1
|
Al-Semrawy MM, Hassan M, Zaki M, El Said T, Abdelaziz H, Elsayed H, Abdelmegied S. Effect of serial plasma exchange sessions with albumin replacement on ABO antibody titers. THE EGYPTIAN JOURNAL OF HAEMATOLOGY 2022. [DOI: 10.4103/ejh.ejh_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
2
|
Arend P. ABO phenotype-protected reproduction based on human specific α1,2 L-fucosylation as explained by the Bombay type formation. Immunobiology 2018; 223:684-693. [PMID: 30075871 DOI: 10.1016/j.imbio.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The metabolic relationship between the formation of the ABO(H) blood group phenotype and human fertility is evident in the case of the (Oh) or Bombay blood type, which Charles Darwin would have interpreted as resulting from reduced male fertility in consanguinities, based on the history of his own family, the Darwin/Wedgwood Dynasty. The classic Bombay type occurs with the extremely rare, human-specific genotype (h/h; se/se), which (due to point mutations) does not encode fucosyltransferases 1(FUT1) and 2 (FUT2). These enzymes are the basis for ABO(H) phenotype formation on the cell surfaces and fucosylation of plasma proteins, involving neonatal immunoglobulin M (IgM). In the normal human blood group O(H), which is not protected by clonal selection with regard to environmental A/B immunization, the plasma contains a mixture of non-immune and adaptive anti-A/B reactive isoagglutinins, which in the O(h) Bombay type show extremely elevated levels, associated with decreased levels of fucosylation-dependent functional plasma proteins, suchs as the van Willebrand factor (vWF) and clotting factor VIII. In fact, while the involvement of adaptive immunoglobulins remains unknown, poor fucosylation may explain the polyreactivity in the Bombay type plasma, which exhibits pronounced complement-binding cross-reactive anti-A/Tn and anti-B IgM levels, with additional anti-H reactivity, acting over a wide range of temperatures, with an amplitude at 37 °C. This aggressive anti-glycan-reactive IgM molecule suggests the induction of ADCC (antibody-dependent) and/or complement-mediated cytotoxicity via overexpressed glycosidic bond sites against the embryogenic stem cell-to-germ cell transformation, which is characterized by fleeting appearances of A-like, developmental trans-species GalNAcα1-O-Ser/Thr-R glycan, also referred to as the Tn (T "nouvelle") antigen.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany; Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA; Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany.
| |
Collapse
|
3
|
Arend P. Early ovariectomy reveals the germline encoding of natural anti-A- and Tn-cross-reactive immunoglobulin M (IgM) arising from developmental O-GalNAc glycosylations. (Germline-encoded natural anti-A/Tn cross-reactive IgM). Cancer Med 2017; 6:1601-1613. [PMID: 28580709 PMCID: PMC5504323 DOI: 10.1002/cam4.1079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
While native blood group A-like glycans have not been demonstrated in prokaryotic microorganisms as a source of human "natural" anti-A isoagglutinin production, and metazoan eukaryotic N-acetylgalactosamine O-glycosylation of serine or threonine residues (O-GalNAc-Ser/Thr-R) does not occur in bacteria, the O-GalNAc glycan-bearing ovarian glycolipids, discovered in C57BL/10 mice, are complementary to the syngeneic anti-A-reactive immunoglobulin M (IgM), which is not present in animals that have undergone ovariectomy prior to the onset of puberty. These mammalian ovarian glycolipids are complementary also to the anti-A/Tn cross-reactive Helix pomatia agglutinin (HPA), a molluscan defense protein, emerging from the coat proteins of fertilized eggs and reflecting the snail-intrinsic, reversible O-GalNAc glycosylations. The hexameric structure of this primitive invertebrate defense protein gives rise to speculation regarding an evolutionary relationship to the mammalian nonimmune, anti-A-reactive immunoglobulin M (IgM) molecule. Hypothetically, this molecule obtains its complementarity from the first step of protein glycosylations, initiated by GalNAc via reversible O-linkages to peptides displaying Ser/Thr motifs, whereas the subsequent transferase depletion completes germ cell maturation and cell renewal, associated with loss of glycosidic bonds and release of O-glycan-depleted proteins, such as complementary IgM revealing the structure of the volatilely expressed "lost" glycan carrier through germline Ser residues. Consequently, the evolutionary/developmental first glycosylations of proteins appear metabolically related or identical to that of the mucin-type, potentially "aberrant" monosaccharide GalNAcα1-O-Ser/Thr-R, also referred to as the Tn (T "nouvelle") antigen, and explain the anti-Tn cross-reactivity of human innate or "natural" anti-A-specific isoagglutinin and the pronounced occurrence of cross-reactive anti-Tn antibody in plasma from humans with histo-blood group O. In fact, A-allelic, phenotype-specific GalNAc glycosylation of plasma proteins does not occur in human blood group O, affecting anti-Tn antibody levels, which may function as a growth regulator that contributes to a potential survival advantage of this group in the overall risk of developing cancer when compared with non-O blood groups.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University MarburgDepartment of MedicineD‐355 Marburg/Lahn, Germany
- Gastroenterology Research LaboratoryUniversity of Iowa, College of MedicineIowa CityIowa
- Research LaboratoriesChemie Grünenthal GmbHD‐52062AachenGermany
| |
Collapse
|
4
|
Arend P. ABO (histo) blood group phenotype development and human reproduction as they relate to ancestral IgM formation: A hypothesis. Immunobiology 2016; 221:116-27. [DOI: 10.1016/j.imbio.2015.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
5
|
Koo TY, Yang J. Current progress in ABO-incompatible kidney transplantation. Kidney Res Clin Pract 2015; 34:170-9. [PMID: 26484043 PMCID: PMC4608875 DOI: 10.1016/j.krcp.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023] Open
Abstract
ABO-incompatible kidney transplantation (ABOi KT) was introduced to expand the donor pool and minimize shortage of kidneys for transplantation. Because improved outcomes of ABOi KT were reported in Japan in the early 2000s, the number of ABOi KTs has been increasing worldwide. In addition, a better understanding of immune pathogenesis and subsequent aggressive immunosuppression has helped to make effective desensitization protocols. Current strategies of ABOi KT consist of pretransplant antibody removal using plasmapheresis or immunoadsorption to prevent hyperacute rejection and potent maintenance immunosuppression, such as tacrolimus and mycophenolate mofetil, to inhibit antibody-mediated rejection. Recent outcomes of ABOi KT are comparable with ABO-compatible KT. However, there are still many problems to be resolved. Very high anti-ABO antibody producers are difficult to desensitize. In addition, ABOi KT is associated with an increased risk of infection and possibly malignancy due to aggressive immunosuppression. Optimization of desensitization and patient-tailored immunosuppression protocols are needed to achieve better outcomes of ABOi KT. This review provides an overview of the history, immune mechanism, immunosuppressive protocol, outcomes, current obstacles, and future perspectives in ABOi KT.
Collapse
Affiliation(s)
- Tai Yeon Koo
- Transplantation Center, Seoul National University Hospital, Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Thölking G, Koch R, Pavenstädt H, Schuette-Nuetgen K, Busch V, Wolters H, Kelsch R, Reuter S, Suwelack B. Antigen-Specific versus Non-Antigen-Specific Immunoadsorption in ABO-Incompatible Renal Transplantation. PLoS One 2015; 10:e0131465. [PMID: 26121389 PMCID: PMC4488147 DOI: 10.1371/journal.pone.0131465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction ABO-incompatible (ABOi) renal transplantation (RTx) from living donors is an established procedure to expand the donor pool for patients with end stage renal disease. Immunoadsorption (IA) is a standard procedure for the removal of preformed antibodies against the allograft. In this study, antigen-specific and non-antigen-specific IA in ABOi RTx were compared. Patients and Methods 10 patients underwent antigen-specific IA (Glycosorb group) and 13 patients non-antigen-specific IA (Immunosorba group). The effects of both procedures regarding antibody reduction, number of treatments, complications, costs, as well as the allograft function and patient survival were compared between both groups. Results Although the IgG levels were reduced equally by both procedures (p=0.82), the reduction of the IgM level was more effective in the Glycosorb group (p=0.0172). Patients in both groups required a median number of 6 IA before ABOi RTx. Allograft function at one year after AB0i RTx was similar in both groups (estimated glomerular filtration rate: 66 vs. 64 ml/min/1.73m² respectively), with a death-censored graft survival of 90.0% and 92.3% respectively. Complication rates did not differ between procedures. Due to the reuse of non-antigen-specific Immunosorba columns, costs were considerably lower in this group; however, the use of the Immunosorba-based IA was less time-efficient. Conclusion Considering upcoming alternatives as simultaneous performance of dialysis and IA or a possible reuse of Glycosorb columns, this might become less relevant in the future.
Collapse
Affiliation(s)
- Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
- * E-mail:
| | - Raphael Koch
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Katharina Schuette-Nuetgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Veit Busch
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Heiner Wolters
- Department of General Surgery, University Hospital of Münster, Münster, Germany
| | - Reinhard Kelsch
- Institute of Transfusion Medicine and Transplantation Immunology, University Hospital of Münster, Münster, Germany
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Münster, Münster, Germany
| |
Collapse
|
7
|
Hofmann BT, Stehr A, Dohrmann T, Güngör C, Herich L, Hiller J, Harder S, Ewald F, Gebauer F, Tachezy M, Precht C, Izbicki JR, Bockhorn M, Wagener C, Wolters-Eisfeld G. ABO blood group IgM isoagglutinins interact with tumor-associated O-glycan structures in pancreatic cancer. Clin Cancer Res 2014; 20:6117-26. [PMID: 25320359 DOI: 10.1158/1078-0432.ccr-14-0716] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The ABO gene locus is associated with the risk of developing pancreatic ductal adenocarcinoma (PDAC) resulting in an increased incidence in individuals with non-O blood groups. Up to 90% of PDAC specimens display alterations in mucin type O-GalNAc glycosylation. Because aberrant O-GalNAc glycans (Tn and T antigen) are structurally related to blood group A and B glycans, we investigated the role of IgM isoagglutinins in PDAC. EXPERIMENTAL DESIGN Binding studies of IgM isoagglutinins toward blood group A, B, Tn antigen, and T antigen glycoconjugates from patients with PDAC and healthy individuals were conducted. Isoagglutinin titers and total IgM were compared between patients with PDAC and control group. An anti-A antibody was used for immunoprecipitation of aberrant O-glycosylated tumor proteins and subsequent mass spectromic analysis. RESULTS We found that IgM isoagglutinins bind blood group antigens, Tn and T glycoconjugates as well as tumor-derived glycoproteins. Blood group A isoagglutinins exhibited a strong binding toward blood group B antigen and T antigen, whereas blood group B showed binding to blood group A antigen and Tn antigen. Furthermore, we confirmed a decreased frequency in individuals with blood group O and observed a significant decrease of IgM isoagglutinin titers in PDAC sera compared with control sera, whereas total IgM levels were unaltered. We identified new PDAC-derived O-GalNAc glycoproteins by mass spectrometry using a blood group A-specific antibody. CONCLUSION Our data elucidated a novel interaction of blood group IgM isoagglutinins and PDAC O-GalNAc glycoproteins that may contribute to the pathogenesis and progression of pancreatic cancer.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Stehr
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Dohrmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Herich
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Insitute of Medical Statistics, Informatics and Epidemiology (IMSIE) University Hospital of Cologne, Cologne, Germany
| | - Jens Hiller
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Harder
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Precht
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Wagener
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Arend P. Complementary innate (anti-A-specific) IgM emerging from ontogenic O-GalNAc-transferase depletion: (Innate IgM complementarity residing in ancestral antigen completeness). Immunobiology 2014; 219:285-91. [PMID: 24290972 DOI: 10.1016/j.imbio.2013.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
The murine and the human genome have global properties in common. So the murine anti-A-specific complementary IgM and related human innate isoagglutinin represent developmental, 2-mercaptoethanol-sensitive, complement-binding glycoproteins, which do not arise from any measurable environmentally-induced or auto- immune response. The murine anti-A certainly originates from a cell surface- or cell adhesion molecule, which in the course of germ cell development becomes devoid of O-GalNAc-transferase and is released into the circulation. In human sera the enzyme occurs exclusively in those of blood group A- and AB subjects, while in group O(H) an identically encoded protein lets expect an opposite function and appears in conjunction with a complementary anti-A reactive glycoprotein. Since O-glycosylations rule the carbohydrate metabolism in growth and reproduction processes, we propose that the ancestral histo-(blood)-group A molecule arises in the course of O-GalNAc-glycosylations of glycolipids and protein envelops at progenitor cell surfaces. Germ cell development postulates embryonic stem cell fidelity, which is characterised by persistent production of α-linked O-GalNAc-glycans. They are determined by the A-allele within the human, "complete" histo (blood) group AB(O) structure that in early ontogeny is hypothesised to be synthesised independently from the final phenotype. The structure either passes "completely" through the germline, in transferase-secreting mature tissues becoming the "complete" phenotype AB, or disappears in exhaustive glycotransferase depletion from the differentiating cell surfaces and leaves behind the "incomplete" blood group O-phenotype, which has released a transferase- and O-glycan-depleted, complementary glycoprotein (IgM) into the circulation. The process implies, that in humans the different blood phenotypes evolve from a "complete" AB(O) molecular complex in a distinct enzymatic and/or complement cascade suggesting O-glycanase involvements. While the murine and human oocyte zona pellucida express identical O-glycans, the human phenotype O might be explainable by the kinetics of the murine ovarian O-GalNAc glycan synthesis and the complementary anti-A released in parallel. The maturing murine ovary may provide insight into encoding of the physiologically superior α-linked GalNAc ancestral epitope that becomes essential in reproduction as well as in tissue renewal events. According to recent reports, O-GalNAc-transferase-determined blood group A suggests superiority in human female fertility and was called even "protective". So the minor fertility of blood-group-O females may reside in a critical timing in developmental shifting of enzyme functions affecting the formation of GalNAc-determined hormone receptors on the way to maturation. Experiments that had inserted an oocyte genome into a somatic one to generate pluripotent stem cells, might elucidate a developmental dilemma by testing oocytes from different blood group AB donors donors. Perhaps they will unmask the molecular basis of an evolutionary trend, while stem cell generation itself capitalises on the enzymatically-advantaged, lineage-maintaining (histo) blood group A-allele, which guaranties ancestral functional completeness.
Collapse
Affiliation(s)
- Peter Arend
- Gastroenterology Research Laboratory, Department of Medicine, University of Iowa College of Medicine, Iowa City, IA, USA(1); Research Laboratories, Chemie Grünenthal GmbH, 52062 Aachen, Germany.
| |
Collapse
|
9
|
ABO Incompatible Kidney Transplantation-Current Status and Uncertainties. J Transplant 2011; 2011:970421. [PMID: 22174989 PMCID: PMC3235893 DOI: 10.1155/2011/970421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/23/2011] [Indexed: 12/17/2022] Open
Abstract
In the past, ABO blood group incompatibility was considered an absolute contraindication for kidney transplantation. Progress in defined desensitization practice and immunologic understanding has allowed increasingly successful ABO incompatible transplantation during recent years. This paper focused on the history, disserted outcomes, desensitization modalities and protocols, posttransplant immunologic surveillance, and antibody-mediated rejection in transplantation with an ABO incompatible kidney allograft. The mechanism underlying accommodation and antibody-mediated injury was also described.
Collapse
|
10
|
Haidinger M, Schmaldienst S, Körmöczi G, Regele H, Soleiman A, Schwartz D, Derfler K, Steininger R, Mühlbacher F, Böhmig GA. Vienna experience of ABO-incompatible living-donor kidney transplantation. Wien Klin Wochenschr 2009; 121:247-55. [DOI: 10.1007/s00508-009-1161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/30/2009] [Indexed: 12/29/2022]
|