1
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Hosseini-Moghaddam SM, Kothari S, Humar A, Albasata H, Yetmar ZA, Razonable RR, Neofytos D, D'Asaro M, Boggian K, Hirzel C, Khanna N, Manuel O, Mueller NJ, Imlay H, Kabbani D, Tyagi V, Smibert OC, Nasra M, Fontana L, Obeid KM, Apostolopoulou A, Zhang SX, Permpalung N, Alhatimi H, Silverman MS, Guo H, Rogers BA, MacKenzie E, Pisano J, Gioia F, Rapi L, Prasad GVR, Banegas M, Alonso CD, Doss K, Rakita RM, Fishman JA. Adjunctive glucocorticoid therapy for Pneumocystis jirovecii pneumonia in solid organ transplant recipients: A multicenter cohort, 2015-2020. Am J Transplant 2024; 24:653-668. [PMID: 37977229 DOI: 10.1016/j.ajt.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Solid organ transplant recipients (SOTRs) frequently receive adjunctive glucocorticoid therapy (AGT) for Pneumocystis jirovecii pneumonia (PJP). This multicenter cohort of SOTRs with PJP admitted to 20 transplant centers in Canada, the United States, Europe, and Australia, was examined for whether AGT was associated with a lower rate of all-cause intensive care unit (ICU) admission, 90-day death, or a composite outcome (ICU admission or death). Of 172 SOTRs with PJP (median [IQR] age: 60 (51.5-67.0) years; 58 female [33.7%]), the ICU admission and death rates were 43.4%, and 20.8%, respectively. AGT was not associated with a reduced risk of ICU admission (adjusted odds ratio [aOR] [95% CI]: 0.49 [0.21-1.12]), death (aOR [95% CI]: 0.80 [0.30-2.17]), or the composite outcome (aOR [95% CI]: 0.97 [0.71-1.31]) in the propensity score-adjusted analysis. AGT was not significantly associated with at least 1 unit of the respiratory portion of the Sequential Organ Failure Assessment score improvement by day 5 (12/37 [32.4%] vs 39/111 [35.1%]; P = .78). We did not observe significant associations between AGT and ICU admission or death in SOTRs with PJP. Our findings should prompt a reevaluation of routine AGT administration in posttransplant PJP treatment and highlight the need for interventional studies.
Collapse
Affiliation(s)
- Seyed M Hosseini-Moghaddam
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sagar Kothari
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Atul Humar
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hanan Albasata
- Transplant Infectious Diseases and Ajmera Transplant Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zachary A Yetmar
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R Razonable
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Dionysios Neofytos
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Matilde D'Asaro
- Transplant Infectious Diseases Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Katia Boggian
- Division of Infectious Diseases, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Cedric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland
| | - Oriol Manuel
- Division of Infectious Diseases, University Hospital of Vaud, Lausanne, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Switzerland
| | - Hannah Imlay
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Dima Kabbani
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Varalika Tyagi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Olivia C Smibert
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, The University of Melbourne at Austin Health, Heidelberg, Victoria, Australia; Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia; The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Mohamed Nasra
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, The University of Melbourne at Austin Health, Heidelberg, Victoria, Australia; Monash Health, Melbourne, Victoria, Australia
| | - Lauren Fontana
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karam M Obeid
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Apostolopoulou
- Transplant Infectious Disease Program and Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hind Alhatimi
- Division of Infectious Diseases, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michael S Silverman
- Division of Infectious Diseases, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Henry Guo
- Monash Health, Melbourne, Victoria, Australia
| | - Benjamin A Rogers
- Monash Health, Melbourne, Victoria, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Erica MacKenzie
- Section of Infectious Diseases and Global Health, Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Jennifer Pisano
- Section of Infectious Diseases and Global Health, Department of Medicine, University of Chicago Medicine, Chicago, Illinois, USA
| | - Francesca Gioia
- Department of Infectious Diseases, Hospital Roman y Cajal, Madrid, Spain
| | - Lindita Rapi
- Kidney Transplant Program, St. Michael Hospital, University of Toronto, Toronto, Ontario, Canada
| | - G V Ramesh Prasad
- Kidney Transplant Program, St. Michael Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marcela Banegas
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Carolyn D Alonso
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kathleen Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Robert M Rakita
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jay A Fishman
- Transplant Infectious Disease Program and Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Cushion MT, Ashbaugh A. The Long-Acting Echinocandin, Rezafungin, Prevents Pneumocystis Pneumonia and Eliminates Pneumocystis from the Lungs in Prophylaxis and Murine Treatment Models. J Fungi (Basel) 2021; 7:jof7090747. [PMID: 34575785 PMCID: PMC8468546 DOI: 10.3390/jof7090747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus, alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic properties that allow for once-weekly dosing in addition, to antifungal activity against these predominant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. murina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg 3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for 2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for 4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin 20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both prevent infection and eliminate P. murina from the lungs of mice. These findings support the obligate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further investigation for treatment of P. jirovecii pneumonia in humans.
Collapse
Affiliation(s)
- Melanie T. Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
- Correspondence:
| | - Alan Ashbaugh
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
| |
Collapse
|
4
|
A Comprehensive Evaluation of Risk Factors for Pneumocystis Jirovecii Pneumonia in Adult Solid Organ Transplant Recipients: a Systematic Review and Meta-Analysis. Transplantation 2020; 105:2291-2306. [PMID: 33323766 DOI: 10.1097/tp.0000000000003576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND There is no consensus guidance on when to reinitiate Pneumocystis jirovecii pneumonia (PJP) prophylaxis in solid organ transplant (SOT) recipients at increased risk. The 2019 American Society of Transplantation Infectious Diseases Community of Practice (AST IDCOP) guidelines suggested to continue or reinstitute PJP prophylaxis in those receiving intensified immunosuppression for graft rejection, CMV infection, higher dose of corticosteroids, or prolonged neutropenia. METHODS A literature search was conducted evaluating all literature from existence through April 22, 2020 using MEDLINE and EMBASE. (PROSPERO: CRD42019134204) RESULTS:: A total of 30 studies with 413 276 SOT recipients were included. The following factors were associated with PJP development: acute rejection (pooled odds ratio (pOR) = 2.35 (1.69, 3.26), study heterogeneity index (I)= 23.4%), cytomegalovirus (CMV)-related illnesses (pOR = 3.14 (2.30, 4.29), I=48%), absolute lymphocyte count < 500 cells/mm (pOR = 6.29[3.56, 11.13], I 0%), BK-related diseases (pOR = 2.59[1.22, 5.49], I 0%), HLA mismatch ≥ 3 (pOR = 1.83 [1.06, 3.17], I= 0%), rituximab use (pOR =3.03 (1.82, 5.04); I =0%) and polyclonal antibodies use for rejection (pOR = 3.92 [1.87, 8.19], I= 0%). On the other hand, sex, CMV mismatch, interleukin-2 inhibitors, corticosteroids for rejection, and plasmapheresis were not associated with developing PJP. CONCLUSION PJP prophylaxis should be considered in SOT recipients with lymphopenia, BK-related infections and rituximab exposure in addition to the previously mentioned risk factors in the AST IDCOP guidelines.
Collapse
|
5
|
Giannella M, Husain S, Saliba F, Viale P. Use of echinocandin prophylaxis in solid organ transplantation. J Antimicrob Chemother 2019; 73:i51-i59. [PMID: 29304212 DOI: 10.1093/jac/dkx449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) are a major threat to patients undergoing solid organ transplantation (SOT). Owing to improvements in surgical techniques, immunosuppression therapy and antifungal prophylaxis, the incidence of IFIs has been decreasing in recent years. However, IFI-associated morbidity and mortality remain significant. Invasive candidiasis (IC) and aspergillosis (IA) are the main IFIs after SOT. Risk factors for IC and IA continue to evolve, and thus strategies for their prevention should be constantly updated and targeted to both individual patient risk factors and local epidemiology. In this review, we discuss the current epidemiology and risk factors for IFIs in SOT recipients in the context of actual approaches to antifungal prophylaxis, including experience with the use of echinocandins, after SOT.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Pierluigi Viale
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
She WH, Chok KSH, Li IWS, Ma KW, Sin SL, Dai WC, Fung JYY, Lo CM. Pneumocystis jirovecii-related spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema in a liver transplant recipient: a case report. BMC Infect Dis 2019; 19:66. [PMID: 30658592 PMCID: PMC6339407 DOI: 10.1186/s12879-019-3723-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pneumocystis pneumonia (PCP) is a common opportunistic infection caused by Pneumocystis jirovecii. Its incidence at 2 years or more after liver transplant (LT) is < 0.1%. PCP-related spontaneous pneumothorax and/or pneumomediastinum is rare in patients without the human immunodeficiency virus, with an incidence of 0.4-4%. CASE PRESENTATION A 65-year-old woman who had split-graft deceased-donor LT for primary biliary cirrhosis developed fever, dyspnea and dry coughing at 25 months after transplant. Her immunosuppressants included tacrolimus, mycophenolate mofetil, and prednisolone. PCP infection was confirmed by molecular detection of Pneumocystis jirovecii,in bronchoalveolar lavage. On day-10 trimethoprim-sulphamethoxazole, her chest X-ray showed subcutaneous emphysema bilaterally, right pneumothorax and pneumomediastinum. Computed tomography of the thorax confirmed the presence of right pneumothorax, pneumomediastinum and subcutaneous emphysema. She was managed with 7-day right-sided chest drain and a 21-day course of trimethoprim-sulphamethoxazole before discharge. CONCLUSION Longer period of PCP prophylaxis should be considered in patients who have a higher risk compared to general LT patients. High index of clinical suspicion, prompt diagnosis and treatment with ongoing patient reassessment to detect and exclude rare, potentially fatal but treatable complications are essential, especially when clinical deterioration has developed.
Collapse
Affiliation(s)
- Wong Hoi She
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Kenneth S H Chok
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China.
| | - Iris W S Li
- School of Public Health, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Ka Wing Ma
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Sui Ling Sin
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Wing Chiu Dai
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - James Y Y Fung
- State Key Laboratory for Liver Research, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China.,Department of Medicine, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| |
Collapse
|
7
|
Kulkarni, AP, Sengar, M, Chinnaswamy, G, Hegde, A, Rodrigues, C, Soman, R, Khilnani, GC, Ramasubban, S, Desai, M, Pandit, R, Khasne, R, Shetty, A, Gilada, T, Bhosale, S, Kothekar, A, Dixit, S, Zirpe, K, Mehta, Y, Pulinilkunnathil, JG, Bhagat, V, Khan, MS, Narkhede, AM, Baliga, N, Ammapalli, S, Bamne, S, Turkar, S, K, VB, Choudhary, J, Kumar, R, Divatia JV. Indian Antimicrobial Prescription Guidelines in Critically Ill Immunocompromised Patients. Indian J Crit Care Med 2019; 23:S64-S96. [PMID: 31516212 PMCID: PMC6734470 DOI: 10.5005/jp-journals-10071-23102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
How to cite this article: Kulkarni AP, Sengar M, Chinnaswamy G, Hegde A, Rodrigues C, Soman R, Khilnani GC, Ramasubban S, Desai M, Pandit R, Khasne R, Shetty A, Gilada T, Bhosale S, Kothekar A, Dixit S, Zirpe K, Mehta Y, Pulinilkunnathil JG, Bhagat V, Khan MS, Narkhede AM, Baliga N, Ammapalli S, Bamne S, Turkar S, Bhat KV, Choudhary J, Kumar R, Divatia JV. Indian Journal of Critical Care Medicine 2019;23(Suppl 1): S64-S96.
Collapse
Affiliation(s)
- Atul P Kulkarni,
- Division of Critical Care Medicine, Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Manju Sengar,
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Girish Chinnaswamy,
- Department of Paediatric Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Dr Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Ashit Hegde,
- Consultant in Medicine and Critical Care, PD Hinduja National Hospital, Mahim, Mumbai, Maharashtra, India
| | - Camilla Rodrigues,
- Consultant Microbiologist and Chair Infection Control, Hinduja Hospital, Mahim, Mumbai, Maharashtra, India
| | - Rajeev Soman,
- Consultant ID Physician, Jupiter Hospital, Pune, DeenanathMangeshkar Hospital, Pune, BharatiVidyapeeth, Deemed University Hospital, Pune, Courtsey Visiting Consultant, Hinduja Hospital Mumbai, Maharashtra, India
| | - Gopi C Khilnani,
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Suresh Ramasubban,
- Pulmomary and Critical Care Medicine, Apollo Gleneagles Hospital, 58, Canal Circular Road, Kolkata, West Bengal, India
| | - Mukesh Desai,
- Department of Immunology, Prof of Pediatric Hematology and Oncology, Bai Jerbaiwadia Hospital for Children, Consultant, Hematologist, Nanavati Superspeciality Hospital, Director of Pediatric Hematology, Surya Hospitals, Mumbai, Maharashtra, India
| | - Rahul Pandit,
- Intensive Care Unit, Fortis Hospital, Mulund Goregaon Link Road, Mulund (W), Mumbai, Maharashtra, India
| | - Ruchira Khasne,
- Critical Care Medicine, Ashoka - Medicover Hospital, Indira Nagar, Wadala Nashik, Maharashtra, India
| | - Anjali Shetty,
- Microbiology Section, 5th Floor, S1 Building, PD Hinduja Hospital, Veer Savarkar Marg, Mahim, Mumbai, Maharashtra, India
| | - Trupti Gilada,
- Consultant Physician in Infectious Disease, Unison Medicare and Research Centre and Prince Aly Khan Hospital, Maharukh Mansion, Alibhai Premji Marg, Grant Road, Mumbai, Maharashtra, India
| | - Shilpushp Bhosale,
- Intensive Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Amol Kothekar,
- Division of Critical Care Medicine, Departemnt of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Subhal Dixit,
- Consultant in Critical Care, Director, ICU Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Kapil Zirpe,
- Neuro-Trauma Unit, Grant Medical Foundation, Ruby Hall Clinic, Pune, Maharashtra, India
| | - Yatin Mehta,
- Institute of Critical Care and Anesthesiology, Medanta The Medicity, Gurgaon, Haryana, India
| | - Jacob George Pulinilkunnathil,
- Division of Critical Care Medicine, Department of Anesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr E Borges Road, Mumbai, Maharashtra, India
| | - Vikas Bhagat,
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, HomiBhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Mohammad Saif Khan,
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Amit M Narkhede,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Nishanth Baliga,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Srilekha Ammapalli,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Shrirang Bamne,
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Center, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| | - Siddharth Turkar,
- Department of Medical Oncology, Tata Memorial Hospital, HomiBhabha National Institute, Mumbai, Maharashtra, India
| | - Vasudeva Bhat K,
- Department of Pediatric Oncology, Tata Memorial Hospital, HomiBhabha National Institute, Dr E. Borges Marg, Parel, Mumbai, Maharashtra, India
| | - Jitendra Choudhary,
- Critical Care, Fortis Hospital, 102, Nav Sai Shakti CHS, Near Bhoir Gymkhana, M Phule Road, Dombivali West Mumbai, Maharashtra, India
| | - Rishi Kumar,
- Critical Care Medicine, PD Hinduja National Hospital and MRC, Mumbai, Maharashtra, India
| | - Jigeeshu V Divatia
- Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
A Multicenter Case-control Study of the Effect of Acute Rejection and Cytomegalovirus Infection on Pneumocystis Pneumonia in Solid Organ Transplant Recipients. Clin Infect Dis 2018; 68:1320-1326. [DOI: 10.1093/cid/ciy682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
|
9
|
Hosseini-Moghaddam SM, Krishnan RJ, Guo H, Kumar D. Cytomegalovirus infection and graft rejection as risk factors for pneumocystis pneumonia in solid organ transplant recipients: A systematic review and meta-analysis. Clin Transplant 2018; 32:e13339. [PMID: 29956379 DOI: 10.1111/ctr.13339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/24/2018] [Indexed: 01/08/2023]
Abstract
A growing number of publications have reported the outbreaks of post-transplant pneumocystis pneumonia (PJP). In most studies, the onset of PJP was beyond 6-12 months of prophylaxis. Cytomegalovirus (CMV) infection and allograft rejection have been repeatedly reported as probable risk factors for post-transplant PJP. In this systematic review and meta-analysis, we determined the pooled effect estimates of these 2 variables as risk factors. Data sources included PUBMED, MEDLINE-OVID, EMBASE-OVID, Cochrane Library, Networked Digital Library of Theses and Dissertations, World Health Organization, and Web of Science. We excluded publications related to hematopoietic stem cell transplantation (HSCT) or Human Immunodeficiency Virus (HIV) patients. Eventually, 15 studies remained for the final stage of screening. Cytomegalovirus infection (OR: 3.30, CI 95%: 2.07-5.26, I2 : 57%, P = 0.006) and allograft rejection (OR:2.36, CI95%: 1.54-3.62, I2: 45.5%, P = 0.05) significantly increased the risk of post-transplant PJP. Extended prophylaxis targeting recipients with allograft rejection or CMV infection may reduce the risk of PJP.
Collapse
Affiliation(s)
- Seyed M Hosseini-Moghaddam
- MultiOrgan Transplant Program, Division of Infectious Diseases, Department of Medicine, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Rohin Jayaram Krishnan
- The Department of Epidemiology& Biostatistics, Western University, London, Ontario, Canada
| | - Hui Guo
- The Department of Epidemiology& Biostatistics, Western University, London, Ontario, Canada
| | - Deepali Kumar
- Multiorgan Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Chronic liver disease has been associated with pulmonary dysfunction both before and after liver transplantation. Post-liver transplantation pulmonary complications can affect both morbidity and mortality often necessitating intensive care during the immediate postoperative period. The major pulmonary complications include pneumonia, pleural effusions, pulmonary edema, and atelectasis. Poor clinical outcomes have been known to be associated with age, severity of liver dysfunction, and preexisting lung disease as well as perioperative events related to fluid balance, particularly transfusion and fluid volumes. Delineating each and every one of these pulmonary complications and their associated risk factors becomes paramount in guiding specific therapeutic strategies.
Collapse
|
11
|
Xia Y, Zhou H, Zhu F, Zhang W, Wu C, Lu L. Diagnosis and treatment of pulmonary cavity after liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:301. [PMID: 28856141 DOI: 10.21037/atm.2017.05.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although the outcomes have improved in the current era, pulmonary infection remains a significant post-transplant complication in liver transplant (LT) recipients. Pulmonary infection with cavity formation often leads to higher mortality rates after LT. We wished to investigate the diagnosis and treatment of pulmonary cavity (PC) formation after LT. METHODS We evaluated (retrospectively) five cases of PC formation, shown on CT scans of the chest after LT, by analyzing imaging features, diagnosis, treatment, liver function, and the concentration changes and efficacy of immunosuppressants. RESULTS According to the results from the CT scan, serum Aspergillus galactomannan (GM) assay, the purified protein derivative (PPD) skin test, and the sputum smears and blood culture, three cases were diagnosed with Aspergillus infection, and the other two cases were diagnosed with Mycobacterium tuberculosis infection. Liver function and FK506 concentration were monitored during treatment. Antibiotics used for treatment of Aspergillus and Mycobacterium tuberculosis infections affected liver function and FK506 concentration. However, after adjustment of drug doses, antibiotic treatment was tolerated in all patients. Four cases were cured, but 1 patient died of Aspergillus infection. CONCLUSIONS Distinguishing between Aspergillus infection and Mycobacterium tuberculosis infection for PCs after liver transplantation (LT) using a CT scan is difficult. The diagnosis can be confirmed using clinical characteristics, sputum culture, GM assay, PPD, and sputum smears. Early diagnosis and treatment could lead to a better prognosis.
Collapse
Affiliation(s)
- Yongxiang Xia
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing 210029, China
| | - Haoming Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing 210029, China
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing 210029, China
| | - Ling Lu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Key Laboratory of Living Donor Liver Transplantation, National Health and Family Planning Commission, Nanjing 210029, China
| |
Collapse
|
12
|
|
13
|
Huh K, Ha YE, Denning DW, Peck KR. Serious fungal infections in Korea. Eur J Clin Microbiol Infect Dis 2017; 36:957-963. [PMID: 28161743 DOI: 10.1007/s10096-017-2923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
Information on the incidence and prevalence of fungal infections is of critical value in public health policy. However, nationwide epidemiological data on fungal infections are scarce, due to a lack of surveillance and funding. The objective of this study was to estimate the disease burden of fungal infections in the Republic of Korea. An actuarial approach using a deterministic model was used for the estimation. Data on the number of populations at risk and the frequencies of fungal infections in those populations were obtained from national statistics reports and epidemiology papers. Approximately 1 million people were estimated to be affected by fungal infections every year. The burdens of candidemia (4.12 per 100,000), cryptococcal meningitis (0.09 per 100,000), and Pneumocystis pneumonia (0.51 per 100,000) in South Korea were estimated to be comparable to those in other countries. The prevalence of chronic pulmonary aspergillosis (22.4 per 100,000) was markedly high, probably due to the high burden of tuberculosis in Korea. The low burdens of allergic bronchopulmonary aspergillosis (56.9 per 100,000) and severe asthma with fungal sensitization (75.1 per 100,000) warrant further study. Oral candidiasis (539 per 100,000) was estimated to affect a much larger population than noted in previous studies. Our work provides valuable insight on the epidemiology of fungal infections; however, additional studies are needed.
Collapse
Affiliation(s)
- K Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Division of Infectious Diseases, Armed Forces Capital Hospital, Seongnam, Korea
| | - Y E Ha
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - D W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, Manchester, UK.,The University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - K R Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Anesi JA, Baddley JW. Approach to the Solid Organ Transplant Patient with Suspected Fungal Infection. Infect Dis Clin North Am 2015; 30:277-96. [PMID: 26739603 DOI: 10.1016/j.idc.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In solid organ transplant (SOT) recipients, invasive fungal infections (IFIs) are associated with significant morbidity and mortality. Detection of IFIs can be difficult because the signs and symptoms are similar to those of viral or bacterial infections, and diagnostic techniques have limited sensitivity and specificity. Clinicians must rely on knowledge of the patient's risk factors for fungal infection to make a diagnosis. The authors describe their approach to the SOT recipient with suspected fungal infection. The epidemiology of IFIs in the SOT population is reviewed, and a syndromic approach to suspected IFI in SOT recipients is described.
Collapse
Affiliation(s)
- Judith A Anesi
- Division of Infectious Diseases, University of Pennsylvania, 3400 Spruce Street, 3 Silverstein, Suite E, Philadelphia, PA 19104, USA
| | - John W Baddley
- Department of Medicine, University of Alabama at Birmingham, 1900 University Boulevard, 229 THT, Birmingham, AL 35294, USA; Medical Service, Birmingham VA Medical Center, 700 South 19th street, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
La Hoz RM, Baddley JW. Pneumocystis Pneumonia in Solid Organ Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2015. [DOI: 10.1007/s12281-015-0244-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Iriart X, Bouar ML, Kamar N, Berry A. Pneumocystis Pneumonia in Solid-Organ Transplant Recipients. J Fungi (Basel) 2015; 1:293-331. [PMID: 29376913 PMCID: PMC5753127 DOI: 10.3390/jof1030293] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is well known and described in AIDS patients. Due to the increasing use of cytotoxic and immunosuppressive therapies, the incidence of this infection has dramatically increased in the last years in patients with other predisposing immunodeficiencies and remains an important cause of morbidity and mortality in solid-organ transplant (SOT) recipients. PCP in HIV-negative patients, such as SOT patients, harbors some specificity compared to AIDS patients, which could change the medical management of these patients. This article summarizes the current knowledge on the epidemiology, risk factors, clinical manifestations, diagnoses, prevention, and treatment of Pneumocystis pneumonia in solid-organ transplant recipients, with a particular focus on the changes caused by the use of post-transplantation prophylaxis.
Collapse
Affiliation(s)
- Xavier Iriart
- Department of Parasitology-Mycology, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Institut Fédératif de biologie (IFB), 330 avenue de Grande Bretagne, TSA 40031, Toulouse 31059, France.
- INSERM U1043, Toulouse F-31300, France.
- CNRS UMR5282, Toulouse F-31300, France.
- Université de Toulouse, UPS, Centre de Physiopathiologie de Toulouse Purpan (CPTP), Toulouse F-31300, France.
| | - Marine Le Bouar
- Department of Parasitology-Mycology, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Institut Fédératif de biologie (IFB), 330 avenue de Grande Bretagne, TSA 40031, Toulouse 31059, France.
- INSERM U1043, Toulouse F-31300, France.
- CNRS UMR5282, Toulouse F-31300, France.
- Université de Toulouse, UPS, Centre de Physiopathiologie de Toulouse Purpan (CPTP), Toulouse F-31300, France.
| | - Nassim Kamar
- INSERM U1043, Toulouse F-31300, France.
- Université de Toulouse, UPS, Centre de Physiopathiologie de Toulouse Purpan (CPTP), Toulouse F-31300, France.
- Department of Nephrology and Organ Transplantation, CHU Rangueil, TSA 50032, Toulouse 31059, France.
| | - Antoine Berry
- Department of Parasitology-Mycology, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Institut Fédératif de biologie (IFB), 330 avenue de Grande Bretagne, TSA 40031, Toulouse 31059, France.
- INSERM U1043, Toulouse F-31300, France.
- CNRS UMR5282, Toulouse F-31300, France.
- Université de Toulouse, UPS, Centre de Physiopathiologie de Toulouse Purpan (CPTP), Toulouse F-31300, France.
| |
Collapse
|