1
|
Different combinations of GABA, BMP7, and Activin A induced the in vitro differentiation of rat pancreatic ductal stem cells into insulin-secreting islet-like cell clusters. Life Sci 2020; 267:118451. [PMID: 32956667 DOI: 10.1016/j.lfs.2020.118451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
AIMS We investigated the in vitro differentiation of adult rat PDESCs into β-like cells through supplementation of different combinations of GABA, BMP7, and Activin A in basic culture media. MATERIALS AND METHODS The PDESCs were cultured using different inducement combinations for 28 days and microscopy, dithizone (DTZ) staining, immunohistochemical staining, real-time PCR, and glucose-stimulated insulin secretion (GSIS) assay were used to delineate the differentiation inducement potential of these combinations. KEY FINDINGS The results show that after 28 days, the PDESCs were differentiated into ICCs containing insulin-secreting β-like cells in different groups treated with A + B, A + G, B + G, and A + B + G but not in the control group. Upon DTZ staining the cells in ICCs were stained crimson red, demonstrating the presence of β-like cells in ICCs and the immunohistochemistry showed the expression of Pdx1 and insulin in ICCs. Further, on 28 d the expression of Pdx1 and insulin mRNA was high in inducement groups as compared to the control group and β-like cells in ICCs also secreted insulin and C-peptide upon glucose stimulation. Thus, the supplementation of GABA, BMP7, and Activin A in different combinations in basic culture media can induce the in vitro differentiation of PDESCs into ICCs containing β-like cells. SIGNIFICANCE The in vitro development of β-like cells is a herald for cell therapy of diabetic patients and our results are a step closer towards finding the cure for diabetes.
Collapse
|
2
|
Ghani MW, Bin L, Jie Y, Yi Z, Jiang W, Ye L, Cun LG, Birmani MW, Zhuangzhi Z, Lilong A, Mei X. Differentiation of rat pancreatic duct stem cells into insulin-secreting islet-like cell clusters through BMP7 inducement. Tissue Cell 2020; 67:101439. [PMID: 32979709 DOI: 10.1016/j.tice.2020.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
To cure the epidemic of diabetes, in vitro produced β-like cells are lauded for cell therapy of diabetic patients. In this regard, we investigated the effects of different concentrations of bone morphogenetic protein 7 (BMP7) on the differentiation of rat pancreatic ductal epithelial-like stem cells (PDESCs) into β-like cells. For inducement of the differentiation, PDESCs were cultured in the basal media (H-DMEM + 10 % FBS + 1% penicillin-streptomycin) supplemented with 5 ng/mL, 10 ng/mL, 15 ng/mL, and 20 ng/mL of BMP7 for 28 days. To corroborate the identity of induced cells, they were examined through cell morphology, dithizone (DTZ) staining, immunofluorescence staining, real-time polymerase chain reaction (qPCR), and glucose-stimulated insulin secretion assay (GSIS). The enrichment of induced cells was high among 5 ng/mL, 10 ng/mL, 15 ng/mL, and 20 ng/mL of BMP7 supplemented groups as compared to the control group. Further, the induced cells were positive, while, the control group cells were negative to DTZ staining and the differentiated cells also have shown the upregulated expression of β cell-specific marker genes (Ins1 and Pdx1). The GSIS assay of inducement groups for insulin and C-peptide secretion has shown significantly higher values as compared to the control group (P < 0.01). Hence, the addition of BMP7 to basal medium has effectually induced differentiation of adult rat PDESCs into islet like-cell clusters containing insulin-secreting β-like cells.
Collapse
Affiliation(s)
- Muhammad Waseem Ghani
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liu Bin
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Yang Jie
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhao Yi
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Wu Jiang
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Li Ye
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Lang Guan Cun
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Birmani
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhao Zhuangzhi
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - An Lilong
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiao Mei
- Department of Animal Science and Medicine, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
3
|
Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters. PLoS One 2017; 12:e0172922. [PMID: 28253305 PMCID: PMC5333835 DOI: 10.1371/journal.pone.0172922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/11/2017] [Indexed: 12/25/2022] Open
Abstract
The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes.
Collapse
|
4
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
5
|
Van Pham P, Thi-My Nguyen P, Thai-Quynh Nguyen A, Minh Pham V, Nguyen-Tu Bui A, Thi-Tung Dang L, Gia Nguyen K, Kim Phan N. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells by PDX-1 mRNA transfection. Differentiation 2014; 87:200-8. [DOI: 10.1016/j.diff.2014.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023]
|
6
|
Hiram-Bab S, Katz LS, Shapira H, Sandbank J, Gershengorn MC, Oron Y. Platelet-derived growth factor BB mimics serum-induced dispersal of pancreatic epithelial cell clusters. J Cell Physiol 2014; 229:743-51. [PMID: 24129818 DOI: 10.1002/jcp.24493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022]
Abstract
We showed previously that proliferating human islet-derived de-differentiated cells (DIDs) exhibit many characteristics of mesenchymal stem cells. Dispersed DIDs can be induced by serum deprivation to undergo mesenchymal-to-epithelial transition and aggregate into epithelial cell clusters (ECCs). Conversely, ECCs can be induced to disperse and undergo epithelial-to-mesenchymal transition (EMT) by re-addition of mammalian sera. In this study, we show that platelet-derived growth factor BB (PDGF-BB) mimics and mediates serum-induced ECCs' dispersal accompanied by accumulation of cytoplasmic β-catenin and a decrease in the levels of insulin and glucagon mRNAs. Moreover, we show that PDGF-BB-induced dispersal of ECCs is a more general phenomenon that occurs also with bone marrow mesenchymal stem cells (BM-MSCs) and dermal fibroblasts (DFs). In DIDs, BM-MSCs, and DFs, PDGF decreased the levels of DKK1 mRNA, suggesting involvement of the Wnt signaling pathway. PDGF-BB stimulated a significant increase in S473 phosphorylation of Akt and the PI3K specific inhibitor (PIP828) partially inhibited PDGF-BB-induced ECC dispersal. Lastly, the PDGF-receptor (PDGF-R) antagonist JNJ-10198409 inhibited both PDGF-BB--and serum-induced ECC dispersal. Epidermal growth factor (EGF), which shares most of the PDGF signaling pathway, did not induce dispersal and only weakly stimulated Akt phosphorylation. Our data suggest that PDGF-BB mediates serum-induced DIDs dispersal, correlated with the activation of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Sahar Hiram-Bab
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc 2014; 45:2019-24. [PMID: 23769099 DOI: 10.1016/j.transproceed.2013.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Exogenous insulin is, at the moment, the therapy of choice of diabetes, but does not allow tight regulation of glucose leading to long-term complications. Recently, pancreatic islet transplantation to reconstitute insulin-producing β cells, has emerged as an alternative promising therapeutic approach. Unfortunately, the number of donor islets is too low compared with the high number of patients needing a transplantation leading to a search for renewable sources of high-quality β-cells. This review, summarizes more recent promising approaches to the generation of new β-cells from embryonic stem cells for transdifferentiation of adult cells, particularly a critical examination of the seminal work by Lumelsky et al.
Collapse
Affiliation(s)
- M C Gioviale
- Transplant Unit, AOUP P. Giaccone, School of Medicine, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
8
|
Kuise T, Noguchi H. Recent progress in pancreatic islet transplantation. World J Transplant 2011; 1:13-8. [PMID: 24175188 PMCID: PMC3782227 DOI: 10.5500/wjt.v1.i1.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus remains a major burden. More than 200 million people are affected worldwide, which represents 6% of the world’s population. Type 1 diabetes mellitus is an autoimmune disease, which induces the permanent destruction of the β-cells of the pancreatic islets of Langerhans. Although intensive insulin therapy has proven effective to delay and sometimes prevent the progression of complications such as nephropathy, neuropathy or retinopathy, it is difficult to achieve and maintain long term in most subjects. The successes achieved over the last few decades by the transplantation of whole pancreas and isolated islets suggest that diabetes can be cured by the replenishment of deficient β cells. However, islet transplantation efforts have various limitations, including the limited supply of donor pancreata, the paucity of experienced islet isolation teams, side effects of immunosuppressants and poor long term results. The purpose of this article is to review the recent progress in clinical islet transplantation for the treatment of diabetes and to describe the recent progress on pancreatic stem/progenitor cell research, which has opened up several possibilities for the development of new treatments for diabetes.
Collapse
Affiliation(s)
- Takashi Kuise
- Takashi Kuise, Hirofumi Noguchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | |
Collapse
|
9
|
Shin JA, Hong OK, Lee HJ, Jeon SY, Kim JW, Lee SH, Cho JH, Lee JM, Choi YH, Chang SA, Son HY, Kim JH, Yoon KH. Transforming growth factor-β induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells. J Cell Biochem 2011; 112:179-88. [PMID: 21069735 DOI: 10.1002/jcb.22929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic duct cells are considered a potential source of β-cell regeneration, and transforming growth factor-β (TGF-β) has been suggested to perform an important role in these processes, but the underlying mechanism of the signal pathways, especially in humans, remains poorly understood. To evaluate the role of TGF-β1, pancreatic duct cells were isolated from three brain-dead organ donors. Pancreatic cell clusters harvested after islet isolation were dispersed to single cells and cultured in monolayers, then treated with TGF-β1. We analyzed the characteristics of the cultured cells, the TGF-β1 intracellular signaling pathway, the proliferation, and transdifferentiation rates of the duct cells. We also evaluated the genes and protein expression patterns after TGF-β1 treatment. After TGF-β1 treatment, typical morphologic changes representative of EMT were observed and Erk1/2, JNK, and AKT phosphorylation, Ras downstream effectors, were increased. β cell-specific transcription factors including PDX-1, Beta2/NeuroD, Ist-1, and NGN3 were markedly suppressed and the rate of transdifferentiation into β cells was also suppressed. Genomic and proteomic analyses suggested that TGF-β1 induces marked changes in a variety of structural genes and proteins associated with EMT. In conclusion, TGF-β1 induces EMT in cultured human pancreatic duct cells, but suppresses its proliferation and transdifferentiation into β cells. Our results are the first report of TGF-β1 effects for EMT and ductal cell transdifferentiation and proliferation at the protein level in human pancreatic duct cells.
Collapse
Affiliation(s)
- Jeong-Ah Shin
- Department of Endocrinology & Metabolism, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chandra V, G S, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 2011; 6:e20615. [PMID: 21687731 PMCID: PMC3110196 DOI: 10.1371/journal.pone.0020615] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/07/2011] [Indexed: 12/14/2022] Open
Abstract
Background Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. Methodology/Principal Findings In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3–4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. Conclusions h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Vikash Chandra
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Swetha G
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Sudhakar Muthyala
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Amit K. Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prabha D. Nair
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh R. Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|