1
|
Younas A, Younas N, Iqbal MJ, Ferrer I, Zerr I. Comparative interactome mapping of Tau-protein in classical and rapidly progressive Alzheimer's disease identifies subtype-specific pathways. Neuropathol Appl Neurobiol 2024; 50:e12964. [PMID: 38374702 DOI: 10.1111/nan.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
AIMS Tau is a key player in Alzheimer's disease (AD) and other Tauopathies. Tau pathology in the brain directly correlates with neurodegeneration in AD. The recent identification of a rapid variant of AD demands an urgent need to uncover underlying mechanisms leading to differential progression in AD. Accordingly, we aimed to dissect the underlying differential mechanisms of toxicity associated with the Tau protein in AD subtypes and to find out subtype-dependent biomarkers and therapeutic targets. METHODS To identify and characterise subtype-specific Tau-associated mechanisms of pathology, we performed comparative interactome mapping of Tau protein in classical AD (cAD) and rapidly progressive AD (rpAD) cases using co-immunoprecipitation coupled with quantitative mass spectrometry. The mass spectrometry data were extensively analysed using several bioinformatics approaches. RESULTS The comparative interactome mapping of Tau protein revealed distinct and unique interactors (DPYSL4, ARHGEF2, TUBA4A and UQCRC2) in subtypes of AD. Interestingly, an analysis of the Tau-interacting proteins indicated enrichment of mitochondrial organisation processes, including negative regulation of mitochondrion organisation, mitochondrial outer membrane permeabilisation involved in programmed cell death, regulation of autophagy of mitochondrion and necroptotic processes, specifically in the rpAD interactome. While, in cAD, the top enriched processes were related to oxidation-reduction process, transport and monocarboxylic acid metabolism. CONCLUSIONS Overall, our results provide a comprehensive map of Tau-interacting protein networks in a subtype-dependent manner and shed light on differential functions/pathways in AD subtypes. This comprehensive map of the Tau-interactome has provided subsets of disease-related proteins that can serve as novel biomarkers/biomarker panels and new drug targets.
Collapse
Affiliation(s)
- Abrar Younas
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Neelam Younas
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- National Reference Center for Surveillance of TSE, Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
2
|
Herden JM, Hermann P, Schmidt I, Dittmar K, Canaslan S, Weglage L, Nuhn S, Volpers C, Schlung A, Goebel S, Kück F, Villar-Piqué A, Schmidt C, Wedekind D, Zerr I. Comparative evaluation of clinical and cerebrospinal fluid biomarker characteristics in rapidly and non-rapidly progressive Alzheimer's disease. Alzheimers Res Ther 2023; 15:106. [PMID: 37291640 DOI: 10.1186/s13195-023-01249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rapidly progressive forms of Alzheimer's disease (rpAD) are increasingly recognized and may have a prevalence of up to 30% of patients among all patients with Alzheimer's disease (AD). However, insights about risk factors, underlying pathophysiological processes, and clinical characteristics of rpAD remain controversial. This study aimed to gain a comprehensive picture of rpAD and new insights into the clinical manifestation to enable a better interpretation of disease courses in clinical practice as well as in future clinical studies. METHODS Patients (n = 228) from a prospective observational study on AD were selected and categorized into rpAD (n = 67) and non-rpAD (n = 161) disease groups. Patients were recruited through the German Creutzfeldt-Jakob disease surveillance center and the memory outpatient clinic of the Göttingen University Medical Center, representing diverse phenotypes of the AD population. Biomarkers and clinical presentation were assessed using standardized protocols. A drop of ≥ MMSE 6 points within 12 months defined rapid progressors. RESULTS Lower CSF Amyloid beta 1-42 concentrations (p = 0.048), lower Amyloid beta 42/40 ratio (p = 0.038), and higher Tau/Amyloid-beta 1-42 ratio, as well as pTau/Amyloid-beta 1-42 ratio (each p = 0.004) were associated with rpAD. Analyzes in a subset of the cohort (rpAD: n = 12; non-rpAD: n = 31) showed higher CSF NfL levels in rpAD (p = 0.024). Clinically, rpAD showed earlier impairment of functional abilities (p < 0.001) and higher scores on the Unified Parkinson's Disease Rating Scale III (p < 0.001), indicating pronounced extrapyramidal motor symptoms. Furthermore, cognitive profiles (adjusted for overall cognitive performance) indicated marked deficits in semantic (p = 0.008) and phonematic (0.023) verbal fluency tests as well as word list learning (p = 0.007) in rpAD compared to non-rpAD. The distribution of APOE genotypes did not differ significantly between groups. CONCLUSIONS Our results suggest that rpAD is associated with distinct cognitive profiles, earlier occurrence of non-cognitive symptoms, extrapyramidal motoric disturbance, and lower Amyloid-beta 1-42 concentrations in the CSF. The findings may help to characterize a distinct phenotype of rpAD and estimate prognosis based on clinical characteristics and biomarker results. However, an important future goal should be a unified definition for rpAD to enable targeted study designs and better comparability of the results.
Collapse
Affiliation(s)
- Janne Marieke Herden
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany.
| | - Isabel Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Kathrin Dittmar
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sezgi Canaslan
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Luise Weglage
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Sabine Nuhn
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Corinna Volpers
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Astrid Schlung
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Stefan Goebel
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen, 37073, Germany
| | - Anna Villar-Piqué
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Christian Schmidt
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- Neurologische Gemeinschaftspraxis Am Groner Tor, Göttingen, Germany
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University Medical Center, Von-Siebold-Straße 5, Göttingen, 37075, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Robert-Koch-Straße 40, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
3
|
Zuin M, Cherubini A, Volpato S, Ferrucci L, Zuliani G. Acetyl-cholinesterase-inhibitors slow cognitive decline and decrease overall mortality in older patients with dementia. Sci Rep 2022; 12:12214. [PMID: 35842477 PMCID: PMC9288483 DOI: 10.1038/s41598-022-16476-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
We evaluated the effect of Acetyl-cholinesterase-inhibitors (AChEIs) on cognitive decline and overall survival in a large sample of older patients with late onset Alzheimer's disease (LOAD), vascular dementia (VD) or Lewy body disease (LBD) from a real world setting. Patients with dementia enrolled between 2005 and 2020 by the "Alzheimer's Disease Research Centers" were analysed; the mean follow-up period was 7.9 years. A 1:1 propensity score matching was performed generating a cohort of 1.572 patients (786 treated [AChEIs +] and 786 not treated [AChEIs-] with AChEIs. The MMSE score was almost stable during the first 6 years of follow up in AChEIs + and then declined, while in AChEIs- it progressively declined so that at the end of follow-up (13.6 years) the average decrease in MMSE was 10.8 points in AChEIs- compared with 5.4 points in AChEIs + (p < 0.001). This trend was driven by LOAD (Δ-MMSE:-10.8 vs. -5.7 points; p < 0.001), although a similar effect was observed in VD (Δ-MMSE:-11.6 vs. -8.8; p < 0.001). No effect on cognitive status was found in LBD. At multivariate Cox regression analysis (adjusted for age, gender, dependency level and depression) a strong association between AChEIs therapy and lower all-cause mortality was observed (H.R.:0.59; 95%CI: 0.53-0.66); this was confirmed also in analyses separately conducted in LOAD, VD and LBD. Among older people with dementia, treatment with AChEIs was associated with a slower cognitive decline and with reduced mortality, after a mean follow-up of almost eight years. Our data support the effectiveness of AChEIs in older patients affected by these types of dementia.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, 44124, Ferrara, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro Di Ricerca Per L'invecchiamento, IRCCS INRCA, Ancona, Italy
| | - Stefano Volpato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Giovanni Zuliani
- Department of Translational Medicine, University of Ferrara, 44124, Ferrara, Italy.
| |
Collapse
|
4
|
Hermann P, Zerr I. Rapidly progressive dementias - aetiologies, diagnosis and management. Nat Rev Neurol 2022; 18:363-376. [PMID: 35508635 PMCID: PMC9067549 DOI: 10.1038/s41582-022-00659-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Rapidly progressive dementias (RPDs) are a group of heterogeneous disorders that include immune-mediated, infectious and metabolic encephalopathies, as well as prion diseases and atypically rapid presentations of more common neurodegenerative diseases. Some of these conditions are treatable, and some must be diagnosed promptly because of their potential infectivity. Prion disease is considered to be the prototypical RPD, but over the past two decades, epidemiological reports and the identification of various encephalitis-mediating antibodies have led to a growing recognition of other encephalopathies as potential causes of rapid cognitive decline. Knowledge of RPD aetiologies, syndromes and diagnostic work-up protocols will help clinicians to establish an early, accurate diagnosis, thereby reducing morbidity and mortality, especially in immune-mediated and other potentially reversible dementias. In this Review, we define the syndrome of RPD and shed light on its different aetiologies and on secondary factors that might contribute to rapid cognitive decline. We describe an extended diagnostic procedure in the context of important differential diagnoses, discuss the utility of biomarkers and summarize potential treatment options. In addition, we discuss treatment options such as high-dose steroid therapy in the context of therapy and diagnosis in clinically ambiguous cases. The term ‘rapidly progressive dementia’ (RPD) describes a cognitive disorder with fast progression, leading to dementia within a relatively short time. This Review discusses the wide range of RPD aetiologies, as well as the diagnostic approach and treatment options. Definitions of rapidly progressive dementia (RPD) vary according to the aetiological background and relate to the speed of cognitive decline, time from first symptom to dementia syndrome and/or overall survival. RPD can occur in rapidly progressive neurodegenerative diseases, such as prion diseases, or in primarily slowly progressive diseases as a consequence of intrinsic factors or concomitant pathologies. Besides neurodegenerative diseases, inflammatory (immune-mediated and infectious), vascular, metabolic and neoplastic CNS diseases are important and frequent causes of RPD. To identify treatable causes of RPD, the technical diagnostic work-up must include MRI and analyses of blood and cerebrospinal fluid, and further diagnostics might be indicated in unclear cases. Therapeutic options for many non-neurodegenerative causes of RPD are already available; disease-modifying therapies for neurodegenerative RPDs are an important focus of current research and could become a treatment option in the near future.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical Center, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
5
|
Hermann P, Haller P, Goebel S, Bunck T, Schmidt C, Wiltfang J, Zerr I. Total and Phosphorylated Cerebrospinal Fluid Tau in the Differential Diagnosis of Sporadic Creutzfeldt-Jakob Disease and Rapidly Progressive Alzheimer’s Disease. Viruses 2022; 14:v14020276. [PMID: 35215868 PMCID: PMC8874601 DOI: 10.3390/v14020276] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background: CSF total-tau (t-tau) became a standard cerebrospinal fluid biomarker in Alzheimer’s disease (AD). In parallel, extremely elevated levels were observed in Creutzfeldt-Jakob disease (CJD). Therefore, tau is also considered as an alternative CJD biomarker, potentially complicating the interpretation of results. We investigated CSF t-tau and the t-tau/phosphorylated tau181 ratio in the differential diagnosis of sCJD and rapidly-progressive AD (rpAD). In addition, high t-tau concentrations and associated tau-ratios were explored in an unselected laboratory cohort. Methods: Retrospective analyses included n = 310 patients with CJD (n = 205), non-rpAD (n = 65), and rpAD (n = 40). The diagnostic accuracies of biomarkers were calculated and compared. Differential diagnoses were evaluated in patients from a neurochemistry laboratory with CSF t-tau >1250 pg/mL (n = 199 out of 7036). Results: CSF t-tau showed an AUC of 0.942 in the discrimination of sCJD from AD and 0.918 in the discrimination from rpAD. The tau ratio showed significantly higher AUCs (p < 0.001) of 0.992 versus non-rpAD and 0.990 versus rpAD. In the neurochemistry cohort, prion diseases accounted for only 25% of very high CSF t-tau values. High tau-ratios were observed in CJD, but also in non-neurodegenerative diseases. Conclusions: CSF t-tau is a reliable biomarker for sCJD, but false positive results may occur, especially in rpAD and acute encephalopathies. The t-tau/p-tau ratio may improve the diagnostic accuracy in centers where specific biomarkers are not available.
Collapse
Affiliation(s)
- Peter Hermann
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
- Correspondence: ; Tel.: +49-551-39-8955
| | - Philip Haller
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Stefan Goebel
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Timothy Bunck
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Christian Schmidt
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance, University Medical Center Göttingen, 37075 Göttingen, Germany; (P.H.); (S.G.); (T.B.); (C.S.); (I.Z.)
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
6
|
Javed MA, Ashraf N, Saeed Jan M, Mahnashi MH, Alqahtani YS, Alyami BA, Alqarni AO, Asiri YI, Ikram M, Sadiq A, Rashid U. Structural Modification, In Vitro, In Vivo, Ex Vivo, and In Silico Exploration of Pyrimidine and Pyrrolidine Cores for Targeting Enzymes Associated with Neuroinflammation and Cholinergic Deficit in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:4123-4143. [PMID: 34643082 DOI: 10.1021/acschemneuro.1c00507] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To obtain a multipotent framework that can target simultaneously COX-2, 5-LOX, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) to treat neuroinflammation, a series of derivatives containing pyrimidine and pyrrolidine cores were rationally synthesized and evaluated. Pyrazoline-pyrimidine hybrid (23g), (3-acetylcoumarin derivative of pyrrolidin-1-yl)benzenesulfonamide (27), and tacrine derivatives of (pyrrolidin-1-yl)benzenesulfonamide (31, 38) displayed excellent in vitro COX-2 inhibition having IC50 value in the nanomolar range. Tacrine-pyrrolidine hybrids 36 and 38, and tacrine-pyrimidine hybrid (46) emerged as the most potent eeAChE inhibitors with IC50 values of 23, 16, and 2 nM, respectively. However, compounds 27, 31, and 38 possessed excellent simultaneous and balanced inhibitory activity against all of the four tested targets and thus emerged as optimal multipotent hybrid compounds among all of the synthesized series of the compounds. In the ex vivo, transgenic animal models treated with compounds 36 and 46 displayed a significant decline in both AChE and BChE potentials in the hippocampus and cortical tissues. In anti-inflammatory activities, animals treated with compounds 36 and 46 displayed a significant % inhibition of edema induced by carrageenan and arachidonic acid. Biochemical analysis and histopathological examination of mice liver indicate that tacrine derivatives are devoid of hepatotoxicity and neurotoxicity against SH-SY5Y neuroblastoma cell lines. In vivo acute toxicity study showed the safety of synthesized compounds up to 1000 mg/kg dose. The inhibitory manner of interaction of these potent drugs on all of the studied in vitro targets was confirmed by molecular docking investigations.
Collapse
Affiliation(s)
- Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | - Nighat Ashraf
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| | | | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 1988 Najran, Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 1988 Najran, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 1988 Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, 1988 Najran, Saudi Arabia
| | - Yahya I. Asiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, 1882 Abha, Saudi Arabia
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, KP, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18000 Chakdara, Dir (L), KP, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan
| |
Collapse
|
7
|
Powell F, Tosun D, Raj A. Network-constrained technique to characterize pathology progression rate in Alzheimer's disease. Brain Commun 2021; 3:fcab144. [PMID: 34704025 PMCID: PMC8376686 DOI: 10.1093/braincomms/fcab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Current methods for measuring the chronic rates of cognitive decline and degeneration in Alzheimer’s disease rely on the sensitivity of longitudinal neuropsychological batteries and clinical neuroimaging, particularly structural magnetic resonance imaging of brain atrophy, either at a global or regional scale. There is particular interest in approaches predictive of future disease progression and clinical outcomes using a single time point. If successful, such approaches could have great impact on differential diagnosis, therapeutic treatment and clinical trial inclusion. Unfortunately, it has proven quite challenging to accurately predict clinical and degeneration progression rates from baseline data. Specifically, a key limitation of the previously proposed approaches for disease progression based on the brain atrophy measures has been the limited incorporation of the knowledge from disease pathology progression models, which suggest a prion-like spread of disease pathology and hence the neurodegeneration. Here, we present a new metric for disease progression rate in Alzheimer that uses only MRI-derived atrophy data yet is able to infer the underlying rate of pathology transmission. This is enabled by imposing a spread process driven by the brain networks using a Network Diffusion Model. We first fit this model to each patient’s longitudinal brain atrophy data defined on a brain network structure to estimate a patient-specific rate of pathology diffusion, called the pathology progression rate. Using machine learning algorithms, we then build a baseline data model and tested this rate metric on data from longitudinal Alzheimer’s Disease Neuroimaging Initiative study including 810 subjects. Our measure of disease progression differed significantly across diagnostic groups as well as between groups with different genetic risk factors. Remarkably, hierarchical clustering revealed 3 distinct clusters based on CSF profiles with >90% accuracy. These pathological clusters exhibit progressive atrophy and clinical impairments that correspond to the proposed rate measure. We demonstrate that a subject’s degeneration speed can be best predicted from baseline neuroimaging volumetrics and fluid biomarkers for subjects in the middle of their degenerative course, which may be a practical, inexpensive screening tool for future prognostic applications.
Collapse
Affiliation(s)
- Fon Powell
- Department of Radiology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, AC-116, Parnassus, Box 0628, San Francisco, CA 94122, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, AC-116, Parnassus, Box 0628, San Francisco, CA 94122, USA
| | | |
Collapse
|
8
|
Amyloid and tau positive mild cognitive impairment: clinical and biomarker characteristics of dementia progression. Chin Med J (Engl) 2021; 134:1709-1719. [PMID: 34397597 PMCID: PMC8318651 DOI: 10.1097/cm9.0000000000001496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: According to the amyloid, tau, neurodegeneration research framework classification, amyloid and tau positive (A+T+) mild cognitive impairment (MCI) individuals are defined as prodromal Alzheimer disease. This study was designed to compare the clinical and biomarker features between A+T+MCI individuals who progressed to progressive MCI (pMCI) and those who remained stable MCI (sMCI), and to identify relevant baseline clinical biomarker and features that could be used to predict progression to dementia within 2 years. Methods: We stratified 197 A+T+MCI individuals into pMCI (n = 64) and sMCI (n = 133) over 2 years. Demographics and cognitive assessment scores, cerebrospinal fluid (CSF), and neuroimaging biomarkers (18F-florbetapir positron emission tomography mean standardized uptake value ratios [SUVR] and structural magnetic resonance imaging [MRI]) were compared between pMCI and sMCI at baseline, 12- and 24-month follow-up. Logistic regression models then were used to evaluate clinical baseline and biomarker features that predicted dementia progression in A+T+MCI. Results: pMCI individuals had higher mean 18F-florbetapir SUVR, CSF total-tau (t-tau), and p-tau181P than those in sMCI individuals. pMCI individuals performed poorer in cognitive assessments, both global and domain specific (memory, executive, language, attention, and visuospatial skills) than sMCI. At baseline, there were significant differences in regions of interest of structural MRI between the two groups, including bilateral amygdala, hippocampus and entorhinal, bilateral inferior lateral ventricle, left superior and middle temporal, left posterior and caudal anterior cingulate (P < 0.05). Baseline CSF t-tau levels and cognitive scores of Montreal cognitive assessment, functional assessment questionnaire, and everyday cognition by the patient's study partner language domain could predict progression to dementia in A+T+MCI within 2 years. Conclusions: In future clinical trials, specific CSF and cognitive measures that predict dementia progression in A+T+MCI might be useful risk factors for assessing the risk of dementia progression.
Collapse
|
9
|
Raj A. Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis. Brain Connect 2021; 11:799-814. [PMID: 33858198 DOI: 10.1089/brain.2020.0905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: Graph theory and connectomics are new techniques for uncovering disease-induced changes in the brain's structural network. Most prior studied have focused on network statistics as biomarkers of disease. However, an emerging body of work involves exploring how the network serves as a conduit for the propagation of disease factors in the brain and has successfully mapped the functional and pathological consequences of disease propagation. In Alzheimer's disease (AD), progressive deposition of misfolded proteins amyloid and tau is well-known to follow fiber projections, under a "prion-like" trans-neuronal transmission mechanism, through which misfolded proteins cascade along neuronal pathways, giving rise to network spread. Methods: In this review, we survey the state of the art in mathematical modeling of connectome-mediated pathology spread in AD. Then we address several open questions that are amenable to mathematically precise parsimonious modeling of pathophysiological processes, extrapolated to the whole brain. We specifically identify current formal models of how misfolded proteins are produced, aggregate, and disseminate in brain circuits, and attempt to understand how this process leads to stereotyped progression in Alzheimer's and other related diseases. Conclusion: This review serves to unify current efforts in modeling of AD progression that together have the potential to explain observed phenomena and serve as a test-bed for future hypothesis generation and testing in silico. Impact statement Graph theory is a powerful new approach that is transforming the study of brain processes. There do not exist many focused reviews of the subfield of graph modeling of how Alzheimer's and other dementias propagate within the brain network, and how these processes can be mapped mathematically. By providing timely and topical review of this subfield, we fill a critical gap in the community and present a unified view that can serve as an in silico test-bed for future hypothesis generation and testing. We also point to several open and unaddressed questions and controversies that future practitioners can tackle.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Shafiq M, Zafar S, Younas N, Noor A, Puig B, Altmeppen HC, Schmitz M, Matschke J, Ferrer I, Glatzel M, Zerr I. Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer's disease. Mol Neurodegener 2021; 16:11. [PMID: 33618749 PMCID: PMC7898440 DOI: 10.1186/s13024-021-00422-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of patients with rapidly progressive Alzheimer’s disease (rpAD). The current investigation aims at identifying interacting partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression. Methods HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser scanning microscopy. Results We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2). Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the end binding protein 1, α-tubulin, and β-actin. Discussion The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00422-x.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Saima Zafar
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany. .,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Neelam Younas
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.,Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hermann Clemens Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Isidre Ferrer
- Institut de Neuropatologica, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Carrer Feixa LLarga sn, 08907, Hospitalet de LLobregat, CIBERNED, Barcelona, Spain
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen and German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
| |
Collapse
|
11
|
Younas N, Zafar S, Shafiq M, Noor A, Siegert A, Arora AS, Galkin A, Zafar A, Schmitz M, Stadelmann C, Andreoletti O, Ferrer I, Zerr I. SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathol 2020; 140:317-339. [PMID: 32577828 PMCID: PMC7423812 DOI: 10.1007/s00401-020-02178-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer’s disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients’ brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Mohsin Shafiq
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Anna Siegert
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Amandeep Singh Arora
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Alexey Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, St. Petersburg, Russia
| | - Ayesha Zafar
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- College of Medicine Center for Pharmacogenomics, The Ohio State University, 460 W 12th Avenue, Columbus, OH, 1004 BRT, USA
| | - Mathias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225- Interactions Hôte Agent Pathogène-École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- CIBERNED, Barcelona, Spain
- Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
12
|
Gauthier S, Ng KP, Pascoal TA, Zhang H, Rosa-Neto P. Targeting Alzheimer's Disease at the Right Time and the Right Place: Validation of a Personalized Approach to Diagnosis and Treatment. J Alzheimers Dis 2019; 64:S23-S31. [PMID: 29504543 PMCID: PMC6004905 DOI: 10.3233/jad-179924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cautious optimism is appropriate for a near future (five years) time frame for a number of drugs acting on the different pathophysiological components of Alzheimer’s disease (amyloid deposition, tau hyperphosphorylation, neuroinflammation, vascular changes, to name the most important known so far). Since the relative weight of these components will be different between individuals and will even change over time for each individual, a ‘one drug fit for all’ approach is no longer defensible. Precision medicine using biomarkers in the diagnosis and treatment of Alzheimer’s disease is the new strategy.
Collapse
Affiliation(s)
- Serge Gauthier
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Tharick A Pascoal
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| | - Hua Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pedro Rosa-Neto
- McGill Center for Studies in Aging, Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
13
|
Abstract
INTRODUCTION Rapidly progressive dementia is a syndrome caused by numerous disease entities. Accurate diagnosis is crucial as substantial proportion of these diseases is highly treatable. Others might implicate specific hygienic problems. Still, differential diagnosis remains challenging because of a huge overlap of clinical presentations. Areas covered: The paper reviews PubMed-listed research articles with a focus on diagnosis and treatment of diseases showing rapid cognitive decline such as inflammatory diseases, rapidly progressive neurodegenerative diseases, toxic-metabolic encephalopathies and prion diseases. The literature was interpreted in the light of experience in clinically differentiating rapid progressing dementia in the framework of Creutzfeldt-Jakob-Disease (CJD) surveillance activities. An overview of relevant differential diagnoses and diagnostic pitfalls as well as therapeutic protocols is presented. Expert commentary: Over the last years, more and more neurologic disorders causing cognitive symptoms, in particular various types of immune-mediated diseases have been discovered. To identify treatable conditions and to enhance knowledge of differential diagnosis and epidemiology, we suggest an extended diagnostic work up in cases with rapidly progressing dementia. Besides standard methods, this should include the search for neoplasia as well as atypical encephalitis. High-dose steroid therapy should be considered in certain clinical situations even when no evidence for inflammation is present.
Collapse
Affiliation(s)
- Inga Zerr
- a Clinical Dementia Center and National TSE Reference Center, Department of Neurology , Goettingen University Medical Center , Goettingen , Germany
| | - Peter Hermann
- a Clinical Dementia Center and National TSE Reference Center, Department of Neurology , Goettingen University Medical Center , Goettingen , Germany
| |
Collapse
|
14
|
Abu-Rumeileh S, Capellari S, Parchi P. Rapidly Progressive Alzheimer’s Disease: Contributions to Clinical-Pathological Definition and Diagnosis. J Alzheimers Dis 2018; 63:887-897. [DOI: 10.3233/jad-171181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Piero Parchi
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|