1
|
Abbas SH, Ceresa CDL, Pollok JM. Steatotic Donor Transplant Livers: Preservation Strategies to Mitigate against Ischaemia-Reperfusion Injury. Int J Mol Sci 2024; 25:4648. [PMID: 38731866 PMCID: PMC11083584 DOI: 10.3390/ijms25094648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Liver transplantation (LT) is the only definitive treatment for end-stage liver disease, yet the UK has seen a 400% increase in liver disease-related deaths since 1970, constrained further by a critical shortage of donor organs. This shortfall has necessitated the use of extended criteria donor organs, including those with evidence of steatosis. The impact of hepatic steatosis (HS) on graft viability remains a concern, particularly for donor livers with moderate to severe steatosis which are highly sensitive to the process of ischaemia-reperfusion injury (IRI) and static cold storage (SCS) leading to poor post-transplantation outcomes. This review explores the pathophysiological predisposition of steatotic livers to IRI, the limitations of SCS, and alternative preservation strategies, including novel organ preservation solutions (OPS) and normothermic machine perfusion (NMP), to mitigate IRI and improve outcomes for steatotic donor livers. By addressing these challenges, the liver transplant community can enhance the utilisation of steatotic donor livers which is crucial in the context of the global obesity crisis and the growing need to expand the donor pool.
Collapse
Affiliation(s)
- Syed Hussain Abbas
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK;
| | - Carlo Domenico Lorenzo Ceresa
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
| | - Joerg-Matthias Pollok
- Department of Hepatopancreatobiliary and Liver Transplant Surgery, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK;
- Division of Surgery & Interventional Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
3
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
4
|
Bardallo RG, Company-Marin I, Folch-Puy E, Roselló-Catafau J, Panisello-Rosello A, Carbonell T. PEG35 and Glutathione Improve Mitochondrial Function and Reduce Oxidative Stress in Cold Fatty Liver Graft Preservation. Antioxidants (Basel) 2022; 11:antiox11010158. [PMID: 35052662 PMCID: PMC8772919 DOI: 10.3390/antiox11010158] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The need to meet the demand for transplants entails the use of steatotic livers, more vulnerable to ischemia-reperfusion (IR) injury. Therefore, finding the optimal composition of static cold storage (SCS) preservation solutions is crucial. Given that ROS regulation is a therapeutic strategy for liver IR injury, we have added increasing concentrations of PEG35 and glutathione (GSH) to the preservation solutions (IGL-1 and IGL-2) and evaluated the possible protection against energy depletion and oxidative stress. Fatty livers from obese Zücker rats were isolated and randomly distributed in the control (Sham) preserved (24 h at 4 °C) in IGL-0 (without PEG35 and 3 mmol/L GSH), IGL-1 (1 g/L PEG35, and 3 mmol/L GSH), and IGL-2 (5 g/L PEG35 and 9 mmol/L GSH). Energy metabolites (ATP and succinate) and the expression of mitochondrial oxidative phosphorylation complexes (OXPHOS) were determined. Mitochondrial carrier uncoupling protein 2 (UCP2), PTEN-induced kinase 1 (PINK1), nuclear factor-erythroid 2 related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the inflammasome (NLRP3) expressions were analyzed. As biomarkers of oxidative stress, protein oxidation (AOPP) and carbonylation (DNP derivatives), and lipid peroxidation (malondialdehyde (MDA)–thiobarbituric acid (TBA) adducts) were measured. In addition, the reduced and oxidized glutathione (GSH and GSSG) and enzymatic (Cu–Zn superoxide dismutase (SOD), CAT, GSH S-T, GSH-Px, and GSH-R) antioxidant capacities were determined. Our results showed that the cold preservation of fatty liver graft depleted ATP, accumulated succinate and increased oxidative stress. In contrast, the preservation with IGL-2 solution maintained ATP production, decreased succinate levels and increased OXPHOS complexes I and II, UCP2, and PINK-1 expression, therefore maintaining mitochondrial integrity. IGL-2 also protected against oxidative stress by increasing Nrf2 and HO-1 expression and GSH levels. Therefore, the presence of PEG35 in storage solutions may be a valuable option as an antioxidant agent for organ preservation in clinical transplantation.
Collapse
Affiliation(s)
- Raquel G. Bardallo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
| | - Idoia Company-Marin
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
| | - Emma Folch-Puy
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Arnau Panisello-Rosello
- Experimental Pathology Department, Institut d’Investigacions Biomèdiques de Barcelona—Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain; (E.F.-P.); (J.R.-C.); (A.P.-R.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (R.G.B.); (I.C.-M.)
- Correspondence:
| |
Collapse
|
5
|
ELKady AH, Elkafoury BM, Saad DA, Abd el-Wahed DM, Baher W, Ahmed MA. Hepatic ischemia reperfusion injury: effect of moderate intensity exercise and oxytocin compared to l-arginine in a rat model. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Abstract
Background
Hepatic ischemia reperfusion (IR) injury is considered as a main cause of liver damage and dysfunction. The l-arginine/nitric oxide pathway seems to be relevant during this process of IR. Although acute intense exercise challenges the liver with increased reactive oxygen species (ROS), regular training improves hepatic antioxidant status. Also, oxytocin (Oxy), besides its classical functions, it exhibits a potent antistress, anti-inflammatory, and antioxidant effects. This study was designed to evaluate the hepatic functional and structural changes induced by hepatic IR injury in rats and to probe the effect and potential mechanism of moderate intensity exercise training and/or Oxy, in comparison to a nitric oxide donor, l-arginine, against liver IR-induced damage.
Results
Compared to the sham-operated control group, the hepatic IR group displayed a significant increase in serum levels of ALT and AST, plasma levels of MDA and TNF-α, and significant decrease in plasma TAC and nitrite levels together with the worsening of liver histological picture. L-Arg, Oxy, moderate intensity exercise, and the combination of both Oxy and moderate intensity exercises ameliorated these deleterious effects that were evident by the significant decrease in serum levels of ALT and AST, significant elevation in TAC and nitrite, and significant decline in lipid peroxidation (MDA) and TNF-α, besides regression of histopathological score regarding hepatocyte necrosis, vacuolization, and nuclear pyknosis. Both the moderate intensity exercise-trained group and Oxy-treated group showed a significant decline in TNF-α and nitrite levels as compared to l-Arg-treated group. The Oxy-treated group showed statistical insignificant changes in serum levels of ALT, AST, and plasma levels of nitrite, MDA, TAC, and TNF-α as compared to moderate intensity exercise-trained group.
Conclusion
The combination of both moderate intensity exercise and Oxy displayed more pronounced hepatoprotection on comparison with l-Arg which could be attributed to their more prominent antioxidant and anti-inflammatory effects but not due to their NO-enhancing effect.
Collapse
|
6
|
Slim C, Zaouali MA, Nassrallah H, Ammar HH, Majdoub H, Bouraoui A, Abdennebi HB. Protective potential effects of fucoidan in hepatic cold ischemia-rerfusion injury in rats. Int J Biol Macromol 2020; 155:498-507. [PMID: 32243932 DOI: 10.1016/j.ijbiomac.2020.03.245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
The necessity to increase the efficiency of organ preservation has pushed physicians to consider the use of pharmacological additives in preservation solutions to minimize ischemia reperfusion injury. Here, we evaluated the effect of fucoidan, sulfated polysaccharide from brown seaweed, as an additive to IGL-1 (Institut Georges Lopez) preservation solution. Livers from Wistar rats were preserved for 24 h at 4 °C in IGL-1 solution, enriched or not with fucoidan (100 mg/L). Thereafter, they were subjected to reperfusion (2 h, at 37 °C) using an isolated perfused rat liver model. The addition of fucoidan to IGL-1 solution reduced hepatic injury (AST, ALT) and improved liver function compared to IGL-1 solution without fucoidan. In addition, we noted a significant increase in the phosphorylation of AMPK, AKT protein kinase and GSK3-β, leading to a reduction in VDAC phosphorylation, as well as a reduction in apoptosis (caspase 3), mitochondrial damage, oxidative stress and endoplasmic reticulum (ER) stress markers. Furthermore, ERK1/2 and P38 MAPKs phosphorylation significantly decreased after supplementation of IGL-1 solution with fucoidan. In conclusion, the supplementation of IGL-1 solution with fucoidan maintained liver graft integrity and function through the prevention of the ER stress, oxidative stress and mitochondrial dysfunction. Fucoidan could be considered as potential natural therapeutic agent to alleviate graft injury.
Collapse
Affiliation(s)
- Chérifa Slim
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia; Département des Sciences du Vivant et Biotechnologie, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Tunisia
| | - Hana Nassrallah
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hiba Hadj Ammar
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Tunisia
| | - Abderrahman Bouraoui
- Laboratoire du Développement Chimique, Galénique et Pharmacologique des Médicaments (LR12ES09), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratoire du Génome Humain et Maladies multifactorielles (LR12ES07), Faculté de Pharmacie de Monastir, Université de Monastir, Tunisia.
| |
Collapse
|
7
|
Tchilikidi KY. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J Gastrointest Surg 2019; 11:126-142. [PMID: 31057698 PMCID: PMC6478595 DOI: 10.4240/wjgs.v11.i3.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
The growing demand for donor organs requires measures to expand donor pool. Those include extended criteria donors, such as elderly people, steatotic livers, donation after cardiac death, etc. Static cold storage to reduce metabolic requirements developed by Collins in late 1960s is the mainstay and the golden standard for donated organ protection. Hypothermic machine perfusion provides dynamic organ preservation at 4°C with protracted infusion of metabolic substrates to the graft during the ex vivo period. It has been used instead of static cold storage or after it as short perfusion in transplant center. Normothermic machine perfusion (NMP) delivers oxygen, and nutrition at physiological temperature mimicking regular environment in order to support cellular function. This would minimize effects of ischemia/reperfusion injury. Potentially, NMP may help to estimate graft functionality before implantation into a recipient. Clinical studies demonstrated at least its non-inferiority or better outcomes vs static cold storage. Regular grafts donated after brain death could be safely preserved with convenient static cold storage. Except for prolonged ischemia time where hypothermic machine perfusion started in transplant center could be estimated to provide possible positive reconditioning effect. Use of hypothermic machine perfusion in regular donation instead of static cold storage or in extended criteria donors requires further investigation. Multicenter randomized clinical trial supposed to be completed in December 2021. Extended criteria donors need additional measures for graft storage and assessment until its implantation. NMP is actively evaluating promising method for this purpose. Future studies are necessary for precise estimation and confirmation to issue clinical practice recommendations.
Collapse
|
8
|
Panisello-Roselló A, Alva N, Flores M, Lopez A, Castro Benítez C, Folch-Puy E, Rolo A, Palmeira C, Adam R, Carbonell T, Roselló-Catafau J. Aldehyde Dehydrogenase 2 (ALDH2) in Rat Fatty Liver Cold Ischemia Injury. Int J Mol Sci 2018; 19:2479. [PMID: 30131474 PMCID: PMC6164398 DOI: 10.3390/ijms19092479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/31/2022] Open
Abstract
Institut George Lopez-1 (IGL-1) and Histidine-tryptophan-ketoglutarate (HTK) solutions are proposed as alternatives to UW (gold standard) in liver preservation. Their composition differs in terms of the presence/absence of oncotic agents such as HES or PEG, and is decisive for graft conservation before transplantation. This is especially so when fatty (steatotic) livers are used since these grafts are more vulnerable to ischemia insult during conservation. Their composition determines the extent of the subsequent reperfusion injury after transplantation. Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, has been reported to play a protective role in warm ischemia-reperfusion injury (IRI), but its potential in fatty liver cold ischemic injury has not yet been investigated. We evaluated the relevance of ALDH2 activity in cold ischemia injury when fatty liver grafts from Zucker Obese rats were preserved in UW, HTK, and IGL-1 solutions, in order to study the mechanisms involved. ALDH2 upregulation was highest in livers preserved in IGL-1. It was accompanied by a decrease in transaminases, apoptosis (Caspase 3 and TUNEL assay), and lipoperoxidation, which was concomitant with the effective clearance of toxic aldehydes such as 4-hydroxy-nonenal. Variations in ATP levels were also determined. The results were consistent with levels of NF-E2 p45-related factor 2 (Nrf2), an antioxidant factor. Here we report for the first time the relevance of mitochondrial ALDH2 in fatty liver cold preservation and suggest that ALDH2 could be considered a potential therapeutic target or regulator in clinical transplantation.
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Marta Flores
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France.
| | | | - Emma Folch-Puy
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| | - Anabela Rolo
- Center for Neurosscience and Cell Biology, Universidade de Coimbra, 300-370 Coimbra, Portugal.
| | - Carlos Palmeira
- Center for Neurosscience and Cell Biology, Universidade de Coimbra, 300-370 Coimbra, Portugal.
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France.
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Alva N, Panisello-Roselló A, Flores M, Roselló-Catafau J, Carbonell T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J Gastroenterol 2018; 24:3521-3530. [PMID: 30131658 PMCID: PMC6102496 DOI: 10.3748/wjg.v24.i31.3521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury (IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.
Collapse
Affiliation(s)
- Norma Alva
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Marta Flores
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
10
|
Prieto I, Monsalve M. ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 2017; 12:1020-1025. [PMID: 28511345 PMCID: PMC5430574 DOI: 10.1016/j.redox.2017.04.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive Oxygen Species (ROS) are key mediators of ischemia-reperfusion injury but also required for the induction of the stress response that limits tissue injury and underlies the protection provided by ischemic-preconditioning protocols. Liver steatosis is an important risk factor for liver transplant failure. Liver steatosis is associated with mitochondrial dysfunction and excessive mitochondrial ROS production. Studies aiming at decreasing the sensibility of the steatotic liver to ischemia-reperfusion injury using pre-conditioning protocols, have shown that the steatotic liver has a reduced capacity to respond to these protocols. Recent studies indicate that these effects are related to a reduced capacity of the steatotic liver to respond to elevated ROS levels following reperfusion by inducing a compensatory response. This failure to respond to ROS is associated with reduced levels of antioxidants, mitochondrial damage, hepatocyte cell death, activation of the immune system and induction of pro-fibrotic mediators.
Collapse
Affiliation(s)
- Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
11
|
Cherif-Sayadi A, Hadj Ayed-Tka K, Zaouali MA, Bejaoui M, Hadj-Abdallah N, Bouhlel A, Ben Abdennebi H. Nitrite enhances liver graft protection against cold ischemia reperfusion injury through a NOS independent pathway. Libyan J Med 2017; 12:1308780. [PMID: 28357909 PMCID: PMC5418943 DOI: 10.1080/19932820.2017.1308780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Introduction: Nitrite has been found to protect liver graft from cold preservation injury. However, the cell signaling pathway involved in this protection remains unclear. Here, we attempt to clarify if the NOS pathway by using the NOS inhibitor, L-NAME (L-NG-Nitroarginine methyl ester). Animals and methods: Rat livers were conserved for 24 h at 4°C in (IGL-1) solution enriched or not with nitrite at 50 nM. In a third group, rats were pretreated with 50 mg/kg of L-NAME before their liver procurement and preservation in IGL-1 supplemented with nitrite (50 nM) and L-NAME (1 mM). After 24 h of cold storage, rat livers were ex-vivo perfused at 37°C during 2 h. Control livers were perfused without cold storage. Results: Nitrite effectively protected the rat liver grafts from the onset of cold I/R injury. L-NAME treatment did not abolish the beneficial effects of nitrite. Liver damage, protein oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when compared to IGL-1 group. Antioxidant enzyme activities and functional parameters were unchanged after NOS inhibition. Conclusion: Despite NOS inhibition by L-NAME, nitrite can still provide hepatic protection during cold I/R preservation. This suggests that nitrite acts through a NOS-independent pathway.
Collapse
Affiliation(s)
- Amani Cherif-Sayadi
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Kaouther Hadj Ayed-Tka
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Mohamed Amine Zaouali
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia.,b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Mohamed Bejaoui
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| | - Najet Hadj-Abdallah
- b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Ahlem Bouhlel
- b High Institute of Biotechnology of Monastir , University of Monastir , Monastir , Tunisia
| | - Hassen Ben Abdennebi
- a Research Unit of Biology and Molecular Anthropology Applied to Development and Health (UR12ES11), Faculty of Pharmacy , University of Monastir , Monastir , Tunisia
| |
Collapse
|
12
|
Meine MH, Leipnitz I, Zanotelli ML, Schlindwein ES, Kiss G, Martini J, de Medeiros Fleck A, Mucenic M, de Mello Brandão A, Marroni CA, Craco Cantisani GP. Comparison Between IGL-1 and HTK Preservation Solutions in Deceased Donor Liver Transplantation. Transplant Proc 2016; 47:888-93. [PMID: 26036479 DOI: 10.1016/j.transproceed.2015.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effectiveness of liver preservation solutions remains in evidence. Cold ischemia time, steatosis, expanded criterion donors, operational cost, and survival represent important roles in its success. In a prospective cohort study between August 2009 and April 2014, 178 patients were allocated into an Institut Georges Lopez - 1 (IGL-1) solution group (63.5%) or histidine-tryptophan-ketoglutarate (HTK) group (36.5%). There were no differences among recipient's characteristics including age, skin color, gender, Model for End-stage Liver Disease score, acute rejection, cholestasis, and reperfusion syndrome incidences. Also, donors, age average, skin color, donor risk index, time in intensive care unit, hemodynamic variables, infections, and steatosis incidences were similar. The average cold ischemia time was 494 minutes in the IGL-1 group and 489 minutes in the HTK group (P = .77). Alanine aminotransferase and aspartate aminotransferase serum levels on the first postoperative day were 707 and 1185 mg/dL, respectively, with IGL-1 and 1298 and 2291 mg/dL, respectively, with HTK (P = .016) and similar at day 15 (P > .88). The incidence of delayed graft function was 4.5% with IGL-1 and 4.6% with HTK (P = .90). The incidence primary nonfunction was 2.7% with IGL-1 and 3.1% with HTK (P = .71). The incidence of perioperative death was 11.5% with IGL-1 and 13.8% with HTK (P = .94). The survival in 30 months was 86% in IGL-1 group and 82% in HTK group (P = .66). Both preservation solutions are efficient to liver transplantations with deceased donors. Major prospective trials are necessary to evaluate each preservation solution's particularities. The preservation solution availability in each transplantation center must guide its use at the present moment.
Collapse
Affiliation(s)
- M H Meine
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil.
| | - I Leipnitz
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - M L Zanotelli
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil; Federal University of Rio Grande do Sul, UFRGS, School of Medicine, Porto Alegre, Brazil
| | - E S Schlindwein
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - G Kiss
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - J Martini
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - A de Medeiros Fleck
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - M Mucenic
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil
| | - A de Mello Brandão
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil; Health Sciences Faculty Foundation of Porto Alegre, FFCMPA, Porto Alegre, Brazil
| | - C A Marroni
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil; Health Sciences Faculty Foundation of Porto Alegre, FFCMPA, Porto Alegre, Brazil
| | - G P Craco Cantisani
- Hepatic Transplant Group, Dom Vicente Scherer Hospital, HDVS, Irmandade Santa Casa de Misericórdia Hospital Complex of Porto Alegre, ISCMPA, Porto Alegre, Brazil; Federal University of Rio Grande do Sul, UFRGS, School of Medicine, Porto Alegre, Brazil
| |
Collapse
|
13
|
Bejaoui M, Pantazi E, Folch-Puy E, Panisello A, Calvo M, Pasut G, Rimola A, Navasa M, Adam R, Roselló-Catafau J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794287. [PMID: 26543868 PMCID: PMC4620277 DOI: 10.1155/2015/794287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - María Calvo
- Serveis Cientifico-Tècnics, Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35122 Padova, Italy
| | - Antoni Rimola
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - René Adam
- Centre Hepato-Biliaire, AP-P-HP Hôpital Paul Brousse, Inserm U776, Université Paris Sud, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Mahfoudh-Boussaid A, Hadj Ayed Tka K, Zaouali MA, Roselló-Catafau J, Ben Abdennebi H. Effects of trimetazidine on the Akt/eNOS signaling pathway and oxidative stress in an in vivo rat model of renal ischemia-reperfusion. Ren Fail 2015; 36:1436-42. [PMID: 25246344 DOI: 10.3109/0886022x.2014.949765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Renal ischemia reperfusion (I/R) injury, which occurs during renal surgery or transplantation, is the major cause of acute renal failure. Trimetazidine (TMZ), an anti-ischemic drug, protects kidney against the deleterious effects of I/R. However its protective mechanism remains unclear. The aim of this study is to examine the relevance of Akt, endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor-1α (HIF-1α) on TMZ induced protection of kidneys against I/R injury. Wistar rats were subjected to 60 min of warm renal ischemia followed by 120 min of reperfusion, or to intraperitoneal injection of TMZ (3 mg/kg) 30 min before ischemia. In sham operated group renal pedicles were only dissected. Compared to I/R, TMZ treatment decreased lactate dehydrogenase (845 ± 13 vs. 1028 ± 30 U/L). In addition, creatinine clearance and sodium reabsorption rates reached 105 ± 12 versus 31 ± 11 μL/min/g kidney weight and 95 ± 1 versus 68 ± 5%, respectively. Besides, we noted a decrease in malondialdehyde concentration (0.33 ± 0.01 vs. 0.59 ± 0.03 nmol/mg of protein) and an increase in glutathione concentration (2.6 ± 0.2 vs. 0.93 ± 0.16 µg GSH/mg of protein), glutathione peroxidase (95 ± 4 vs. 61 ± 3 µg GSH/min/mg of protein), and superoxide dismutase (25 ± 3 vs. 11 ± 2 U/mg of protein) and catalase (91 ± 12 vs. 38 ± 9 μmol/min/mg of protein) activities. Parallely, we noted a significant increase in p-Akt, eNOS, nitrite and nitrate (18 ± 2 vs. 8 ± 0.1 pomL/mg of protein), HIF-1α (333 ± 48 vs. 177 ± 14 µg/mg of protein) and heme oxygenase-1 (HO-1) levels regarding I/R. TMZ treatment improves renal tolerance to warm I/R. Such protection implicates an activation of Akt/eNOS signaling pathway, HIF-1α stabilization and HO-1 activation.
Collapse
Affiliation(s)
- Asma Mahfoudh-Boussaid
- Research Unit "Biologie et Anthropologie Moléculaire Appliquées au Développement et à la Santé" (UR12ES11), Faculty of Pharmacy, University of Monastir, Rue Avicenne , Monastir , Tunisia and
| | | | | | | | | |
Collapse
|
15
|
Bejaoui M, Pantazi E, Folch-Puy E, Baptista PM, García-Gil A, Adam R, Roselló-Catafau J. Emerging concepts in liver graft preservation. World J Gastroenterol 2015; 21:396-407. [PMID: 25593455 PMCID: PMC4292271 DOI: 10.3748/wjg.v21.i2.396] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
The urgent need to expand the donor pool in order to attend to the growing demand for liver transplantation has obliged physicians to consider the use of suboptimal liver grafts and also to redefine the preservation strategies. This review examines the different methods of liver graft preservation, focusing on the latest advances in both static cold storage and machine perfusion (MP). The new strategies for static cold storage are mainly designed to increase the fatty liver graft preservation via the supplementation of commercial organ preservation solutions with additives. In this paper we stress the importance of carrying out effective graft washout after static cold preservation, and present a detailed discussion of the future perspectives for dynamic graft preservation using MP at different temperatures (hypothermia at 4 °C, normothermia at 37 °C and subnormothermia at 20 °C-25 °C). Finally, we highlight some emerging applications of regenerative medicine in liver graft preservation. In conclusion, this review discusses the "state of the art" and future perspectives in static and dynamic liver graft preservation in order to improve graft viability.
Collapse
|