1
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
2
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, Roy LO, Lucien F, Tian S, Fortin D, Dubois CM. The development of a rapid patient-derived xenograft model to predict chemotherapeutic drug sensitivity/resistance in malignant glial tumors. Neuro Oncol 2023; 25:1605-1616. [PMID: 36821432 PMCID: PMC10479744 DOI: 10.1093/neuonc/noad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Laurent-Olivier Roy
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | | | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Fortin
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Glioma radiogenomics and artificial intelligence: road to precision cancer medicine. Clin Radiol 2023; 78:137-149. [PMID: 36241568 DOI: 10.1016/j.crad.2022.08.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Radiogenomics refers to the study of the relationship between imaging phenotypes and gene expression patterns/molecular characteristics, which might allow improved diagnosis, decision-making, and predicting patient outcomes in the context of multiple diseases. Central nervous system (CNS) tumours contribute to significant cancer-related mortality in the present age. Although historically CNS neoplasms were classified and graded based on microscopic appearance, there was discordance between two histologically similar tumours that showed varying prognosis and behaviour, attributable to their molecular signatures. These led to the incorporation of molecular markers in the classification of CNS neoplasms. Meanwhile, advancements in imaging technology such as diffusion-based imaging (including tractography), perfusion, and spectroscopy in addition to the conventional imaging of glial neoplasms, have opened an avenue for radiogenomics. This review touches upon the schema of the current classification of gliomas, concepts behind molecular markers, and parameters that are used in radiogenomics to characterise gliomas and the role of artificial intelligence for the same. Further, the role of radiomics in the grading of brain tumours, prediction of treatment response and prognosis has been discussed. Use of automated and semi-automated tumour segmentation for radiotherapy planning and follow-up has also been discussed briefly.
Collapse
|
4
|
Neff C, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS, Ostrom QT, Iorgulescu JB. Molecular marker testing and reporting completeness for adult-type diffuse gliomas in the United States. Neurooncol Pract 2023; 10:24-33. [PMID: 36659967 PMCID: PMC9837780 DOI: 10.1093/nop/npac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background A newly developed brain molecular marker (BMM) data item was implemented by US cancer registries for individuals diagnosed with brain tumors in 2018-including IDH and 1p/19q-co-deletion statuses for adult-type diffuse gliomas. We thus investigated the testing/reporting completeness of BMM in the United States. Methods Cases of histopathologically confirmed glioblastoma, astrocytoma, and oligodendroglioma diagnosed in 2018 were identified in the National Cancer Database. Adjusted odds ratios (ORadj) and 95% confidence intervals (CI) of BMM testing/reporting were evaluated for association with the selected patient, treatment, and facility-level characteristics using multivariable logistic regression. As a secondary analysis, predictors of MGMT promoter methylation testing/reporting among IDH-wildtype glioblastoma individuals were assessed. Key limitations of the BMM data item were that it did not include any details regarding testing technique or assay type and could not distinguish between a lack of testing and a lack of cancer registry reporting of testing results. Results Among 8306 histopathologically diagnosed adult-type diffuse gliomas nationally, overall BMM testing/reporting completeness was 81.1%. Compared to biopsy-only cases, odds of testing/reporting increased for subtotal (ORadj= 1.38 [95% CI: 1.20-1.59], P < .001) and gross total resection (ORadj=1.50 [95% CI: 1.31-1.72], P < .001). Furthermore, the odds were lowest at community centers (hospitals (67.3%; ORadj=0.35 [95% CI: 0.26-0.46], P < .001) and highest at academic/NCI-designated comprehensive cancer centers (85.4%; referent). By geographical location, BMM testing/reporting completeness ranged from a high of 86.8% at New England (referent) to a low of 76.0 % in the West South Central region (ORadj=0.57 [95% CI: 0.42-0.78]; P < .001). Extent of resection, Commission-on-Cancer facility type, and facility location were additionally significant predictors of MGMT testing/reporting among IDH-wildtype glioblastoma cases. Conclusions Initial BMM testing/reporting completeness for individuals with adult-type diffuse gliomas in the United States was promising, although patterns varied by hospital attributes and extent of resection.
Collapse
Affiliation(s)
- Corey Neff
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Gino Cioffi
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristin Waite
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Carol Kruchko
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
| | - Jill S Barnholtz-Sloan
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Trans Divisional Research Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, USA
| | - Quinn T Ostrom
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - J Bryan Iorgulescu
- Central Brain Tumor Registry of the United States, Hinsdale, IL, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
MMP-9 as Prognostic Marker for Brain Tumours: A Comparative Study on Serum-Derived Small Extracellular Vesicles. Cancers (Basel) 2023; 15:cancers15030712. [PMID: 36765669 PMCID: PMC9913777 DOI: 10.3390/cancers15030712] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades the extracellular matrix, contributes to tumour cell invasion and metastasis, and its elevated level in brain tumour tissues indicates poor prognosis. High-risk tissue biopsy can be replaced by liquid biopsy; however, the blood-brain barrier (BBB) prevents tumour-associated components from entering the peripheral blood, making the development of blood-based biomarkers challenging. Therefore, we examined the MMP-9 content of small extracellular vesicles (sEVs)-which can cross the BBB and are stable in body fluids-to characterise tumours with different invasion capacity. From four patient groups (glioblastoma multiforme, brain metastases of lung cancer, meningioma, and lumbar disc herniation as controls), 222 serum-derived sEV samples were evaluated. After isolating and characterising sEVs, their MMP-9 content was measured by ELISA and assessed statistically (correlation, paired t-test, Welch's test, ANOVA, ROC). We found that the MMP-9 content of sEVs is independent of gender and age, but is affected by surgical intervention, treatment, and recurrence. We found a relation between low MMP-9 level in sEVs (<28 ppm) and improved survival (8-month advantage) of glioblastoma patients, and MMP-9 levels showed a positive correlation with aggressiveness. These findings suggest that vesicular MMP-9 level might be a useful prognostic marker for brain tumours.
Collapse
|
6
|
Ashtekar RM, Epari S, Shetty PM, Sahu AA. Unleashing the Mystery of a Treated Case of Medulloblastoma. Indian J Radiol Imaging 2022; 32:416-421. [PMID: 36177290 PMCID: PMC9514894 DOI: 10.1055/s-0042-1753466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Despite advancement in treatment modalities, recurrence remains common, even among those treated with a combination of neurosurgery, craniospinal irradiation, and chemotherapy. The diagnosis of recurrence is usually not difficult in these cases. However, it may pose a challenge in cases with unusual clinical presentation and imaging. Imaging findings on magnetic resonance imaging, with application of perfusion, in conjunction with positron emission tomography-computed tomography can help in clinching the diagnosis in such cases. MB subgroups show consistent patterns even in cases of recurrence, and sonic hedgehog group MB may present as local recurrence showing enhancement with no diffusion restriction, as demonstrated in this case.
Collapse
Affiliation(s)
- Renuka M. Ashtekar
- Department of Radiology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Prakash M. Shetty
- Department of Neurosurgery, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Arpita A. Sahu
- Department of Radiology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Soldatelli JS, Oliveira IMDE, Kneubil MC, Henriques JAP. Gliomas molecular markers: importance in treatment, prognosis and applicability in brazilian health system. AN ACAD BRAS CIENC 2022; 94:e20211075. [PMID: 35766600 DOI: 10.1590/0001-3765202220211075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Gliomas represent 80% of all primary malignant brain tumors in adults. In view of this public health problem, the early detection through sensitive and specific molecular tumor markers analysis can help to improve gliomas diagnosis and prognosis as well as their staging, assessment of therapeutic response and detection of recurrence. Therefore, this review focuses in current gliomas tumor markers, IDH-1/2, 1p/19q, MGMT, ATRX, TERT, H3, EGFR, BRAF and Ki67 used in clinic worldwide and their importance to early detection, glioma histological and molecular classification as well as in predicting patient's therapeutic response. In addition, we present what are the steps in the requesting process for this type of examination in the Brazilian Public Health System (SUS) scope, which attends most of the Brazilian population. Thereby, this article is useful in demonstrating which markers are used in the clinical practice for glioma patients and can be performed in the SUS through partnerships/agreements between specialized health centers and clinical analysis laboratories. It is hoped that this work clarifies, the necessary subsidies to carry out the research of tumor markers in all institutions that serve SUS users, providing a service with equal conditions.
Collapse
Affiliation(s)
- Jéssica S Soldatelli
- Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Biociências, Departamento de Biofísica, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Iuri M DE Oliveira
- Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Biociências, Departamento de Biofísica, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil
| | - Maximiliano C Kneubil
- Universidade de Caxias do Sul, UCS, Instituto de Biotecnologia/Divisão de Cirurgia de Mama, Hospital Geral, Rua Francisco Getúlio Vargas, 1130, Petrópolis 95070-560 Caxias do Sul, RS, Brazil
| | - João Antonio P Henriques
- Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Biociências, Departamento de Biofísica, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brazil.,Universidade do Vale do Taquari, UNIVATES, Programa de Pós Graduação em Biotecnologia e em Ciências Médicas, Av. Avelino Talini, 171, Universitáriom 95914-014 Lajeado, RS, Brazil
| |
Collapse
|
8
|
Huang H, Huo Z, Jiao J, Ji W, Huang J, Bian Z, Xu B, Shao J, Sun J. HOXC6 impacts epithelial-mesenchymal transition and the immune microenvironment through gene transcription in gliomas. Cancer Cell Int 2022; 22:170. [PMID: 35488304 PMCID: PMC9052479 DOI: 10.1186/s12935-022-02589-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary malignant tumours of the central nervous system (CNS). To improve the prognosis of glioma, it is necessary to identify molecular markers that may be useful for glioma therapy. HOXC6, an important transcription factor, is involved in multiple cancers. However, the role of HOXC6 in gliomas is not clear. METHODS Bioinformatic and IHC analyses of collected samples (n = 299) were performed to detect HOXC6 expression and the correlation between HOXC6 expression and clinicopathological features of gliomas. We collected clinical information from 177 to 299 patient samples and estimated the prognostic value of HOXC6. Moreover, cell proliferation assays were performed. We performed Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) based on ChIP-seq and public datasets to explore the biological characteristics of HOXC6 in gliomas. RNA-seq was conducted to verify the relationship between HOXC6 expression levels and epithelial-mesenchymal transition (EMT) biomarkers. Furthermore, the tumour purity, stromal and immune scores were evaluated. The relationship between HOXC6 expression and infiltrating immune cell populations and immune checkpoint proteins was also researched. RESULTS HOXC6 was overexpressed and related to the clinicopathological features of gliomas. In addition, knockdown of HOXC6 inhibited the proliferation of glioma cells. Furthermore, increased HOXC6 expression was associated with clinical progression. The biological role of HOXC6 in gliomas was primarily associated with EMT and the immune microenvironment in gliomas. High HOXC6 expression was related to high infiltration by immune cells, a low tumour purity score, a high stromal score, a high immune score and the expression of a variety of immune checkpoint genes, including PD-L1, B7-H3 and CLTA-4. CONCLUSIONS These results indicated that HOXC6 might be a key factor in promoting tumorigenesis and glioma progression by regulating the EMT signalling pathway and might represent a novel immune therapeutic target in gliomas.
Collapse
Affiliation(s)
- Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Vagvala S, Guenette JP, Jaimes C, Huang RY. Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging 2022; 22:19. [PMID: 35436952 PMCID: PMC9014574 DOI: 10.1186/s40644-022-00455-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, most CNS tumors require tissue sampling to discern their molecular/genomic landscape. However, growing research has shown the powerful role imaging can play in non-invasively and accurately detecting the molecular signature of these tumors. The overarching theme of this review article is to provide neuroradiologists and neurooncologists with a framework of several important molecular markers, their associated imaging features and the accuracy of those features. A particular emphasis is placed on those tumors and mutations that have specific or promising imaging correlates as well as their respective therapeutic potentials.
Collapse
Affiliation(s)
- Saivenkat Vagvala
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Division of Neuroradiology, Boston Children's, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Wei S, Liu W, Xu M, Qin H, Liu C, Zhang R, Zhou S, Li E, Liu Z, Wang Q. Cathepsin F and Fibulin-1 as novel diagnostic biomarkers for brain metastasis of non-small cell lung cancer. Br J Cancer 2022; 126:1795-1805. [PMID: 35217799 PMCID: PMC9174239 DOI: 10.1038/s41416-022-01744-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Background The lack of non-invasive methods for detection of early micro-metastasis is a major cause of the poor prognosis of non-small cell lung cancer (NSCLC) brain metastasis (BM) patients. Herein, we aimed to identify circulating biomarkers based on proteomics for the early diagnosis and monitoring of patients with NSCLC BM. Methods Upregulated proteins were detected by secretory proteomics in the animal-derived high brain metastatic lung cancer cell line. A well-designed study composed of three independent cohorts was then performed to verify these blood-based protein biomarkers: the serum discovery and verification cohorts (n = 80; n = 459), and the tissue verification cohort (n = 76). Logistic regression was used to develop a diagnostic biomarker panel. Model validation cohort (n = 160) was used to verify the stability of the constructed predictive model. Changes in serum Cathepsin F (CTSF) levels of patients were tracked to monitor the treatment response. Progression-free survival (PFS) and overall survival (OS) were analysed to assess their prognostic relevance. Results CTSF and Fibulin-1 (FBLN1) levels were specifically upregulated in sera and tissues of patients with NSCLC BM compared with NSCLC without BM and primary brain tumour. The combined diagnostic performance of CTSF and FBLN1 was superior to their individual ones. CTSF serum changes were found to reflect the therapeutic response of patients with NSCLC BM and the trends of progression were detected earlier than the magnetic resonance imaging changes. Elevated expression of CTSF in NSCLC BM tissues was associated with poor PFS, and was found to be an independent prognostic factor. Conclusions We report a novel blood-based biomarker panel for early diagnosis, monitoring of therapeutic response, and prognostic evaluation of patients with NSCLC BM.
Collapse
Affiliation(s)
- Song Wei
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.,Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mingxin Xu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, China
| | - Chang Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Rui Zhang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Sihai Zhou
- Department of Urology Surgery, The Second Hospital, Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Zhiyu Liu
- Department of Urology Surgery, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Conti V, Cominelli M, Pieri V, Gallotti AL, Pagano I, Zanella M, Mazzoleni S, Pivetta F, Patanè M, Scotti GM, Piras IS, Pollo B, Falini A, Zippo A, Castellano A, Maestro R, Poliani PL, Galli R. mTORC1 promotes malignant large cell/anaplastic histology and is a targetable vulnerability in SHH-TP53 mutant medulloblastoma. JCI Insight 2021; 6:e153462. [PMID: 34673573 PMCID: PMC8675203 DOI: 10.1172/jci.insight.153462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma (MB), one of the most malignant brain tumors of childhood, comprises distinct molecular subgroups, with p53 mutant sonic hedgehog-activated (SHH-activated) MB patients having a very severe outcome that is associated with unfavorable histological large cell/anaplastic (LC/A) features. To identify the molecular underpinnings of this phenotype, we analyzed a large cohort of MB developing in p53-deficient Ptch+/- SHH mice that, unexpectedly, showed LC/A traits that correlated with mTORC1 hyperactivation. Mechanistically, mTORC1 hyperactivation was mediated by a decrease in the p53-dependent expression of mTORC1 negative regulator Tsc2. Ectopic mTORC1 activation in mouse MB cancer stem cells (CSCs) promoted the in vivo acquisition of LC/A features and increased malignancy; accordingly, mTORC1 inhibition in p53-mutant Ptch+/- SHH MB and CSC-derived MB resulted in reduced tumor burden and aggressiveness. Most remarkably, mTORC1 hyperactivation was detected only in p53-mutant SHH MB patient samples, and treatment with rapamycin of a human preclinical model phenocopying this subgroup decreased tumor growth and malignancy. Thus, mTORC1 may act as a specific druggable target for this subset of SHH MB, resulting in the implementation of a stringent risk stratification and in the potentially rapid translation of this precision medicine approach into the clinical setting.
Collapse
Affiliation(s)
- Valentina Conti
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Cominelli
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Alberto L. Gallotti
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Pagano
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Zanella
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Flavia Pivetta
- Unit of Experimental Oncology 1, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Pordenone, Italy
| | - Monica Patanè
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico “C. Besta,” Milan, Italy
| | - Giulia M. Scotti
- Center for Omics Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio S. Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico “C. Besta,” Milan, Italy
| | - Andrea Falini
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Zippo
- Istituto Nazionale di Genetica Molecolare (INGM), Milan, Italy
- Laboratory of Chromatin Biology & Epigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Antonella Castellano
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Maestro
- Unit of Experimental Oncology 1, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Pordenone, Italy
| | - Pietro L. Poliani
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Wang G, Li H, Pan J, Yan T, Zhou H, Han X, Su L, Hou L, Xue X. Upregulated Expression of Cancer-Derived Immunoglobulin G Is Associated With Progression in Glioma. Front Oncol 2021; 11:758856. [PMID: 34760705 PMCID: PMC8574069 DOI: 10.3389/fonc.2021.758856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Gliomas are the most aggressive intracranial tumors accounting for the vast majority of brain tumors with very poor prognosis and overall survival (OS). Cancer-derived immunoglobulin G (cancer-IgG) has been found to be widely expressed in several malignancies such as breast cancer, colorectal cancer, and lung cancer. Cancer-IgG could promote tumorigenesis and progression. However, its role in glioma has not been revealed yet. Methods We mined open databases including the Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) to study the role of IGHG1, which encodes cancer-IgG in glioma. Examination of the differential expression of IGHG1 was carried out in the GEO and TCGA databases. Furthermore, its expression in different molecular subtypes was analyzed. Stratified analysis was performed with clinical features. Subsequently, immune infiltration analysis was conducted using single-sample gene set enrichment analysis (ssGSEA). GSEA was performed to reveal the mechanisms of IGHG1. Lastly, immunohistochemistry was processed to validate our findings. Results In this study, we found that the expression of IGHG1 was higher in glioma and molecular subtypes with poor prognosis. The overall survival of patients with a high expression of IGHG1 was worse in the stratified analysis. Immune infiltration analysis indicated that the expression level of IGHG1 was positively correlated with the stromal score, ESTIMATE score, and immune score and negatively correlated with tumor purity. Results from the GSEA and DAVID demonstrated that IGHG1 may function in phagosome, antigen processing and presentation, extracellular matrix structural constituent, antigen binding, and collagen-containing extracellular matrix. Finally, immunohistochemistry assay validated our findings that patients with a high expression of cancer-IgG had poor OS and disease-free survival (DFS). Conclusion Cancer-IgG is a promising biomarker of diagnosis and treatment for patients with glioma.
Collapse
Affiliation(s)
- Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Álvarez-Torres MDM, Fuster-García E, Balaña C, Puig J, García-Gómez JM. Lack of Benefit of Extending Temozolomide Treatment in Patients with High Vascular Glioblastoma with Methylated MGMT. Cancers (Basel) 2021; 13:5420. [PMID: 34771583 PMCID: PMC8582449 DOI: 10.3390/cancers13215420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we evaluated the benefit on survival of the combination of methylation of O6-methylguanine-DNA methyltransferase (MGMT) promotor gene and moderate vascularity in glioblastoma using a retrospective dataset of 123 patients from a multicenter cohort. MRI processing and calculation of relative cerebral blood volume (rCBV), used to define moderate- and high-vascular groups, were performed with the automatic ONCOhabitats method. We assessed the previously proposed rCBV threshold (10.7) and the new calculated ones (9.1 and 9.8) to analyze the association with survival for different populations according to vascularity and MGMT methylation status. We found that patients included in the moderate-vascular group had longer survival when MGMT is methylated (significant median survival difference of 174 days, p = 0.0129*). However, we did not find significant differences depending on the MGMT methylation status for the high-vascular group (p = 0.9119). In addition, we investigated the combined correlation of MGMT methylation status and rCBV with the prognostic effect of the number of temozolomide cycles, and only significant results were found for the moderate-vascular group. In conclusion, there is a lack of benefit of extending temozolomide treatment for patients with high vascular glioblastomas, even presenting MGMT methylation. Preliminary results suggest that patients with moderate vascularity and methylated MGMT glioblastomas would benefit more from prolonged adjuvant chemotherapy.
Collapse
Affiliation(s)
- María del Mar Álvarez-Torres
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Elies Fuster-García
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
- Department of Diagnostic Physics, Oslo University Hospital, 0450 Oslo, Norway
| | - Carmen Balaña
- Institut Catala d’Oncologia (ICO), Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Josep Puig
- Institut de Diagnostic per la Image (IDI), Hospital Dr. Josep Trueta, 17007 Girona, Spain;
| | - Juan M. García-Gómez
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| |
Collapse
|
14
|
ITGB2 as a prognostic indicator and a predictive marker for immunotherapy in gliomas. Cancer Immunol Immunother 2021; 71:645-660. [PMID: 34313821 DOI: 10.1007/s00262-021-03022-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Glioma is the most common primary tumor in the brain, accounting for 81% of intracranial malignancies. Nowadays, cancer immunotherapy has become a novel and revolutionary treatment for patients with advanced, highly aggressive tumors. However, to date, there are no effective biomarkers to reflect the response of glioma patients to immunotherapy. In this study, we aimed to assess the clinical predictive value of ITGB2 in patients with glioma. METHODS The correlation between ITGB2 expression levels and glioma progression was explored and validated using data from CGGA, TCGA, GEO datasets, and patient samples from our hospital. Univariate and multivariate cox regression models were developed to determine the predictive role of ITGB2 on the prognosis of patients with glioma. The relationship between ITGB2 and immune activation was then analyzed. Finally, we predicted the immunotherapy response in both high and low ITGB2 expression subgroups. RESULTS ITGB2 was significantly elevated in gliomas with higher malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio for ITGB2 expression (low versus high) was 0.71 with 95% CI (0.59-0.85) (P < 0.001). Furthermore, we found that ITGB2 stratified glioma patients into high and low ITGB2 expression subgroups, exhibiting different clinical outcomes and immune activation status. At last, we demonstrated that glioma patients with high ITGB2 expression levels had better immunotherapy response. CONCLUSIONS This study demonstrated ITGB2 as a novel predictor for clinical prognosis and response to immunotherapy in gliomas. Assessing expression levels of ITGB2 is a promising method to discover patients that may benefit from immunotherapy.
Collapse
|
15
|
Sharaf R, Pavlick DC, Frampton GM, Cooper M, Jenkins J, Danziger N, Haberberger J, Alexander BM, Cloughesy T, Yong WH, Liau LM, Nghiemphu PL, Ji M, Lai A, Ramkissoon SH, Albacker LA. FoundationOne CDx testing accurately determines whole arm 1p19q codeletion status in gliomas. Neurooncol Adv 2021; 3:vdab017. [PMID: 33778493 PMCID: PMC7986056 DOI: 10.1093/noajnl/vdab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Molecular profiling of gliomas is vital to ensure diagnostic accuracy, inform prognosis, and identify clinical trial options for primary and recurrent tumors. This study aimed to determine the accuracy of reporting the whole arm 1p19q codeletion status from the FoundationOne platform. METHODS Testing was performed on glioma samples as part of clinical care and analyzed up to 395 cancer-associated genes (including IDH1/2). The whole arm 1p19q codeletion status was predicted from the same assay using a custom research-use only algorithm, which was validated using 463 glioma samples with available fluorescence in-situ hybridization (FISH) data. For 519 patients with available outcomes data, progression-free and overall survival were assessed based on whole arm 1p19q codeletion status derived from sequencing data. RESULTS Concordance between 1p19q status based on FISH and our algorithm was 96.7% (449/463) with a positive predictive value (PPV) of 100% and a positive percent agreement (PPA) of 91.0%. All discordant samples were positive for codeletion by FISH and harbored genomic alterations inconsistent with oligodendrogliomas. Median overall survival was 168 months for the IDH1/2 mutant, codeleted group, and 122 months for IDH1/2 mutant-only (hazard ratio (HR): 0.42; P < .05). CONCLUSIONS 1p19q codeletion status derived from FoundationOne testing is highly concordant with FISH results. Genomic profiling may be a reliable substitute for traditional FISH testing while also providing IDH1/2 status.
Collapse
Affiliation(s)
- Radwa Sharaf
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Dean C Pavlick
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Garrett M Frampton
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Maureen Cooper
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Jacqueline Jenkins
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Natalie Danziger
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - James Haberberger
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Brian M Alexander
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| | - Timothy Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - William H Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Matthew Ji
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lee A Albacker
- Foundation Medicine, Inc., Cambridge, Massachusetts and Morrisville, North Carolina
| |
Collapse
|
16
|
Yu J, Gao H, Su Z, Yue F, Tian X. Effect of FAT1 gene expression on the prognosis of medulloblastoma in children: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23020. [PMID: 33181666 PMCID: PMC7668459 DOI: 10.1097/md.0000000000023020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND It was reported that cloning human adipose atypical cadherin 1 (FAT1) has an effect on the prognosis of medulloblastoma (MB), while the conclusion still needs to be further proved. Therefore, this study attempted to explore the effect of the high expression of FAT1 on the prognosis of MB children. METHODS The database was retrieved from China National Knowledge Infrastructure (CNKI), Chinese Biomedical literature Database (CBM), Chinese Scientific and Journal Database (VIP), Wan Fang database, PubMed, and EMBASE. Hazard ratios (HRs) and its 95% confidence intervals (CIs) were applied to assess the prognostic effect of FAT1 on overall survival (OS) and disease-free survival (DFS). RevMan 5.3 and STATA 16.0 software were used to perform the meta-analysis. RESULTS The results of the study would be published in peer-reviewed journals or at relevant meetings. CONCLUSION Our findings revealed the effect of the high expression of FAT1 on the prognosis of MB children. Such studies may find a new prognostic marker for MB children and help clinicians and health professionals make clinical decisions. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/5FN8M.
Collapse
|
17
|
Benezech S, Saintigny P, Attignon V, Pissaloux D, Paindavoine S, Faure-Conter C, Corradini N, Marec-Berard P, Bergeron C, Cassier P, Eberst L, Dufresne A, Wang Q, Agrapart V, De La Fouchardière A, Perol D, Garin G, Corset V, Ben Abdesselem L, Chabaud S, Tredan O, Blay JY, Frappaz D. Tumor Molecular Profiling: Pediatric Results of the ProfiLER Study. JCO Precis Oncol 2020; 4:785-795. [PMID: 35050753 DOI: 10.1200/po.20.00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The Program to Establish the Genetic and Immunologic Profile of Patient's Tumor for All Types of Advanced Cancer study (ClinicalTrials.gov identifier: NCT01774409) analyzed the genome of refractory cancers to identify a potential molecular-based recommended therapy (MBRT). The objectives of the pediatric substudy were to describe the incidence of genomic mutations, the MBRT, and the treatments undertaken with a molecular-targeted agent in a pediatric cohort. METHODS The tumor genome was analyzed within a 69-gene next-generation sequencing panel and an array comparative genomic hybridization assay. The results were evaluated by a multidisciplinary molecular board, and the targeted therapies were provided in the setting of a clinical trial or through compassionate use programs, when indicated. RESULTS Between November 2013 and June 2017, 50 patients younger than 19 years who were treated for a high-risk or relapsing tumor were included. Sarcomas (n = 24; 47%), CNS tumors (n = 14; 29%), and neuroblastomas (n = 5; 10%) were the most frequent tumor subtypes. Seven patients (14%) were excluded because no DNA could be recovered. Among the 43 remaining patients, 10 exhibited at least one targetable genomic alteration. Ultimately, four patients (8%) were treated with the recommended targeted therapy. CONCLUSION The results of this study confirm treatment with a targeted therapy for pediatric patients with cancer is still limited at present, as also is reported for adults.
Collapse
Affiliation(s)
- Sarah Benezech
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,Department of Medical Oncology, Centre Léon Bérard, France
| | - Valery Attignon
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Daniel Pissaloux
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | | | - Cécile Faure-Conter
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Nadège Corradini
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Perrine Marec-Berard
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Christophe Bergeron
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | | | | | | | - Qing Wang
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Vincent Agrapart
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | | | - David Perol
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Gwenaëlle Garin
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Véronique Corset
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Leila Ben Abdesselem
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Sylvie Chabaud
- Department of Clinical Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Olivier Tredan
- Department of Medical Oncology, Centre Léon Bérard, France.,University Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, France
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, France.,University Claude Bernard Lyon 1, CNRS 5286, INSERM U1052, Cancer Research Center of Lyon, France
| | - Didier Frappaz
- Institut d'Hématologie et Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| |
Collapse
|
18
|
Balaji E V, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol 2020; 887:173549. [PMID: 32926916 DOI: 10.1016/j.ejphar.2020.173549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor (WHO grade 4 astrocytoma) with unknown causes and is associated with a reduced life expectancy. The available treatment options namely radiotherapy, surgery and chemotherapy have failed to improve life expectancy. Out of the various therapeutic approaches, epigenetic therapy is one of the most studied. Epigenetic therapy is involved in the effective treatment of GBM by inhibiting DNA methyltransferase, histone deacetylation and non-coding RNA. It also promotes the expression of the tumor suppressor gene and is involved in the suppression of the oncogene. Various targets are being studied to implement proper epigenetic regulation to control GBM effectively. Zinc is one of the micronutrients which is considered to maintain epigenetic regulation by promoting the proper DNA folding, protecting genetic material from the oxidative damage and controlling the enzyme activation involved in the epigenetic regulation. Here, we are discussing the importance of zinc in regulating the epigenetic modifications and assessing its role in glioblastoma research. The discussion also highlights the importance of artificial intelligence using epigenetics for envisaging the glioma progression, diagnosis and its management.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
19
|
Dobra G, Bukva M, Szabo Z, Bruszel B, Harmati M, Gyukity-Sebestyen E, Jenei A, Szucs M, Horvath P, Biro T, Klekner A, Buzas K. Small Extracellular Vesicles Isolated from Serum May Serve as Signal-Enhancers for the Monitoring of CNS Tumors. Int J Mol Sci 2020; 21:ijms21155359. [PMID: 32731530 PMCID: PMC7432723 DOI: 10.3390/ijms21155359] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy-based methods to test biomarkers (e.g., serum proteins and extracellular vesicles) may help to monitor brain tumors. In this proteomics-based study, we aimed to identify a characteristic protein fingerprint associated with central nervous system (CNS) tumors. Overall, 96 human serum samples were obtained from four patient groups, namely glioblastoma multiforme (GBM), non-small-cell lung cancer brain metastasis (BM), meningioma (M) and lumbar disc hernia patients (CTRL). After the isolation and characterization of small extracellular vesicles (sEVs) by nanoparticle tracking analysis (NTA) and atomic force microscopy (AFM), liquid chromatography -mass spectrometry (LC-MS) was performed on two different sample types (whole serum and serum sEVs). Statistical analyses (ratio, Cohen's d, receiver operating characteristic; ROC) were carried out to compare patient groups. To recognize differences between the two sample types, pairwise comparisons (Welch's test) and ingenuity pathway analysis (IPA) were performed. According to our knowledge, this is the first study that compares the proteome of whole serum and serum-derived sEVs. From the 311 proteins identified, 10 whole serum proteins and 17 sEV proteins showed the highest intergroup differences. Sixty-five proteins were significantly enriched in sEV samples, while 129 proteins were significantly depleted compared to whole serum. Based on principal component analysis (PCA) analyses, sEVs are more suitable to discriminate between the patient groups. Our results support that sEVs have greater potential to monitor CNS tumors, than whole serum.
Collapse
Affiliation(s)
- Gabriella Dobra
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Medical Genetics, Doctoral School of Interdisciplinary Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Matyas Bukva
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Medical Genetics, Doctoral School of Interdisciplinary Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltan Szabo
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (B.B.)
| | - Bella Bruszel
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (B.B.)
| | - Maria Harmati
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Edina Gyukity-Sebestyen
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Adrienn Jenei
- Department of Neurosurgery, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary; (A.J.); (A.K.)
| | - Monika Szucs
- Department of Medical Physics and Informatics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
- Department of Medical Physics and Informatics, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Peter Horvath
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
| | - Tamas Biro
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary; (A.J.); (A.K.)
| | - Krisztina Buzas
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary; (G.D.); (M.B.); (M.H.); (E.G.-S.); (P.H.)
- Department of Immunology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
- Department of Immunology, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-432-340
| |
Collapse
|
20
|
Yuan T, Ying J, Zuo Z, Gui S, Gao Z, Li G, Zhang Y, Li C. Structural plasticity of the bilateral hippocampus in glioma patients. Aging (Albany NY) 2020; 12:10259-10274. [PMID: 32507763 PMCID: PMC7346025 DOI: 10.18632/aging.103212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/17/2020] [Indexed: 01/26/2023]
Abstract
This study investigates the structural plasticity and neuronal reaction of the hippocampus in glioma patient pre-surgery. Ninety-nine glioma patients without bilateral hippocampus involvement (low-grade, n=52; high-grade, n=47) and 80 healthy controls with 3D T1 images and resting-fMRI were included. Hippocampal volume and dynamic amplitude of low-frequency fluctuation (dALFF) were analyzed among groups. Relationships between hippocampal volume and clinical characteristics were assessed. We observed remote hippocampal volume increases in low- and high-grade glioma and a greater response of the ipsilateral hippocampus than the contralesional hippocampus. The bilateral hippocampal dALFF was significantly increased in high-grade glioma. Tumor-associated epilepsy and the IDH-1 mutation did not affect hippocampal volume in glioma patients. No significant relationship between hippocampal volume and age was observed in high-grade glioma. The Kaplan-Meier curve and log-rank test revealed that large hippocampal volume was associated with shorter overall survival (OS) compared with small hippocampal volume (p=0.007). Multivariate Cox regression analysis revealed that large hippocampal volume was an independent predictor of unfavorable OS (HR=3.597, 95% CI: 1.160-11.153, p=0.027) in high-grade glioma. Our findings suggest that the hippocampus has a remarkable degree of plasticity in response to pathological stimulation of glioma and that the hippocampal reaction to glioma may be related to tumor malignancy.
Collapse
Affiliation(s)
- Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianyou Ying
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhixian Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guilin Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| |
Collapse
|
21
|
Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview. Cells 2020; 9:cells9020490. [PMID: 32093304 PMCID: PMC7072800 DOI: 10.3390/cells9020490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood–brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently available therapies. Standard therapeutic approaches developed to prevent astrocytoma progression, such as chemotherapy and radiotherapy, do not improve the average survival of patients. However, the recent identification of key genetic alterations and molecular signatures specific for astrocytomas has allowed the advent of novel targeted therapies, potentially more efficient and characterized by fewer side effects. Among others, peptides have emerged as promising therapeutic agents, due to their numerous advantages when compared to standard chemotherapeutics. They can be employed as (i) pharmacologically active agents, which promote the reduction of tumor growth; or (ii) carriers, either to facilitate the translocation of drugs through brain, tumor, and cellular barriers, or to target tumor-specific receptors. Since several pathways are normally altered in malignant gliomas, better outcomes may result from combining multi-target strategies rather than targeting a single effector. In the last years, several preclinical studies with different types of peptides moved in this direction, providing promising results in murine models of disease and opening new perspectives for peptide applications in the treatment of high-grade brain tumors.
Collapse
|
22
|
Dietz MS, Beach CZ, Barajas R, Parappilly MS, Sengupta SK, Baird LC, Ciporen JN, Han SJ, Loret de Mola R, Cho YJ, Nazemi KJ, McClelland S, Wong MH, Jaboin JJ. Measure Twice: Promise of Liquid Biopsy in Pediatric High-Grade Gliomas. Adv Radiat Oncol 2020; 5:152-162. [PMID: 32280814 PMCID: PMC7136635 DOI: 10.1016/j.adro.2019.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose To review and critique the current state of liquid biopsy in pHGG. Materials and Methods Published literature was reviewed for articles related to liquid biopsy in pediatric glioma and adult glioma with a focus on high-grade gliomas. Results This review discusses the current state of liquid biomarkers of pHGG and their potential applications for liquid biopsy development. Conclusions While nascent, the progress toward identifying circulating analytes of pHGG primes the field of neuro-oncoogy for liquid biopsy development.
Collapse
Affiliation(s)
- Matthew S Dietz
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Catherine Z Beach
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ramon Barajas
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon.,Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
| | - Michael S Parappilly
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Lissa C Baird
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Jeremy N Ciporen
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Seunggu J Han
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | | - Yoon Jae Cho
- Department of Neurology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kellie J Nazemi
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Shearwood McClelland
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Jerry J Jaboin
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon.,The Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
23
|
Karami E, Soliman H, Ruschin M, Sahgal A, Myrehaug S, Tseng CL, Czarnota GJ, Jabehdar-Maralani P, Chugh B, Lau A, Stanisz GJ, Sadeghi-Naini A. Quantitative MRI Biomarkers of Stereotactic Radiotherapy Outcome in Brain Metastasis. Sci Rep 2019; 9:19830. [PMID: 31882597 PMCID: PMC6934477 DOI: 10.1038/s41598-019-56185-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/08/2019] [Indexed: 02/08/2023] Open
Abstract
About 20-40% of cancer patients develop brain metastases, causing significant morbidity and mortality. Stereotactic radiation treatment is an established option that delivers high dose radiation to the target while sparing the surrounding normal tissue. However, up to 20% of metastatic brain tumours progress despite stereotactic treatment, and it can take months before it is evident on follow-up imaging. An early predictor of radiation therapy outcome in terms of tumour local failure (LF) is crucial, and can facilitate treatment adjustments or allow for early salvage treatment. In this study, an MR-based radiomics framework was proposed to derive and investigate quantitative MRI (qMRI) biomarkers for the outcome of LF in brain metastasis patients treated with hypo-fractionated stereotactic radiation therapy (SRT). The qMRI biomarkers were constructed through a multi-step feature extraction/reduction/selection framework using the conventional MR imaging data acquired from 100 patients (133 lesions), and were applied in conjunction with machine learning techniques for outcome prediction and risk assessment. The results indicated that the majority of the features in the optimal qMRI biomarkers characterize the heterogeneity in the surrounding regions of tumour including edema and tumour/lesion margins. The optimal qMRI biomarker consisted of five features that predict the outcome of LF with an area under the curve (AUC) of 0.79, and a cross-validated sensitivity and specificity of 81% and 79%, respectively. The Kaplan-Meier analyses showed a statistically significant difference in local control (p-value < 0.0001) and overall survival (p = 0.01). Findings from this study are a step towards using qMRI for early prediction of local failure in brain metastasis patients treated with SRT. This may facilitate early adjustments in treatment, such as surgical resection or salvage radiation, that can potentially improve treatment outcomes. Investigations on larger cohorts of patients are, however, required for further validation of the technique.
Collapse
Affiliation(s)
- Elham Karami
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | | | - Brige Chugh
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Angus Lau
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - Ali Sadeghi-Naini
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
24
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
25
|
Affiliation(s)
- Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
26
|
Abstract
The complexity of human cancer underlies its devastating clinical consequences. Drugs designed to target the genetic alterations that drive cancer have improved the outcome for many patients, but not the majority of them. Here, we review the genomic landscape of cancer, how genomic data can provide much more than a sum of its parts, and the approaches developed to identify and validate genomic alterations with potential therapeutic value. We highlight notable successes and pitfalls in predicting the value of potential therapeutic targets and discuss the use of multi-omic data to better understand cancer dependencies and drug sensitivity. We discuss how integrated approaches to collecting, curating, and sharing these large data sets might improve the identification and prioritization of cancer vulnerabilities as well as patient stratification within clinical trials. Finally, we outline how future approaches might improve the efficiency and speed of translating genomic data into clinically effective therapies and how the use of unbiased genome-wide information can identify novel predictive biomarkers that can be either simple or complex.
Collapse
Affiliation(s)
- Gary J Doherty
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
| | - Michele Petruzzelli
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Emma Beddowes
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Saif S Ahmad
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Medical Research Council (MRC) Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, United Kingdom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Richard J Gilbertson
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, United Kingdom; ,
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
27
|
The potential role of MGMT rs12917 polymorphism in cancer risk: an updated pooling analysis with 21010 cases and 34018 controls. Biosci Rep 2018; 38:BSR20180942. [PMID: 30232235 PMCID: PMC6435461 DOI: 10.1042/bsr20180942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, we aimed at determining the potential role of rs12917 polymorphism of the O-6-methylguanine-DNA methyltransferase (MGMT) gene in the occurrence of cancer. Based on the available data from the online database, we performed an updated meta-analysis. We retrieved 537 articles from our database research and finally selected a total of 54 case–control studies (21010 cases and 34018 controls) for a series of pooling analyses. We observed an enhanced risk in cancer cases compared with controls, using the genetic models T/T compared with C/C (P-value of association test <0.001; odds ratio (OR) = 1.29) and T/T compared with C/C+C/T (P<0.001; OR = 1.32). We detected similar positive results in the subgroups ‘Caucasian’, and ‘glioma’ (all P<0.05; OR > 1). However, we detected negative results in our analyses of most of the other subgroups (P>0.05). Begg’s and Egger’s tests indicated that the results were free of potential publication bias, and sensitivity analysis suggested the stability of the pooling results. In summary, the T/T genotype of MGMT rs12917 is likely to be linked to an enhanced susceptibility to cancer overall, especially glioma, in the Caucasian population.
Collapse
|
28
|
Klonou A, Spiliotakopoulou D, Themistocleous MS, Piperi C, Papavassiliou AG. Chromatin remodeling defects in pediatric brain tumors. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:248. [PMID: 30069450 DOI: 10.21037/atm.2018.04.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain tumors are regarded as the most prevalent solid neoplasms in children and the principal reason of death in this population. Even though surgical resection, radiotherapy and chemotherapy have improved outcome, a significant number of patients die in 6-12 months after diagnosis while those who survive, frequently experience side effects and relapses. Several studies suggest that many types of cancer including pediatric brain tumors are characterized by alterations in epigenetic profiles with deregulated chromatin remodeling and posttranslational covalent histone modifications playing a prominent role. Moreover, interplay of genetic and epigenetic changes has been associated to tumor growth and invasion as well as to modulation of patient's response to current treatment. Therefore, detection of tumor-specific histone changes and elucidation of the underlying gene defects will allow successful tailoring of personalized treatment. The goal of this review is to provide an update of genetic and epigenetic alterations that characterize pediatric brain tumors focusing on histone modifications, aiming at directing future molecular and epigenetic therapeutic targeting.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Spiliotakopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Azzarelli R, Simons BD, Philpott A. The developmental origin of brain tumours: a cellular and molecular framework. Development 2018; 145:145/10/dev162693. [PMID: 29759978 PMCID: PMC6001369 DOI: 10.1242/dev.162693] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation. Summary: Lineage-tracing work in glioma and medulloblastoma reveals similarities between neuronal development and brain tumours, identifying potential new therapeutic avenues that exploit vulnerabilities in tumour growth patterns.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Benjamin D Simons
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK .,Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
30
|
Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, Yang J, Zhang J, Li M, Kang C. The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 2018; 8:1540-1557. [PMID: 29556340 PMCID: PMC5858166 DOI: 10.7150/thno.22952] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Exosomes play critical roles in intercellular communication in both nearby and distant cells in individuals and organs. Polymerase I and transcript release factor (PTRF), also known as Cavin1, has previously been described as a critical factor in caveola formation, and aberrant PTRF expression has been reported in various malignancies. However, the function of PTRF in tumor progression remains controversial, and its role in glioma is poorly understood. In this study, we report that PTRF is associated with malignancy grade and poor prognosis in glioma patients. Our previous study using two proteomics methods, tandem mass tag (TMT) and data-independent acquisition (DIA), showed that EGFRvIII overexpression increased PTRF expression at the protein level. In contrast, blocking PI3K and AKT using LY294002 and MK-2206, respectively, decreased PTRF expression, showing that PTRF is regulated in the EGFR/PI3K/AKT pathway. ChIP-PCR analysis showed that PTRF is transcriptionally regulated by the H3K4me3 and H3K27me3 modifications. Furthermore, PTRF overexpression increased exosome secretion and induced cell growth in vitro. More importantly, overexpressing PTRF induced the malignancy of nearby cells in vivo, suggesting that PTRF alters the microenvironment through intercellular communication via exosomes. Furthermore, analysis of clinical samples showed a positive correlation between tumor grade and PTRF expression in both tumor tissues and exosomes isolated from blood harvested from glioma patients, and PTRF expression in exosomes isolated from the sera of GBM patients was decreased after surgery. In conclusion, PTRF serves as a promising biomarker in both tumor samples and serum exosomes, thus facilitating the detection of glioma and potentially serving as a therapeutic target for glioblastoma multiforme.
Collapse
Affiliation(s)
- Kai Huang
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Chuan Fang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Neurosurgery, Hebei University Affiliated Hospital, Baoding 071000, China
| | - Kaikai Yi
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Xing Liu
- Beijing Neurosurgical Institute, Capital Medical University,Beijing,100050,China
| | - Hongzhao Qi
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yanli Tan
- College of Fundamental Medicine, Hebei University, Baoding 071000, China
| | - Junhu Zhou
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yuqing Zhang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Min Li
- Department of Medicine, Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Chunsheng Kang
- Tianjin Neurological Institute, Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| |
Collapse
|
31
|
Villamar MF, Mirza FA, Smith JH, Smith VD. Pearls & Oy-sters: Persistent elevation of serum carcinoembryonic antigen in secretory meningioma. Neurology 2018; 90:e538-e541. [PMID: 29438031 DOI: 10.1212/wnl.0000000000004934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Mauricio F Villamar
- From the Departments of Neurology (M.F.V., J.H.S.), Neurosurgery (F.A.M.), and Pathology and Laboratory Medicine (V.D.S.), University of Kentucky, Lexington
| | - Farhan A Mirza
- From the Departments of Neurology (M.F.V., J.H.S.), Neurosurgery (F.A.M.), and Pathology and Laboratory Medicine (V.D.S.), University of Kentucky, Lexington
| | - Jonathan H Smith
- From the Departments of Neurology (M.F.V., J.H.S.), Neurosurgery (F.A.M.), and Pathology and Laboratory Medicine (V.D.S.), University of Kentucky, Lexington
| | - Vanessa D Smith
- From the Departments of Neurology (M.F.V., J.H.S.), Neurosurgery (F.A.M.), and Pathology and Laboratory Medicine (V.D.S.), University of Kentucky, Lexington.
| |
Collapse
|
32
|
Messerli SM, Hoffman MM, Gnimpieba EZ, Kohlhof H, Bhardwaj RD. 4SC-202 as a Potential Treatment for the Pediatric Brain Tumor Medulloblastoma. Brain Sci 2017; 7:brainsci7110147. [PMID: 29099739 PMCID: PMC5704154 DOI: 10.3390/brainsci7110147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/17/2022] Open
Abstract
This project involves an examination of the effect of the small molecule inhibitor 4SC-202 on the growth of the pediatric brain cancer medulloblastoma. The small molecule inhibitor 4SC-202 significantly inhibits the viability of the pediatric desmoplastic cerebellar human medulloblastoma cell line DAOY, with an IC50 = 58.1 nM, but does not affect the viability of noncancerous neural stem cells (NSC). 4SC-202 exposure inhibits hedgehog expression in the DAOY cell line. Furthermore, microarray analysis of human medulloblastoma patient tumors indicate significant upregulation of key targets in the Hedgehog signaling pathway and Protein Tyrosine Kinase (PTK7).
Collapse
Affiliation(s)
- Shanta M Messerli
- Sanford Children's Health Research Center, Department of Pediatrics, Cancer Biology and Immunotherapies, Sanford Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | - Mariah M Hoffman
- Biomedical Engineering Department, University of South Dakota, Vermillion, SD 57069, USA.
| | - Etienne Z Gnimpieba
- Biomedical Engineering Department, University of South Dakota, Vermillion, SD 57069, USA.
| | - Hella Kohlhof
- 4SC AG, Fraunhoferstraße 22, 82152 Planegg, Germany.
- Immunic AG, Am Klopferspitz 19, 82152 Planegg, Germany.
| | - Ratan D Bhardwaj
- Sanford Children's Health Research Center, Department of Pediatrics, Cancer Biology and Immunotherapies, Sanford Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| |
Collapse
|
33
|
Molecular Basis of Pediatric Brain Tumors. Neuromolecular Med 2017; 19:256-270. [DOI: 10.1007/s12017-017-8455-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/21/2017] [Indexed: 01/03/2023]
|