1
|
Chen X, Li Y, Lu L, Wu J, Yan R, Xiang J, Fan Q, Liu J, Li S, Xue Y, Fu T, Liu J, Li Z. Activation of the SST-SSTR5 signaling pathway enhances corneal wound healing in diabetic mice. Mucosal Immunol 2024; 17:858-870. [PMID: 38866206 DOI: 10.1016/j.mucimm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Corneal wound healing in diabetic patients is usually delayed and accompanied by excessive inflammation. However, the underlying cellular and molecular mechanisms remain poorly understood. Here, we found that somatostatin (SST), an immunosuppressive peptide produced by corneal nerve fibers, was significantly reduced in streptozotocin-induced diabetic mice. In addition, we discovered that topical administration of exogenous SST significantly improved re-epithelialization and nerve regeneration following diabetic corneal epithelial abrasion. Further analysis showed that topical SST significantly reduced the expression of injury inflammation-related genes, inhibited neutrophil infiltration, and shifted macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 in diabetic corneas' healing. Moreover, the application of L-817,818, an agonist of the SST receptor type 5 subtype, significantly reduced the inflammatory response following epithelial injury and markedly improved the process of re-epithelialization and nerve regeneration in mice. Taken together, these data suggest that activation of the SST-SST receptor type 5 pathway significantly ameliorates diabetes-induced abnormalities in corneal wound repair in mice. Targeting this pathway may provide a novel strategy to restore impaired corneal wound closure and nerve regeneration in diabetic patients.
Collapse
Affiliation(s)
- Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiaxin Wu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiayan Xiang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Fan
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jiangman Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Senmao Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Khalifa AA, El Sokkary NH, Elblehi SS, Diab MA, Ali MA. Potential cardioprotective effect of octreotide via NOXs mitigation, mitochondrial biogenesis and MAPK/Erk1/2/STAT3/NF-kβ pathway attenuation in isoproterenol-induced myocardial infarction in rats. Eur J Pharmacol 2022; 925:174978. [DOI: 10.1016/j.ejphar.2022.174978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
3
|
Shao G, He J, Meng J, Ma A, Geng X, Zhang S, Qiu Z, Lin D, Li M, Zhou H, Lin S, Yang B. Ganoderic Acids Prevent Renal Ischemia Reperfusion Injury by Inhibiting Inflammation and Apoptosis. Int J Mol Sci 2021; 22:10229. [PMID: 34638569 PMCID: PMC8508562 DOI: 10.3390/ijms221910229] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
Renal ischemia reperfusion injury (RIRI) is one of the main causes of acute kidney injury (AKI), which can lead to acute renal failure. The development of RIRI is so complicated that it involves many factors such as inflammatory response, oxidative stress and cell apoptosis. Ganoderic acids (GAs), as one of the main pharmacological components of Ganoderma lucidum, have been reported to possess anti-inflammatory, antioxidant, and other pharmacological effects. The study is aimed to investigate the protective effect of GAs on RIRI and explore related underlying mechanisms. The mechanisms involved were assessed by a mouse RIRI model and a hypoxia/reoxygenation model. Compared with sham-operated group, renal dysfunction and morphological damages were relieved markedly in GAs-pretreatment group. GAs pretreatment could reduce the production of pro-inflammatory factors such as IL-6, COX-2 and iNOS induced by RIRI through inhibiting TLR4/MyD88/NF-kB signaling pathway. Furthermore, GAs reduced cell apoptosis via the decrease of the ratios of cleaved caspase-8 and cleaved caspase-3. The experimental results suggest that GAs prevent RIRI by alleviating tissue inflammation and apoptosis and might be developed as a candidate drug for preventing RIRI-induced AKI.
Collapse
Affiliation(s)
- Guangying Shao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Jinzhao He
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Jia Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Ang Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Xiaoqiang Geng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Shun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Zhiwei Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Dongmei Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou 350002, China; (D.L.); (S.L.)
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
| | - Shuqian Lin
- Fuzhou Institute of Green Valley Bio-Pharm Technology, Fuzhou 350002, China; (D.L.); (S.L.)
- JUNCAO Technology Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (G.S.); (J.H.); (J.M.); (A.M.); (X.G.); (S.Z.); (Z.Q.); (M.L.); (H.Z.)
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100816, China
| |
Collapse
|
4
|
Zhen X, Jindong L, Yang Z, Yashi R, Wei G, Wei J, Wei Z, Sudong L. Activation of Nrf2 Pathway by Dimethyl Fumarate Attenuates Renal Ischemia-Reperfusion Injury. Transplant Proc 2021; 53:2133-2139. [PMID: 34426023 DOI: 10.1016/j.transproceed.2021.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a novel antioxidant that selectively reduces hydroxyl radicals. This study aimed to investigate the potential role of DMF in the pathogenesis of renal ischemia-reperfusion injury (IRI) and the mechanisms involved. METHODS C57BL/6 wild-type mice were treated with DMF or a vehicle. Subsequently, renal IRI was induced in mice by a model of right kidney nephrectomy and left renal ischemia for 30 minutes followed by reperfusion for 24 hours. Sham operation and phosphate-buffered saline were used as controls. Serum and renal tissues were collected at 24 hours after IRI to evaluate the influence of DMF on the recovery of renal function after IRI. Blood urea nitrogen and serum creatinine levels were measured. Kidney cell apoptosis was evaluated using terminal deoxynucleotidyl transferase dUTP nick end labeling-positive staining. Interleukin 6 and tumor necrosis factor α cytokines in the kidney tissues were measured. Indicators of oxidative stress in the kidneys were detected. Finally, Nrf2-deficient mice were used to determine the protective role of the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) signaling pathways induced by DMF using western blot assay. RESULTS DMF significantly attenuated renal dysfunction in mice and showed reductions in the severity of renal tubular injury, cell necrosis, and apoptosis. Moreover, DMF significantly reduced the amount of key inflammatory mediators. Additionally, DMF attenuated the malondialdehyde levels 24 hours after IRI but upregulated the superoxide dismutase activities. Western blot assay showed that DMF significantly increased the protein levels of Nrf2, HO-1, and NQO-1. Importantly, these DMF-mediated beneficial effects were not observed in Nrf2-deficient mice. CONCLUSIONS DMF attenuates renal IRI by reducing inflammation and upregulating the antioxidant capacity, which may be through Nrf2/HO-1and NQO1 signaling pathway.
Collapse
Affiliation(s)
- Xu Zhen
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Li Jindong
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, China
| | - Zhou Yang
- Department of Pathology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ruan Yashi
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Guo Wei
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Jiang Wei
- Department of Urology, Taizhou People's Hospital, Taizhou, China
| | - Zhang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Sudong
- Department of Urology, Taizhou People's Hospital, Taizhou, China.
| |
Collapse
|
5
|
Jiang R, Wei H. Beneficial effects of octreotide in alcohol-induced neuropathic pain. Role of H 2S, BDNF, TNF-α and Nrf2. Acta Cir Bras 2021; 36:e360408. [PMID: 34076065 PMCID: PMC8184257 DOI: 10.1590/acb360408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To explore the role and molecular mechanisms of neuroprotective effects of
octreotide in alcohol-induced neuropathic pain. Methods Male Wistar rats were employed and were administered a chronic ethanol diet
containing 5% v/v alcohol for 28 days. The development of neuropathic pain
was assessed using von Frey hair (mechanical allodynia), pinprick
(mechanical hyperalgesia) and cold acetone drop tests (cold allodynia). The
antinociceptive effects of octreotide (20 and 40 µg·kg–1) were
assessed by its administration for 28 days in ethanol-treated rats. ANA-12
(0.25 and 0.50 mg·kg–1), brain-derived neurotrophic factor (BDNF)
receptor blocker, was coadministered with octreotide. The sciatic nerve was
isolated to assess the biochemical changes including hydrogen sulfide
(H2S), cystathionine β synthase (CBS), cystathionine γ lyase
(CSE), tumor necrosis factor-α (TNF-α), BDNF and nuclear factor erythroid
2-related factor 2 (Nrf2). Results Octreotide significantly attenuated chronic ethanol-induced neuropathic pain
and it also restored the levels of H2S, CBS, CSE, BDNF, Nrf2 and
decreased TNF-α levels. ANA-12 abolished the effects of octreotide on pain,
TNF-α, BDNF, Nrf2 without any significant effects on H2S, CBS,
CSE. Conclusions Octreotide may attenuate the behavioral manifestations of alcoholic
neuropathic pain, which may be due to an increase in H2S, CBS,
CSE, BDNF, Nrf2 and a decrease in neuroinflammation.
Collapse
|
6
|
Koc K, Geyikoglu F, Cakmak O, Koca A, Kutlu Z, Aysin F, Yilmaz A, Aşkın H. The targets of β-sitosterol as a novel therapeutic against cardio-renal complications in acute renal ischemia/reperfusion damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:469-479. [PMID: 33048170 DOI: 10.1007/s00210-020-01984-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/30/2020] [Indexed: 01/17/2023]
Abstract
This research is the first to use β-sitosterol on myocardial and renal tissues in renal ischemia/reperfusion (IR) damage. Female Wistar rats were randomly divided into three groups: control (sham), renal IR (50 min ischemia - 3 h reperfusion), and renal IR + 150 mg/kg/p.o. β-sitosterol (the rats were treated with β-sitosterol orally once 1 h before the IR procedure). β-Sitosterol pretreatment caused an increase in superoxide dismutase and glutathione activities and a decrease in malondialdehyde levels in the kidney and heart. Moreover, it alleviated histopathological changes and downregulated the levels of tumor necrosis factor-alpha and interleukin-6 and upregulated the levels of endothelial nitric oxide synthase. As conclusion, the potential of β-sitosterol for renal and cardiac necrosis and apoptosis appears to act by limiting inflammatory response and oxidative stress. Thus, the potential of this compound is noteworthy and may serve as a potential therapeutic in the treatment of acute organ damages due to renal IR.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ozge Cakmak
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.
| | - Aynur Koca
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Zerrin Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Asli Yilmaz
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Targeting autophagy to modulate hepatic ischemia/reperfusion injury: A comparative study between octreotide and melatonin as autophagy modulators through AMPK/PI3K/AKT/mTOR/ULK1 and Keap1/Nrf2 signaling pathways in rats. Eur J Pharmacol 2021; 897:173920. [PMID: 33571535 DOI: 10.1016/j.ejphar.2021.173920] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Hepatic ischemia-reperfusion (HIR) injury is a common pathophysiological process in many clinical settings. This study was designed to compare the protective role of octreotide (somatostatin analogue, OCT) and melatonin (N-acetyl-5-methoxytryptamine, MLT) through the modulation of autophagy against HIR injury in rats. Male albino rats were divided into sham, HIR, OCT at three doses (50, 75, and 100 μg/kg), MLT, MLT + OCT75, compound C (AMPK inhibitor, CC), and CC + OCT75 groups. Ischemia was induced for 30 min followed by 24 h reperfusion. Biochemical, histopathological, immunohistochemical, lipid peroxidation, ELISA, qPCR, and western blot techniques were performed in our study. Liver autophagy was restored by OCT at doses (50 or 75 μg/kg) as indicated by elevating the expressions of Beclin-1, ATG7, and LC3 accompanied by the reduction of p62 expression through induction of AMPK/S317-ULK1 and inhibition of PI3K/AKT/mTOR/S757-ULK1 signaling pathways. As well, OCT maintained the integrity of the Keap1-Nrf2 system for the normal hepatic functions via controlling the Keap1 turnover through autophagy in a p62-dependent manner, resulting in upholding a series of anti-oxidant and anti-inflammatory cascades. These effects were abolished by compound C. On the other hand, MLT showed a decrease in the autophagy markers via inhibiting AMPK/pS317-ULK1 and activating PI3K/AKT/mTOR/pS757-ULK1 pathways. Autophagy inhibition with MLT markedly reversed the hepatoprotective effects of OCT75 after HIR injury. Finally, our results proved for the first time that OCT75 was more effective than MLT as it was sufficient to induce protective autophagy in our HIR model, which led to the induction of Nrf2-dependent AMPK/autophagy pathways.
Collapse
|
8
|
Octreotide and melatonin alleviate inflammasome-induced pyroptosis through inhibition of TLR4-NF-κB-NLRP3 pathway in hepatic ischemia/reperfusion injury. Toxicol Appl Pharmacol 2020; 410:115340. [PMID: 33264646 DOI: 10.1016/j.taap.2020.115340] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM The Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB)/NLRP3 inflammasome signaling pathway is essential in the pathogenesis of hepatic ischemia/ reperfusion (HIR) injury. Pyroptosis is a proinflammatory programmed cell death that is related to several diseases. Thus, the purpose of this study was to examine whether pretreatment with octreotide (somatostatin analogue, OCT) at different doses or OCT at 75μg/kg combined with melatonin (N-acetyl-5-methoxytryptamine, MLT) can alleviate HIR injury via targeting NLRP3 inflammasome-induced pyroptosis in a TLR4/MyD88/NF-κB dependent manner. METHODS Rats were randomized into sham, HIR, OCT (50, 75, and 100 µg/kg), MLT, and MLT + OCT75 groups. Ischemia was induced via occlusion of the portal triad for 30 min followed by 24 h reperfusion. RESULTS OCT pretreatment at doses (50 or 75 μg/kg), MLT alone, and MLT + OCT75 significantly ameliorated the biochemical with histopathological changes, oxidative stress, inflammation, apoptosis, then augmented anti-oxidant and anti-apoptotic markers through downregulation of HMGB1, TLR4, MyD88, TRAF-6, p-IκBα (S32), p-NF-κBp65 (S536), NLRP3, ASC, caspase-1(p20), and GSDMD-N expressions compared with HIR group. CONCLUSION OCT at doses (50 or 75 µg/kg) showed for the first time a hepatoprotective effect against HIR injury via inhibiting TLR4-NLRP3-mediated pyroptosis in rats. As well, OCT75 was more effective than OCT50 or MLT alone, and its effect was not enhanced after the addition of MLT, through downregulation of TLR4/MyD88/NF-κB/NLRP3 inflammasome pathway.
Collapse
|
9
|
Sun X, Kuang B, Dai Y, Xiong C, Li M, Luo Z. Quantitative evaluation of dexamethasone treatment effects in renal ischemia-reperfusion injury using contrast enhanced ultrasonography in rats. Clin Hemorheol Microcirc 2020; 76:99-110. [PMID: 32651308 DOI: 10.3233/ch-200842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion (I/R) injury often occurs in various clinical events, and its incidence and mortality have been increasing. OBJECTIVE To investigate the value of contrast enhanced ultrasonography (CEUS) in the monitoring of dexamethasone in the improvement of renal I/R injury in rats. METHODS Eighteen healthy male Sprague-Dawley rats were randomly divided into sham-operated, I/R, and I/R surgery plus dexamethasone treatment (Dexa) groups. In the I/R group 45-minute renal ischemia with 24 h reperfusion period was monitored. Time-intensity curve (TIC)-derived parameters, which included peak value, time to peak (TP), area under the curve (AUC), and mean transit time (MTT) were compared to the blood creatinine, urea, Caspase-1, and NLRP3 levels. RESULTS The I/R group showed an increased peak value, prolonged TP and MTT, and greater AUC (P < 0.05). The Dexa group showed shorter TP and MTT, and smaller AUC (P < 0.05). Results show that the associations between (i) TP, AUC, and MTT and (ii) creatinine, urea, Caspase-1, and NLRP3 levels were significant (P < 0.05). CONCLUSION Dexamethasone can alleviate renal I/R injury in rats, which may be related to the inhibition of NLRP3 and caspase-1. CEUS can quantitatively measure this change, in which the changes in TP, AUC and MMT values have considerable reference values.
Collapse
Affiliation(s)
- Xiaoying Sun
- Department of Ultrasonography, the People's Hospital of Deyang City, Deyang, China
| | - Bin Kuang
- Department of Ultrasonography, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Dai
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chao Xiong
- Department of Anesthesiology, the People's Hospital of Deyang City, Deyang, China
| | - Mingxing Li
- Department of Ultrasonography, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijian Luo
- Department of Ultrasonography, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Gao Y, Hou L, Wang Y, Guo S, Yuan D, Jiang Y, Duan G, Zhang Y, Xu Z, Che L, Sun C, Li S, Zhang S, Sun T, Li Y. Octreotide alleviates pancreatic damage caused by paraquat in rats by reducing inflammatory responses and oxidative stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103456. [PMID: 32673753 DOI: 10.1016/j.etap.2020.103456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study explores the efficacy and mechanism by which octreotide (OCT) alleviates paraquat (PQ)-induced pancreatic injury. Twenty-four adult male rats were randomly divided into three groups: the normal control (NC), PQ poisoning, and OCT treatment groups. The PQ-induced pancreatic injury rat model was established by administering PQ (120 mg/kg). Treatment group rats received OCT (8 μg/kg body weight) every 8 h by subcutaneous injection, 1 h after PQ administration. Rats were euthanized 24 h after PQ injection. Serum amylase, lipase, tumor necrosis factor-α, and interleukin-6 levels were markedly increased in the PQ group versus the NC group. In pancreatic tissue, PQ poisoning drastically induced necrosis and increased inflammatory cytokine and oxidative stress marker levels. Compared with the PQ group, OCT reduced pancreatic damage and histological scores, serum amylase, lipase, and inflammatory cytokine levels, as well as oxidative stress. OCT demonstrates protective effects against PQ-induced pancreatic damage through anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
- Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yibo Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shigong Guo
- Caversham Rehabilitation Ward, Royal Berkshire Hospital, Reading, UK
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ya'nan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoyu Duan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhigao Xu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Che
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Changhua Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sujuan Li
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Li
- Emergency Department, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
11
|
Liu B, Deng Q, Zhang L, Zhu W. Nobiletin alleviates ischemia/reperfusion injury in the kidney by activating PI3K/AKT pathway. Mol Med Rep 2020; 22:4655-4662. [PMID: 33173956 PMCID: PMC7646848 DOI: 10.3892/mmr.2020.11554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies have demonstrated that nobiletin (NOB) displays anti-oxidative and anti-apoptotic efficacies against multiple pathological insults. However, the potential effects of NOB on the injury caused by ischemia and reperfusion (I/R) in the kidney remain undetermined. In the present study, I/R injury was elicited by right kidney removal and left renal pedicel clamping for 45 min, followed by reperfusion for 24 h. NOB was added at the start of reperfusion. Histological examination, detection of biomarkers in plasma, and measurement of apoptosis induced by endoplasmic reticulum stress (ERS) were used to evaluate renal injury. Additionally, the PI3K/AKT inhibitor LY294002 was also used in mechanistic experiments. NOB pre-treatment significantly reduced renal damage caused by I/R injury, as indicated by decreased serum levels of creatine, blood urea nitrogen and tubular injury scores. Furthermore, NOB inhibited elevated ERS-associated apoptosis, as evidenced by reduced apoptotic rates and ERS-related signaling molecules (such as, C/EBP homologous protein, caspase-12 and glucose-regulated protein of 78 kDa). NOB increased phosphorylation of proteins in the PI3K/AKT pathway. The inhibition of PI3K/AKT signaling with pharmacological inhibitors could reverse the beneficial effects of NOB during renal I/R insult. In conclusion, NOB pre-treatment may alleviate I/R injury in the kidney by inhibiting reactive oxygen species production and ERS-induced apoptosis, partly through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Quanhong Deng
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lei Zhang
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Wen Zhu
- Department of Urology, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
12
|
Kalyoncu S, Yilmaz B, Demir M, Tuncer M, Bozdag Z, Ince O, Akif Bozdayi M, Ulusal H, Taysi S. Octreotide and lanreotide decrease ovarian ischemia-reperfusion injury in rats by improving oxidative and nitrosative stress. J Obstet Gynaecol Res 2020; 46:2050-2058. [PMID: 32748523 DOI: 10.1111/jog.14379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022]
Abstract
AIM To investigate the protective effect of octreotide and lanreotide on ovarian damage in experimental ovarian ischemia-reperfusion injury. METHODS Fifty-six rats were separated into seven groups; group 1: sham group, group 2: surgical control group with 3-h torsion and detorsion, group 3: 0.02 mg/kg s.c. octreotide 30 min before 3-h torsion, group 4; octreotide just after detorsion for 7 days, group 5: octreotide 30 min before torsion and just after detorsion for 7 days, group 6: single time 20 mg/kg s.c. lanreotide before torsion, group 7: single time lanreotide just after detorsion. RESULTS All histopathological scores except congestion were significantly lower in group 1 than other groups. In addition, hemorrhage (group 2 vs 4: P < 0.05), degeneration (group 2 vs 4: P < 0.05, group 2 vs 5: P < 0.01 and group 2 vs 6: P < 0.05) and total damage score (group 2 vs 4: P < 0.05, group 2 vs 5: P < 0.05, group 2 vs 6: P < 0.05 and group 2 vs 7: P < 0.05) were significantly lower than other groups. Moreover, ovarian tissue total oxidant status and oxidative stress index levels were significantly decreased in groups 5 (both P < 0.05) and 7 (both P < 0.05) when compared to group 2. Furthermore, tissue levels of peroxynitrite were significantly higher in group 2 than groups 1, 3 and 5 (all P < 0.05). CONCLUSIONS Octreotide and lanreotide have a protective role against ischemia-reperfusion damage in rat torsion detorsion model by improving histopathological and biochemical findings including tissue levels of total oxidant status, oxidative stress index and peroxynitrite.
Collapse
Affiliation(s)
- Senol Kalyoncu
- Obstetrics and Gynecology Clinic, TOBB ETU University Hospital, Ankara, Turkey
| | - Bulent Yilmaz
- Department of Obstetrics and Gynecology, Recep Tayyip Erdogan University, Faculty of Medicine, Rize, Turkey
| | - Mustafa Demir
- Obstetrics and Gynecology Clinic, ANKA Hospital, Gaziantep, Turkey
| | - Meltem Tuncer
- Department of Physiology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Zehra Bozdag
- Department of Pathology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Onur Ince
- Department of Obstetrics and Gynecology, Kutahya Health Sciences University, Faculty of Medicine, Kutahya, Turkey
| | - Mehmet Akif Bozdayi
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Hasan Ulusal
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Seyithan Taysi
- Department of Biochemistry, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
13
|
Liang S, Xu Z, Ruan Y, Niu T, Guo W, Jiang W, Hou J. Isoquercitrin Attenuates Renal Ischemia/Reperfusion Injury Through Antioxidation, Anti-inflammation, and Antiapoptosis in Mice. Transplant Proc 2020; 52:1014-1019. [PMID: 32115238 DOI: 10.1016/j.transproceed.2019.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/09/2019] [Accepted: 12/15/2019] [Indexed: 01/29/2023]
Abstract
Renal ischemia-reperfusion injury (RIRI) occurs after several surgical procedures such as kidney transplantation and partial nephrectomy. Isoquercitrin (IQ) exhibited protective effects in cerebral ischemia-reperfusion injury. In the present study, we aimed to evaluate the effects of IQ on the prevention of RIRI. The mouse model of RIRI was induced by 30-minute clamping of the left renal pedicle after excising of the right kidney, followed by 24-hour reperfusion. Thirty mice were randomly divided into the following 3 groups: sham operation, RIRI model group, and IQ pretreatment + RIRI. Serum creatinine and blood urea nitrogen (BUN) were used for evaluating renal function. Kidney cell apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Moreover, the pro-inflammatory cytokines (TNF-α, IL-6), the oxidative stress associated factors (malondialdehyde, superoxide dismutase), and the apoptotic factors (Bcl-2, Bax) were assessed. After RIRI, BUN, creatinine, TNF-α, IL-6, malondialdehyde, and Bax were significantly increased, and levels of superoxide dismutase and Bcl-2/Bax ratio and Bcl-2 expression were decreased markedly. As expect, IQ reversed these changes. These data indicate that IQ plays a protective role during RIRI, which may be partially mediated through the actions of antioxidation, anti-inflammation, and antiapoptosis.
Collapse
Affiliation(s)
- Sudong Liang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Xu
- Department of Urology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yashi Ruan
- Department of Urology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Tianli Niu
- Department of Urology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Wei Guo
- Department of Urology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Wei Jiang
- Department of Urology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|