial tissues exceeding certain dimensions is addressed. To solve this issue the implementation of another small intestine-derived preparation, the biological vascularized matrix (BioVaM), could be a feasible option. The BioVaM comprises in addition to SIS the arterial and venous mesenteric pedicles and exhibits thereby a perfusable vessel bed that is preserved after decellularization.
Collapse
|
8
|
Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats. Transplantation 2012; 92:1208-14. [PMID: 22067310 DOI: 10.1097/tp.0b013e3182356ca7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Human islet transplantation is a great potential therapy for type I diabetes. To investigate islet graft survival and function, we recently showed the improved effects after co-culture and co-transplantation with vascular endothelial cells (ECs) in diabetic rats. METHODS ECs were isolated, and the viability of isolated islets was assessed in two groups (standard culture group and co-culture group with ECs). Then streptozotocin-induced diabetic rats were divided into four groups before islet transplantation as follows: group A with infusion of islet grafts; group B with combined vascular ECs and islet grafts; groups C and D as controls with single ECs infusion and phosphate-buffered saline injection, respectively. Blood glucose and insulin concentrations were measured daily. Expression of vascular endothelial growth factor was investigated by immunohistochemical staining. The mean microvascular density was also calculated. RESULTS More than 90% of acridine orange-propidium iodide staining positive islets demonstrated normal morphology while co-cultured with ECs for 7 days. Compared with standard control, insulin release assays showed a significantly higher simulation index in co-culture group except for the first day (P<0.05). After transplantation, there was a significant difference in concentrations of blood glucose and insulin among these groups after 3 days (P<0.05). The mean microvascular density in co-culture group was significantly higher than that in single islet group (P=0.04). CONCLUSION Co-culture with ECs in vitro could improve the survival and function of isolated rat islet, and co-transplantation of islets with ECs could effectively prolong the islet graft survival in diabetic rats.
Collapse
|
9
|
Daoud J, Rosenberg L, Tabrizian M. Pancreatic Islet Culture and Preservation Strategies: Advances, Challenges, and Future Outlook. Cell Transplant 2010; 19:1523-35. [DOI: 10.3727/096368910x515872] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postisolation islet survival is a critical step for achieving successful and efficient islet transplantation. This involves the optimization of islet culture in order to prolong survival and functionality in vitro. Many studies have focused on different strategies to culture pancreatic islets in vitro through manipulation of culture media, surface modified substrates, and the use of various techniques such as encapsulation, embedding, scaffold, and bioreactor culture strategies. This review aims to present and discuss the different methodologies employed to optimize pancreatic islet culture in vitro as well as address their respective advantages and drawbacks.
Collapse
Affiliation(s)
- Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Department of Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Abstract
The portal vein is currently the site of choice for clinical islet transplantation, even though it is far from being an ideal site. Low oxygen tension and the induction of an inflammatory response impair islet implantation and lead to significant early loss. Even if enough islets survive the early implantation period to render insulin independence, few patients maintain it. Therefore, the search for an ideal site for islet transplantation continues. Experimentally, islets have been transplanted into the portal vein, kidney subcapsule, spleen, pancreas, peritoneum, omentum, gastrointestinal wall, testis, thymus, bone marrow, anterior chamber of the eye, cerebral ventricles, and subcutaneous and intramuscular spaces. Some of these sites are suitable for gathering scientific data, whereas others have potential clinical application. Varying degrees of success have been reported with the use of all these transplant sites in an experimental setting. However, the optimal transplant site remains to be finally established.
Collapse
Affiliation(s)
- Amer Rajab
- The Comprehensive Transplant Center, The Ohio State University, 395 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Kakabadze Z, Gupta S, Brandhorst D, Korsgren O, Berishvili E. Long-term engraftment and function of transplanted pancreatic islets in vascularized segments of small intestine. Transpl Int 2010; 24:175-83. [PMID: 20819197 DOI: 10.1111/j.1432-2277.2010.01160.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study evaluated the potential of vascularized small intestinal segments for pancreatic islet transplantation. Islets isolated from Lewis rats were transplanted into diabetic syngeneic recipients. Segments of small intestine were prepared by denudation of the mucosal layer prior to implantation of pancreatic islets into the segments. Animal groups were established to determine engraftment, survival and function of islets transplanted into either intestinal segments or portal vein over up to 60 days. We found transplantation of functionally intact pancreatic islets into small intestinal segments was well tolerated. Transplanted islets were rapidly engrafted in intestinal segments as demonstrated vascularization and expression of insulin and glucagon throughout the 60-day duration of the studies. Transplantation of islets restored euglycemia in diabetic rats, which was similar to animals receiving islets intraportally. Moreover, animals treated with islet transplants showed normal responses to glucose challenges. Removal of graft-bearing intestinal segments led to recurrence of hyperglycemia indicating that transplanted islets were responsible for improved outcomes. Therefore, we concluded that vascularized intestinal segments supported reorganization, survival and function of transplanted islets with therapeutic efficacy in streptozotocin-treated diabetic rats. The approach described here will be appropriate for studying islet biogenesis, reorganization and function, including for cell therapy applications.
Collapse
Affiliation(s)
- Zurab Kakabadze
- Department of Clinical Anatomy, Division of Cell Transplantation, Georgian National Institute of Medical Research, Tbilisi State Medical University, Tbilisi, Georgia, USA.
| | | | | | | | | |
Collapse
|
12
|
Gundersen SI, Chen G, Powell HM, Palmer AF. Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor. Biotechnol Bioeng 2010; 107:582-92. [DOI: 10.1002/bit.22830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Song HJ, Xue WJ, Li Y, Tian XH, Song Y, Ding XM, Feng XS, Tian PX, Li ZL. Improved islet survival and funtion with rat endothelial cells in vitro co-culture. Transplant Proc 2010; 41:4302-6. [PMID: 20005388 DOI: 10.1016/j.transproceed.2009.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 02/13/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Pancreatic islet transplantation is an emerging therapy for type 1 diabetes. To preserve its function, transplanted islets must be revascularized because arterial and venous connections are disrupted during islet isolation. The current paradigm is that islet revascularization originates from the transplant recipient. This study was designed to test whether the function of isolated islets can be retained by co-culture with thoracic aorta endothelial cells in vitro. METHODS Sprague-Dawley rats were used in this study. The endothelial cells (ECs) were isolated from the thoracic aorta. The viability of the isolated islets was assessed by acridine orange/propidium iodide (AO/PI) double staining. The islets were either placed in standard cultures (group A) or in co-cultures with ECs (group B). Islet viablity was assessed by an insulin release assay. RESULTS The islets in group B exhibited normal morphology with >90% staining positive as detected by AO/PI with 7 days. Insulin release assays showed a significantly higher simulation index (SI) in group B compared with group A (P < .05) except on the first day. CONCLUSION This study suggested that co-cultrue of freshly isolated rat islets with ECs improves postculture survival and islet function in vitro.
Collapse
Affiliation(s)
- H-J Song
- Department of Renal Transplant, Center of Nephropathy, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shannxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Daoud J, Petropavlovskaia M, Rosenberg L, Tabrizian M. The effect of extracellular matrix components on the preservation of human islet function in vitro. Biomaterials 2009; 31:1676-82. [PMID: 20015544 DOI: 10.1016/j.biomaterials.2009.11.057] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/18/2009] [Indexed: 02/05/2023]
Abstract
Human islet isolation leads to the loss of the ECM basement membrane which contributes to eventual apoptosis in vitro. The reestablishment of this environment is vital in understanding the mechanism of islet interaction with its surroundings in order to arrive at conditions favourable to islet culture in vitro. In this study, we investigated the effects of the main ECM components collagen I and IV, fibronectin, and laminin on human islet adhesion, survival, and functionality. Results have provided insight into integrin-mediated effects and behaviour. Collagen I/IV and fibronectin induced adhesion, while fibronectin was the only ECM protein capable of maintaining islet structural integrity and insulin content distribution. Furthermore, islet phenotype was eventually lost, but insulin gene expression was highest in islets cultured on collagen I and IV. However, insulin release was highest on fibronectin, along with a decrease in SUR1 expression, while glucose metabolism, along with GLUT2 and GCK expression, was highest on collagen I and IV surfaces. These findings provide a basis for the future establishment of a modified three-dimensional construct for the culture of human pancreatic islets in vitro.
Collapse
Affiliation(s)
- Jamal Daoud
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
15
|
Irani S, Mohseni Salehi Monfared S, Akbari-Kamrani M, Ostad S, Abdollahi M, Larijani B. Effect of Low-Level Laser Irradiation on In Vitro Function of Pancreatic Islets. Transplant Proc 2009; 41:4313-5. [DOI: 10.1016/j.transproceed.2009.09.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/03/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
|
16
|
Song C, Huang YD, Wei Z, Hou Y, Xie WJ, Huang RP, Song YM, Lv HG, Song CF. Polyglycolic Acid-islet grafts improve blood glucose and insulin concentrations in rats with induced diabetes. Transplant Proc 2009; 41:1789-93. [PMID: 19545729 DOI: 10.1016/j.transproceed.2009.01.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 10/25/2008] [Accepted: 01/08/2009] [Indexed: 12/01/2022]
Abstract
Pancreatic islet transplantation is a promising therapeutic treatment for type 1 diabetes mellitus. In the present study, we cocultured islets with or without a polyglycolic acid (PGA) fibrous scaffold for 5 days and transplanted the PGA-islet grafts into the leg muscles of Wistar rats with streptozotocin-induced diabetes; controls were injected with saline. The results showed that the blood glucose concentrations of the group given islets embedded with the PGA scaffold were lower than those without the scaffold or controls. On the other hand, the insulin content of the PGA-islet group was higher at all 5 time points compared with the insulin contents of the other 2 groups. After transplantation, many islets in the PGA-islet grafts showed normal morphology (as seen under the scanning electron microscope) and were surrounded by red blood cells. A fibrous extracellular matrix was visible around the PGA-islet grafts. These results demonstrated that PGA-islet grafts improved blood glucose and insulin concentrations in rats with induced diabetes.
Collapse
Affiliation(s)
- C Song
- Department of Applied Chemistry, Harbin Institute of Technology, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stendahl JC, Kaufman DB, Stupp SI. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant 2009; 18:1-12. [PMID: 19476204 DOI: 10.3727/096368909788237195] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic islet transplantation provides a potentially more benign alternative to pancreatic transplantation. However, islet transplants are associated with limited engraftment potential. This inefficiency is likely at least partially attributable to the isolation process, which removes islets from their native environment. Isolation not only disrupts the internal vascularization and innervation of islets, but also fundamentally changes interactions between islet cells and macromolecules of the extracellular matrix (ECM). Signaling interactions between islet cells and ECM are known to regulate multiple aspects of islet physiology, including survival, proliferation, and insulin secretion. Although it is highly likely that disruptions to these interactions during isolation significantly affect transplant outcomes, the true implications of these conditions are not well understood. The following article reviews current understandings and uncertainties in islet-ECM interactions and explains their potential impact on posttransplant engraftment. Topics covered include matrix and receptor compositions in native islets, effects of isolation and culture on islet-ECM interactions, and potential for postisolation restoration of islet-ECM interactions. Greater understanding in these areas may help to reduce isolation and transplantation stresses and improve islet engraftment.
Collapse
Affiliation(s)
- John C Stendahl
- Institute for BioNanotechnology in Advanced Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Marra KG, DeFail AJ, Clavijo-Alvarez JA, Badylak SF, Taieb A, Schipper B, Bennett J, Rubin JP. FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg 2008; 121:1153-1164. [PMID: 18349632 DOI: 10.1097/01.prs.0000305517.93747.72] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Current therapies for soft-tissue reconstruction include autologous tissue flaps and alloplastic implants. Although autologous fat transplantation using a minimally invasive cannula harvest has less donor-site morbidity than tissue flaps, there is a variable degree of fat resorption over time. Preadipocytes isolated from harvested fat are better able to withstand the mechanical trauma from the suction cannula and subsequently may result in improved cell survival and generation of new fat tissue after transfer to another anatomic site. The authors hypothesized that particulate small intestinal submucosa could be useful as injectable cell delivery vehicles for preadipocytes, and that the release of fibroblast growth factor (FGF)-2 would enhance vascularization. METHODS Preadipocytes were isolated from discarded human adipose tissue and cultured on small intestinal submucosa particles in a stirred bioreactor (spinner flask). Preadipocytes attached and proliferated on small intestinal submucosa microparticles and maintained high viability over several weeks of culture. FGF-2 was encapsulated in poly(lactic-co-glycolic acid) microspheres and injected in conjunction with the preadipocyte/small intestinal submucosa particles into a mouse subcutaneous model. RESULTS Preadipocytes attached and proliferated on small intestinal submucosa particles in vitro. In vivo, vascularization was significantly enhanced with the incorporation of FGF-2-loaded poly(lactic-co-glycolic acid) microspheres. In addition, cell survival during the 14-day in vivo observation period was confirmed by fluorescent dye labeling. CONCLUSIONS Small intestinal submucosa particles are a favorable scaffold for preadipocytes, allowing ex vivo proliferation on particles small enough to be injected. Delivery of FGF-2 from poly(lactic-co-glycolic acid) microspheres resulted in cell survival and enhanced vascularization.
Collapse
Affiliation(s)
- Kacey G Marra
- Pittsburgh, Pa. From the Division of Plastic Surgery, Department of Surgery and the Department of Bioengineering, University of Pittsburgh, and the McGowan Institute for Regenerative Medicine
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Caiazzo R, Gmyr V, Hubert T, Delalleau N, Lamberts R, Moerman E, Kerr-Conte J, Pattou F. Evaluation of alternative sites for islet transplantation in the minipig: interest and limits of the gastric submucosa. Transplant Proc 2007; 39:2620-3. [PMID: 17954193 DOI: 10.1016/j.transproceed.2007.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the introduction of glucocorticoid-free immunosuppressive regimens, islet transplantation offers a less invasive alternative to pancreas transplantation. However, complications associated with intraportal islet injection and the progressive functional decline of intrahepatic islets encourage the exploration of alternative sites. Herein we evaluated, in the minipig, the use of the gastric submucosa (GS; group 1, n = 5) for islet transplantation compared with the kidney capsule (KC; group 2, n = 5). Subsequently we attempted to improve the vascularization of the submucosal graft (group 3, n = 5) by the addition of an extracellular matrix rich in growth factors (Matrigel). One month after grafting, we evaluated transplanted islet function in vivo and in vitro. Our study showed better function of islets engrafted in the GS than in the KC (P < .05). Despite the growth factors, Matrigel did not offer a more suitable environment to further improve engraftment (group 3, P < .05). Thus, even if the liver remains the gold standard, the GS represents a potential islet engraftment site, confirming the data obtained in vitro and in the rodent. Offering easy access by endoscopy, this site could constitute an interesting alternative for experimental studies in large mammals and, eventually, for clinical application.
Collapse
Affiliation(s)
- R Caiazzo
- INSERM UNIT-M 859, Diabetes Cell Therapy, Faculty of Medicine, Lille 2 University, 1 Place de Verdun, 59045 Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|