1
|
Khazaei M, Khazaei F, Niromand E, Ghanbari E. Tissue engineering approaches and generation of insulin-producing cells to treat type 1 diabetes. J Drug Target 2023; 31:14-31. [PMID: 35896313 DOI: 10.1080/1061186x.2022.2107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tissue engineering (TE) has become a new effective solution to a variety of medical problems, including diabetes. Mesenchymal stem cells (MSCs), which have the ability to differentiate into endodermal and mesodermal cells, appear to be appropriate for this function. The purpose of this review was to evaluate the outcomes of various researches on the insulin-producing cells (IPCs) generation from MSCs with TE approaches to increase efficacy of type 1 diabetes treatments. The search was performed in PubMed/Medline, Scopus and Embase databases until 2021. Studies revealed that MSCs could also differentiate into IPCs under certain conditions. Therefore, a wide range of protocols have been used for this differentiation, but their effectiveness is very different. Scaffolds can provide a microenvironment that enhances the MSCs to IPCs differentiation, improves their metabolic activity and up-regulate pancreatic-specific transcription factors. They also preserve IPCs architecture and enhance insulin production as well as protect against cell death. This systematic review offers a framework for prospective research based on data. In vitro and in vivo evidence suggests that scaffold-based TE can improve the viability and function of IPCs.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Niromand
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly-derived mesenchymal cells into islet-like cells. Gene 2022; 833:146586. [PMID: 35597530 DOI: 10.1016/j.gene.2022.146586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
The use of umbilical cord-derived mesenchymal stem cells along with three-dimensional (3D) scaffolds in pancreatic tissue engineering can be considered as a treatment for diabetes. This study aimed to investigate the differentiation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into pancreatic islet-insulin producing cells (IPCs) on silk/gelatin nanofibers as a 3D scaffold. Mesenchymal markers were evaluated at the mesenchymal stem cells (MSCs) level by flow cytometry. WJ-MSCs were then cultured on 3D scaffolds and treated with a differential medium. Immunocytochemical assays showed efficient differentiation of WJ-MSCs into IPCs. Also, Real-time PCR results showed a significant increase in the expression of pancreatic genes in the 3D culture group compared to the two-dimensional (2D) culture group. Despite these cases, the secretion of insulin and C-peptide in response to different concentrations of glucose in the 3D group was significantly higher than in the 2D culture. The results of our study showed that silk/gelatin scaffold with WJ-MSCs could be a good option in the production of IPCs in regenerative medicine and pancreatic tissue engineering.
Collapse
|
3
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
4
|
El-Asfar RK, Kamal MM, Abd El-Razek RS, El-Demerdash E, El-Mesallamy HO. Obestatin can potentially differentiate Wharton's jelly mesenchymal stem cells into insulin-producing cells. Cell Tissue Res 2017; 372:91-98. [PMID: 29159483 DOI: 10.1007/s00441-017-2725-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
In vitro-generation of β-cells from Wharton's jelly mesenchymal stem cells (WJ-MSCs) could provide a potential basis for diabetes mellitus cell therapy. However, the generation of functional insulin-producing cells (IPCs) from WJ-MSCs remains a challenge. Recently, obestatin, a gut hormone, was found to promote β-cell generation from pancreatic precursor cells. Accordingly, we hypothesize that obestatin can induce the differentiation of WJ-MSCs into IPCs. Therefore, the purpose of the current study is to examine the ability of obestatin to generate IPCs in comparison to well-known extrinsic factors that are commonly used in IPCs differentiation protocols from MSCs, namely exendin-4 and glucagon-like peptide-1 (GLP-1). To achieve our aims, WJ-MSCs were isolated, cultured and characterized by immunophenotyping and adipocytes differentiation. Afterwards, WJ-MSCs were induced to differentiate into IPCs using two differentiation protocols incorporating either exendin-4, GLP-1 or obestatin. The pancreatic progenitor marker, nestin and β-cell differentiation markers were assessed by qRT-PCR, while the functionality of the generated IPCs was assessed by glucose-stimulated insulin secretion (GSIS). Our results showed that WJ-MSCs exhibit all the characteristics of MSCs. Interestingly, using obestatin in both the short and long differentiation protocols managed to induce the expression of β-cell markers, similar to exendin-4. In GSIS, IPCs generated using either GLP-1 or obestatin showed higher secretion of insulin as compared to those generated using exendin-4 under low-glucose conditions but failed to show a significant response to increased glucose. These results indicate obestatin can be considered as a novel potential factor to consider for generation of IPCs from WJ-MSCs.
Collapse
Affiliation(s)
- Rana K El-Asfar
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rania S Abd El-Razek
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
5
|
Van Pham P, Tran NY, Phan NLC, Vu NB, Phan NK. Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers. In Vitro Cell Dev Biol Anim 2015; 52:218-27. [DOI: 10.1007/s11626-015-9963-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
6
|
Human Menstrual Blood-Derived Stem Cell Transplantation for Acute Hind Limb Ischemia Treatment in Mouse Models. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J 2014; 202:416-24. [PMID: 25457267 DOI: 10.1016/j.tvjl.2014.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 01/23/2023]
Abstract
There has been unprecedented interest in recent years in the use of stem cells as therapy for an array of diseases in companion animals. Stem cells have already been deployed therapeutically in a number of clinical settings, in particular the use of mesenchymal stem cells to treat osteoarthritis in horses and dogs. However, an assessment of the scientific literature highlights a marked disparity between the purported benefits of stem cell therapies and their proven abilities as defined by rigorously controlled scientific studies. Although preliminary data generated from clinical trials in human patients are encouraging, therapies currently available to treat animals are supported by very limited clinical evidence, and the commercialisation of these treatments may be premature. This review introduces the three main types of stem cells relevant to veterinary applications, namely, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells, and draws together research findings from in vitro and in vivo studies to give an overview of current stem cell therapies for the treatment of osteoarthritis in animals. Recent advances in tissue engineering, which is proposed as the future direction of stem cell-based therapy for osteoarthritis, are also discussed.
Collapse
Affiliation(s)
- Deanne J Whitworth
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia.
| | - Tania A Banks
- School of Veterinary Science, University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
8
|
Derivation of human decidua-like cells from amnion and menstrual blood. Sci Rep 2014; 4:4599. [PMID: 24710473 PMCID: PMC3978502 DOI: 10.1038/srep04599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022] Open
Abstract
We induced differentiation of human amnion-derived mesenchymal stem cells (AMCs) and menstrual blood-derived mesenchymal stem cells (MMCs) into endometrial stroma-like cells, which could be useful for cell therapy to support embryo implantation. Interestingly, the expression patterns of surface markers were similar among AMCs, MMCs, and endometrial stromal cells. In addition, whereas treatment with estrogen and progesterone was not very effective for decidualizing AMCs and MMCs, treatment with 8-Br-cAMP prompted remarkable morphological changes in these cells as well as increased expression of decidualization markers (prolactin and insulin-like growth factor binding protein-1) and attenuated expression of surface markers unique to mesenchymal stem cells. These results demonstrated that bone marrow-derived stem cells, which are considered a potential source of endometrial progenitor cells, as well as AMCs and MMCs show in vitro decidualization potential, which is characteristic of endometrial stromal cells.
Collapse
|
9
|
Calloni R, Viegas GS, Türck P, Bonatto D, Pegas Henriques JA. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 2013; 16:3-16. [PMID: 24113426 DOI: 10.1016/j.jcyt.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Collapse
Affiliation(s)
- Raquel Calloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Gabrihel Stumpf Viegas
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Patrick Türck
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - João Antonio Pegas Henriques
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| |
Collapse
|
10
|
Calloni R, Cordero EAA, Henriques JAP, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 2013; 22:1455-76. [PMID: 23336433 PMCID: PMC3629778 DOI: 10.1089/scd.2012.0637] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
11
|
Chikhovskaya J, Jonker M, Meissner A, Breit T, Repping S, van Pelt A. Human testis-derived embryonic stem cell-like cells are not pluripotent, but possess potential of mesenchymal progenitors. Hum Reprod 2011; 27:210-21. [DOI: 10.1093/humrep/der383] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
12
|
Niehage C, Steenblock C, Pursche T, Bornhäuser M, Corbeil D, Hoflack B. The cell surface proteome of human mesenchymal stromal cells. PLoS One 2011; 6:e20399. [PMID: 21637820 PMCID: PMC3102717 DOI: 10.1371/journal.pone.0020399] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/23/2011] [Indexed: 12/12/2022] Open
Abstract
Background Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers. Methodology/Principal Findings To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously. Conclusions/Significance Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention.
Collapse
Affiliation(s)
- Christian Niehage
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | | | - Theresia Pursche
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Martin Bornhäuser
- Department of Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Denis Corbeil
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
| | - Bernard Hoflack
- Biotechnology Center, Dresden University of Technology, Dresden, Germany
- * E-mail:
| |
Collapse
|