1
|
Sultana T, Okla MK, Ahmed M, Akhtar N, Al-Hashimi A, Abdelgawad H, Haq IU. Withaferin A: From Ancient Remedy to Potential Drug Candidate. Molecules 2021; 26:molecules26247696. [PMID: 34946778 PMCID: PMC8705790 DOI: 10.3390/molecules26247696] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Withaferin A (WA) is a pivotal withanolide that has conquered a conspicuous place in research, owning to its multidimensional biological properties. It is an abundant constituent in Withania somnifera Dunal. (Ashwagandha, WS) that is one of the prehistoric pivotal remedies in Ayurveda. This article reviews the literature about the pharmacological profile of WA with special emphasis on its anticancer aspect. We reviewed research publications concerning WA through four databases and provided a descriptive analysis of literature without statistical or qualitative analysis. WA has been found as an effective remedy with multifaceted mechanisms and a broad spectrum of pharmacological profiles. It has anticancer, anti-inflammatory, antiherpetic, antifibrotic, antiplatelet, profibrinolytic, immunosuppressive, antipigmentation, antileishmanial, and healing potentials. Evidence for wide pharmacological actions of WA has been established by both in vivo and in vitro studies. Further, the scientific literature accentuates the role of WA harboring a variable therapeutic spectrum for integrative cancer chemoprevention and cure. WA is a modern drug from traditional medicine that is necessary to be advanced to clinical trials for advocating its utility as a commercial drug.
Collapse
Affiliation(s)
- Tahira Sultana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Madiha Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Correspondence: (M.A.); (I.-u.-H.)
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 43600, Pakistan;
| | - Abdulrahman Al-Hashimi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.O.); (A.A.-H.)
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Ihsan-ul- Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (M.A.); (I.-u.-H.)
| |
Collapse
|
2
|
YAN W, JIANG L, XU J. Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides alleviate type 2 diabetes mellitus in rats by resisting inflammatory response and oxidative stress. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.06619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | - Jifen XU
- Huadu District People’s Hospital, China
| |
Collapse
|
3
|
Wang L, Liu T, Liang R, Wang G, Liu Y, Zou J, Liu N, Zhang B, Liu Y, Ding X, Cai X, Wang Z, Xu X, Ricordi C, Wang S, Shen Z. Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation. EBioMedicine 2020; 51:102615. [PMID: 31918404 PMCID: PMC7000334 DOI: 10.1016/j.ebiom.2019.102615] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background A physiological hallmark of patients with type 2 diabetes mellitus (T2DM) is β cell dysfunction. Despite adequate treatment, it is an irreversible process that follows disease progression. Therefore, the development of novel therapies that restore β cell function is of utmost importance. Methods This study aims to unveil the mechanistic action of mesenchymal stem cells (MSCs) by investigating its impact on isolated human T2DM islets ex vivo and in vivo. Findings We propose that MSCs can attenuate β cell dysfunction by reversing β cell dedifferentiation in an IL-1Ra-mediated manner. In response to the elevated expression of proinflammatory cytokines in human T2DM islet cells, we observed that MSCs was activated to secret IL-1R antagonist (IL-1Ra) which acted on the inflammed islets and reversed β cell dedifferentiation, suggesting a crosstalk between MSCs and human T2DM islets. The co-transplantation of MSCs with human T2DM islets in diabetic SCID mice and intravenous infusion of MSCs in db/db mice revealed the reversal of β cell dedifferentiation and improved glycaemic control in the latter. Interpretation This evidence highlights the potential of MSCs in future cell-based therapies regarding the amelioration of β cell dysfunction.
Collapse
Affiliation(s)
- Le Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Tengli Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Rui Liang
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Guanqiao Wang
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yaojuan Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Jiaqi Zou
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Na Liu
- NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China
| | - Boya Zhang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yan Liu
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Xuejie Ding
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiangheng Cai
- The First Central Clinical College, Tianjin Medical University, Tianjin, 300192, China
| | - Zhiping Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiumin Xu
- Diabetes Research Institute, Cell Transplant Centre; Department of Surgery; Department Medicine; Miller School of Medicine, University of Miami, Miami, FL 33136, USA; The Cure Alliance, Miami, FL 33137, USA; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Camillo Ricordi
- Diabetes Research Institute, Cell Transplant Centre; Department of Surgery; Department Medicine; Miller School of Medicine, University of Miami, Miami, FL 33136, USA; The Cure Alliance, Miami, FL 33137, USA; Diabetes Research Institute Federation, Hollywood, FL 33021, USA
| | - Shusen Wang
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin 300384, China; Diabetes Research Institute Federation, Hollywood, FL 33021, USA.
| | - Zhongyang Shen
- Organ Transplant Centre, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China; Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| |
Collapse
|
4
|
Early TLR4 Blockade Attenuates Sterile Inflammation-mediated Stress in Islets During Isolation and Promotes Successful Transplant Outcomes. Transplantation 2018; 102:1505-1513. [DOI: 10.1097/tp.0000000000002287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Barra JM, Tse HM. Redox-Dependent Inflammation in Islet Transplantation Rejection. Front Endocrinol (Lausanne) 2018; 9:175. [PMID: 29740396 PMCID: PMC5924790 DOI: 10.3389/fendo.2018.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease that results in the progressive destruction of insulin-producing pancreatic β-cells inside the islets of Langerhans. The loss of this vital population leaves patients with a lifelong dependency on exogenous insulin and puts them at risk for life-threatening complications. One method being investigated to help restore insulin independence in these patients is islet cell transplantation. However, challenges associated with transplant rejection and islet viability have prevented long-term β-cell function. Redox signaling and the production of reactive oxygen species (ROS) by recipient immune cells and transplanted islets themselves are key players in graft rejection. Therefore, dissipation of ROS generation is a viable intervention that can protect transplanted islets from immune-mediated destruction. Here, we will discuss the newly appreciated role of redox signaling and ROS synthesis during graft rejection as well as new strategies being tested for their efficacy in redox modulation during islet cell transplantation.
Collapse
|
6
|
Yan X, Huang G, Liu Q, Zheng J, Chen H, Huang Q, Chen J, Huang H. Withaferin A protects against spinal cord injury by inhibiting apoptosis and inflammation in mice. PHARMACEUTICAL BIOLOGY 2017; 55:1171-1176. [PMID: 28228044 PMCID: PMC6130570 DOI: 10.1080/13880209.2017.1288262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 05/31/2023]
Abstract
CONTEXT Withaferin A (WFA) exhibits diverse pharmaceutical applications on human diseases, including rheumatoid arthritis, cancers and microbial infection. OBJECTIVE We evaluated the neuroprotective role of WFA using a mouse model of spinal cord injury (SCI). MATERIALS AND METHODS BALB/c mice were administrated 10 mg/kg of WFA. Gene expression was measured by real-time PCR, western blot and immunohistochemistry. Cell morphology and apoptosis were determined by H&E staining and TUNEL assay. Motor function was evaluated by the BBB functional scale for continuous 7 weeks. RESULTS WFA significantly improved neurobehavioural function and alleviated histological alteration of spinal cord tissues in traumatized mice. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) significantly increased in WFA-treated mice. Meanwhile, the expression of Nogo-A and RhoA remarkably decreased in the presence of WFA. Furthermore, the apoptotic cell death was attenuated in mice treated with WFA (31.48 ± 2.50% vs. 50.08 ± 2.08%) accompanied by decreased bax and increased bcl-2. In addition, WFA decreased the expression of pro-inflammatory mediators such as IL-1β (11.20 ± 1.96 ng/mL vs. 17.59 ± 1.42 ng/mL) and TNF-α (57.38 ± 3.57 pg/mL vs. 95.06 ± 9.13 pg/mL). The anti-inflammatory cytokines including TGF-β1 (14.32 ± 1.04 pg/mL vs. 9.37 ± 1.17 pg/mL) and IL-10 (116.80 ± 6.91 pg/mL vs. 72.33 ± 9.35 pg/mL) were elevated after WFA administration. DISCUSSION AND CONCLUSION This study demonstrated that WFA has a neuroprotective role by inhibition of apoptosis and inflammation after SCI in mice.
Collapse
Affiliation(s)
- Xianlei Yan
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Guangxiang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiemin Zheng
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hongmou Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Qidan Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jiakang Chen
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Heqing Huang
- Department of Neurosurgery, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
7
|
Jin SM, Shim W, Oh BJ, Oh SH, Yu SJ, Choi JM, Park HJ, Park JB, Kim JH. Anakinra Protects Against Serum Deprivation-Induced Inflammation and Functional Derangement in Islets Isolated From Nonhuman Primates. Am J Transplant 2017; 17:365-376. [PMID: 27376767 DOI: 10.1111/ajt.13953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 06/09/2016] [Accepted: 06/25/2016] [Indexed: 01/25/2023]
Abstract
We investigated whether serum deprivation induces islet amyloid polypeptide (IAPP) oligomer accumulation and/or a proinflammatory response and, if so, whether the addition of interleukin (IL)-1 receptor antagonist to the culture medium can relieve the proinflammatory response during serum-deprived culture of nonhuman primate (NHP) islets. After culture in medium with and without Ana under serum-deprived culture conditions, IAPP oligomer/amyloid accumulation, in vitro viability, islet function, cytokine secretion, and posttransplantation outcome in streptozotocin-induced diabetic nude mice were determined in islets isolated from heterozygote human IAPP transgenic (hIAPP+/- ) mice and/or NHP islets. Serum deprivation induced accumulation of IAPP oligomer, but not amyloid, in NHP islets. Anakinra (Ana) protected islets from the serum deprivation-induced impairment of in vitro viability and glucose-stimulated insulin secretion and attenuated serum deprivation-induced caspase-1 activation, transcription, and secretion of IL-1β, IL-6, and tumor necrosis factor-α in hIAPP+/- mice and NHP islets. Supplementation of medium with Ana during serum-deprived culture also improved posttransplantation in vivo outcomes of NHP islets. In conclusion, serum deprivation induced accumulation of IAPP oligomers and proinflammatory responses in cultured isolated islets. Supplementation of the culture medium with Ana attenuated the functional impairment and proinflammatory responses induced by serum deprivation in ex vivo culture of NHP islets.
Collapse
Affiliation(s)
- S-M Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W Shim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea.,Molecular Science and Technology Research Center, Ajou University, Suwon, Korea
| | - B J Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - S-H Oh
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - S J Yu
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - J M Choi
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - H J Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J B Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J H Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Diabetes and Endocrinology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Seoul, Korea
| |
Collapse
|
8
|
Gorelick J, Rosenberg R, Smotrich A, Hanuš L, Bernstein N. Hypoglycemic activity of withanolides and elicitated Withania somnifera. PHYTOCHEMISTRY 2015; 116:283-289. [PMID: 25796090 DOI: 10.1016/j.phytochem.2015.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 05/25/2023]
Abstract
Withania somnifera, known in India as Asghawhanda, is used traditionally to treat many medical problems including diabetes and has demonstrated therapeutic activity in various animal models as well as in diabetic patients. While much of W. somnifera's therapeutic activity is attributed to withanolides, their role in the anti-diabetic activity of W. somnifera has not been adequately studied. In the present study, we evaluated the anti-diabetic activity of W. somnifera extract and purified withanolides, as well as the effect of various elicitors on this activity. W. somnifera leaf and root extracts increased glucose uptake in myotubes and adipocytes in a dose dependent manner, with the leaf extract more active than the root extract. Leaf but not root extract increased insulin secretion in basal pancreatic beta cells but not in stimulated cells. Six withanolides isolated from W. somnifera were tested for anti-diabetic activity based on glucose uptake in skeletal myotubes. Withaferin A was found to increase glucose uptake, with 10μM producing a 54% increase compared with control, suggesting that withaferin A is at least partially responsible for W. somnifera's anti-diabetic activity. Elicitors applied to the root growing solutions affected the physiological state of the plants, altering membrane leakage or osmotic potential. Methyl salicylate and chitosan increased withaferin A content by 75% and 69% respectively, and extracts from elicited plants increased glucose uptake to a higher extent than non-elicited plants, demonstrating a correlation between increased content of withaferin A and anti-diabetic activity.
Collapse
Affiliation(s)
- Jonathan Gorelick
- Judea Regional Research and Development Center, Kiryat Arba, Israel.
| | - Rivka Rosenberg
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Israel
| | - Avinoam Smotrich
- Judea Regional Research and Development Center, Kiryat Arba, Israel
| | - Lumír Hanuš
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem 91120, Israel.
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Israel.
| |
Collapse
|
9
|
Trendowski M. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochim Biophys Acta Rev Cancer 2014; 1846:599-616. [PMID: 25286320 DOI: 10.1016/j.bbcan.2014.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 02/06/2023]
Abstract
Although cytoskeletal-directed agents have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of neoplastic cells, they are all microtubule-based drugs, and there has yet to be any microfilament- or intermediate filament-directed agents approved for clinical use. There are many inherent differences between the cytoskeletal networks of malignant and normal cells, providing an ideal target to attain preferential damage. Further, numerous microfilament-directed agents, and an intermediate filament-directed agent of particular interest (withaferin A) have demonstrated in vitro and in vivo efficacy, suggesting that cytoskeletal filaments may be exploited to supplement chemotherapeutic approaches currently used in the clinical setting. Therefore, this review is intended to expose academics and clinicians to the tremendous variety of cytoskeletal filament-directed agents that are currently available for further chemotherapeutic evaluation. The mechanisms by which microfilament directed- and intermediate filament-directed agents damage malignant cells are discussed in detail in order to establish how the drugs can be used in combination with each other, or with currently approved chemotherapeutic agents to generate a substantial synergistic attack, potentially establishing a new paradigm of chemotherapeutic agents.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
10
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2013. [DOI: 10.1016/s2305-0500(13)60154-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
SoRelle JA, Itoh T, Peng H, Kanak MA, Sugimoto K, Matsumoto S, Levy MF, Lawrence MC, Naziruddin B. Withaferin A inhibits pro-inflammatory cytokine-induced damage to islets in culture and following transplantation. Diabetologia 2013; 56:814-24. [PMID: 23318585 DOI: 10.1007/s00125-012-2813-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Beta cell death triggered by pro-inflammatory cytokines plays a central role in the pathogenesis of type 1 diabetes and loss of transplanted islets. The nuclear factor κB (NF-κB) signalling pathway is a key regulator of beta cell stress response, survival and apoptosis. Withaferin A (WA), a steroidal lactone derived from Withania somnifera, has been demonstrated to be a potent, safe, anti-inflammatory molecule that can inhibit NF-κB signalling. Therefore, we evaluated the ability of WA to protect mouse and human islets from the damaging effects of pro-inflammatory cytokines in vitro and following intraportal transplantation. METHODS Mouse and human islets were treated with a cytokine cocktail, and NF-κB activation was measured by immunoblots, p65 nuclear translocation and chromatin immunoprecipitation of p65-bound DNA. Intraportal transplantation of a marginal mass of syngeneic mouse islets was performed to evaluate the in vivo protective effect of WA. RESULTS Treatment with WA substantially improved islet engraftment of syngeneic islets (83% for infusion with 200 islets + WA; 0% for 200 islets + vehicle) in a mouse model of diabetes, compared with marginal graft controls with superior islet function in WA-treated mice confirmed by glucose tolerance test. Treatment of human and mouse islets with WA prevented cytokine-induced cell death, inhibited inflammatory cytokine secretion and protected islet potency. CONCLUSIONS WA was shown to be a strong inhibitor of the inflammatory response in islets, protecting against cytokine-induced cell damage while improving survival of transplanted islets. These results suggest that WA could be incorporated as an adjunctive treatment to improve islet transplant outcome.
Collapse
Affiliation(s)
- J A SoRelle
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 2012; 84:1282-91. [PMID: 22981382 DOI: 10.1016/j.bcp.2012.08.027] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/11/2022]
Abstract
Herbal medicine which involves the use of plants for their medicinal value, dates as far back as the origin of mankind and demonstrates an array of applications including cardiovascular protection and anti-cancer activities, via antioxidant, anti-inflammatory and metabolic activities. Even today the popularity of medicinal herbs is still growing like in traditional medicines such as the Indian medicine, Ayurveda. One of the Ayurvedic medicinal plants is Withania somnifera Dunal, of which the important constituents are the withanolides. Among them, Withaferin A is one of the most bioactive compounds, exerting anti-inflammatory, pro-apoptotic but also anti-invasive and anti-angiogenic effects. In the context of modern pharmacology, a better insight in the underlying mechanism of the broad range of bioactivities exerted by Withaferin A is compulsory. Therefore, a lot of effort was made to explore the intracellular effects of Withaferin A and to characterize its target proteins. This review provides a decisive insight on the molecular basis of the health-promoting potential of Withaferin A.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|