1
|
Yamagishi M, Miyata K, Kamatani T, Kabata H, Baba R, Tanaka Y, Suzuki N, Matsusaka M, Motomura Y, Kiniwa T, Koga S, Goda K, Ohara O, Funatsu T, Fukunaga K, Moro K, Uemura S, Shirasaki Y. Quantitative live-cell imaging of secretion activity reveals dynamic immune responses. iScience 2024; 27:109840. [PMID: 38779479 PMCID: PMC11109006 DOI: 10.1016/j.isci.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Quantification of cytokine secretion has facilitated advances in the field of immunology, yet the dynamic and varied secretion profiles of individual cells, particularly those obtained from limited human samples, remain obscure. Herein, we introduce a technology for quantitative live-cell imaging of secretion activity (qLCI-S) that enables high-throughput and dual-color monitoring of secretion activity at the single-cell level over several days, followed by transcriptome analysis of individual cells based on their phenotype. The efficacy of qLCI-S was demonstrated by visualizing the characteristic temporal pattern of cytokine secretion of group 2 innate lymphoid cells, which constitute less than 0.01% of human peripheral blood mononuclear cells, and by revealing minor subpopulations with enhanced cytokine production. The underlying mechanism of this feature was linked to the gene expression of stimuli receptors. This technology paves the way for exploring gene expression signatures linked to the spatiotemporal dynamic nature of various secretory functions.
Collapse
Affiliation(s)
- Mai Yamagishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Live Cell Diagnosis, Ltd., Saitama 351-0022, Japan
| | - Kaede Miyata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Division of Precision Cancer Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yumiko Tanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nobutake Suzuki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Motomura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Kiniwa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Koga
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Osamu Ohara
- KAZUSA DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuyo Moro
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Marciniak M, Wagner M. Innate lymphoid cells and tumor-derived lactic acid: novel contenders in an enduring game. Front Immunol 2023; 14:1236301. [PMID: 37868977 PMCID: PMC10585168 DOI: 10.3389/fimmu.2023.1236301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Aerobic glycolysis, also known as the Warburg effect, has for a prolonged period of time been perceived as a defining feature of tumor metabolism. The redirection of glucose utilization towards increased production of lactate by cancer cells enables their rapid proliferation, unceasing growth, and longevity. At the same time, it serves as a significant contributor to acidification of the tumor microenvironment, which, in turn, imposes substantial constraints on infiltrating immune cells. Here, we delve into the influence of tumor-derived lactic acid on innate lymphoid cells (ILCs) and discuss potential therapeutic approaches. Given the abundance of ILCs in barrier tissues such as the skin, we provide insights aimed at translating this knowledge into therapies that may specifically target skin cancer.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Cancer Biomarkers Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Li M, Wang Z, Jiang W, Lu Y, Zhang J. The role of group 3 innate lymphoid cell in intestinal disease. Front Immunol 2023; 14:1171826. [PMID: 37122757 PMCID: PMC10140532 DOI: 10.3389/fimmu.2023.1171826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s), a novel subpopulation of lymphocytes enriched in the intestinal mucosa, are currently considered as key sentinels in maintaining intestinal immune homeostasis. ILC3s can secrete a series of cytokines such as IL-22 to eliminate intestinal luminal antigens, promote epithelial tissue repair and mucosal barrier integrity, and regulate intestinal immunity by integrating multiple signals from the environment and the host. However, ILC3 dysfunction may be associated with the development and progression of various diseases in the gut. Therefore, in this review, we will discuss the role of ILC3 in intestinal diseases such as enteric infectious diseases, intestinal inflammation, and tumors, with a focus on recent research advances and discoveries to explore potential therapeutic targets.
Collapse
|
4
|
Wagner M, Koyasu S. Cancer immunosurveillance by ILC2s. Trends Cancer 2022; 8:792-794. [PMID: 35871054 DOI: 10.1016/j.trecan.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) elicit ostensibly paradoxical responses, such as tissue repair and stimulation of tumorigenesis. Given emerging evidence that ILC2s also contribute to cancer immunosurveillance, we reassess the role of ILC2s in tumorigenesis and discuss recent insights into their tumoricidal potential.
Collapse
Affiliation(s)
- Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
5
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Wagner M, Koyasu S. Innate Lymphoid Cells in Skin Homeostasis and Malignancy. Front Immunol 2021; 12:758522. [PMID: 34691082 PMCID: PMC8531516 DOI: 10.3389/fimmu.2021.758522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 01/09/2023] Open
Abstract
Innate lymphoid cells (ILCs) are mostly tissue resident lymphocytes that are preferentially enriched in barrier tissues such as the skin. Although they lack the expression of somatically rearranged antigen receptors present on T and B cells, ILCs partake in multiple immune pathways by regulating tissue inflammation and potentiating adaptive immunity. Emerging evidence indicates that ILCs play a critical role in the control of melanoma, a type of skin malignancy thought to trigger immunity mediated mainly by adaptive immune responses. Here, we compile our current understanding of ILCs with regard to their role as the first line of defence against melanoma development and progression. We also discuss areas that merit further investigation. We envisage that the possibility to harness therapeutic potential of ILCs might benefit patients suffering from skin malignancies such as melanoma.
Collapse
Affiliation(s)
- Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
7
|
Yuan X, Rasul F, Nashan B, Sun C. Innate lymphoid cells and cancer: Role in tumor progression and inhibition. Eur J Immunol 2021; 51:2188-2205. [PMID: 34189723 PMCID: PMC8457100 DOI: 10.1002/eji.202049033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs), a critical component of the immune system, have recently been nominated as emerging players associated with tumor progression and inhibition. ILCs are classified into five groups: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTis) cells. NK cells and ILC1s are mainly involved in antitumor activities due to their cytotoxic and cytokine production capabilities, respectively. The current understanding of the heterogeneous behavior of ILC2s and ILC3s in tumors is limited and incomplete. Mostly, their dual roles are modulated by their resident tissues, released cytokines, cancer types, and plasticity. Based on overlap RORγt and cytokine expression, the LTi cells were previously considered part of the ILC3s ontogeny, which are essential for the formation of the secondary lymphoid organs during embryogenesis. Indeed, these facts highlight the urgency in understanding the respective mechanisms that shape the phenotypes and responses of ILCs, either on the repressive or proliferative side in the tumor microenvironment (TME). This review aims to provide an updated view of ILCs biology with respect to tumorigenesis, including a description of ILC plasticity, their interaction with other immune cells and communication with components of the TME. Taken together, targeting ILCs for cancer immunotherapy could be a promising approach against tumors that needs to be further study.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Faiz Rasul
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Björn Nashan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Cheng Sun
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
8
|
Tumor-Derived Lactic Acid Contributes to the Paucity of Intratumoral ILC2s. Cell Rep 2021; 30:2743-2757.e5. [PMID: 32101749 DOI: 10.1016/j.celrep.2020.01.103] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/18/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are abundant in non-lymphoid tissues and increase following infectious and inflammatory insults. In solid tumors, however, ILC2s constitute a relatively small proportion of immune cells. Here, we show, using melanoma as a model, that while the IL-33/IL C2/eosinophil axis suppresses tumor growth, tumor-derived lactate attenuates the function and survival of ILC2s. Melanomas with reduced lactate production (LDHAlow) are growth delayed and typified by an increased number of ILC2s compared with control tumors. Upon IL-33 stimulation, ILC2s accompanied by eosinophils more effectively restrain the growth of LDHAlow tumors than control melanomas. Furthermore, database analysis reveals a negative correlation between the expression of LDHA and markers associated with ILC2s and the association of high expression of IL33 and an eosinophil marker SIGLEC8 with better overall survival in human cutaneous melanoma patients. This work demonstrates that the balance between the IL-33/ILC2/eosinophil axis and lactate production by tumor cells regulates melanoma growth.
Collapse
|
9
|
Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol 2021; 18:112-127. [PMID: 33235387 PMCID: PMC7852696 DOI: 10.1038/s41423-020-00572-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Immune-based therapies such as immune checkpoint inhibitors have revolutionized the systemic treatment of various cancer types. The therapeutic application of monoclonal antibodies targeting inhibitory pathways such as programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) and CTLA-4 to cells of the adaptive immune system has recently been shown to generate meaningful improvement in the clinical outcome of hepatocellular carcinoma (HCC). Nevertheless, current immunotherapeutic approaches induce durable responses in only a subset of HCC patients. Since immunologic mechanisms such as chronic inflammation due to chronic viral hepatitis or alcoholic and nonalcoholic fatty liver disease play a crucial role in the initiation, development, and progression of HCC, it is important to understand the underlying mechanisms shaping the unique tumor microenvironment of liver cancer. The liver is an immunologic organ with large populations of innate and innate-like immune cells and is exposed to bacterial, viral, and fungal antigens through the gut-liver axis. Here, we summarize and highlight the role of these cells in liver cancer and propose strategies to therapeutically target them. We also discuss current immunotherapeutic strategies in HCC and outline recent advances in our understanding of how the therapeutic potential of these agents might be enhanced.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Guillerey C, Stannard K, Chen J, Krumeich S, Miles K, Nakamura K, Smith J, Yu Y, Ng S, Harjunpää H, Teng MW, Engwerda C, Belz GT, Smyth MJ. Systemic administration of IL-33 induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunol Cell Biol 2020; 99:65-83. [PMID: 32748462 DOI: 10.1111/imcb.12390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
Type 2 innate lymphoid cells (ILC2s) are important producers of type 2 cytokines whose role in hematological cancers remains unclear. ILC2s are a heterogeneous population encompassing distinct subsets with different tissue localization and cytokine responsiveness. In this study, we investigated the role of bone marrow (BM) ILC2s and interleukin (IL)-33-stimulated ILC2s in multiple myeloma, a plasma cell malignancy that develops in the BM. We found that myeloma growth was associated with phenotypic and functional alterations of BM ILC2s, characterized by an increased expression of maturation markers and reduced cytokine response to IL-2/IL-33. We identified a population of KLRG1hi ILC2s that preferentially accumulated in the liver and spleen of Il2rg-/- Rag2-/- mice reconstituted with BM ILC2s. A similar population of KLRG1hi ILC2s was observed in the blood, liver and spleen of IL-33-treated wild-type mice. The presence of KLRG1hi ILC2s in ILC2-reconstituted Il2rg-/- Rag2-/- mice or in IL-33-treated wild-type mice was associated with increased eosinophil numbers but had no effect on myeloma progression. Interestingly, while decreased myeloma growth was observed following treatment of Rag-deficient mice with the type 1 cytokines IL-12 and IL-18, this protection was reversed when mice received a combined treatment of IL-33 together with IL-12 and IL-18. In summary, our data indicate that IL-33 treatment induces a population of circulating inflammatory KLRG1hi ILC2s and inhibits type 1 immunity against multiple myeloma. These results argue against therapeutic administration of IL-33 to myeloma patients.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jason Chen
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jessica Smith
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Environment and Sciences, Griffith University, Brisbane, QLD, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Susanna Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, QLD, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Christian Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabrielle T Belz
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
11
|
Ryu S, Lee EY, Kim DK, Kim YS, Chung DH, Kim JH, Lee H, Kim HY. Reduction of circulating innate lymphoid cell progenitors results in impaired cytokine production by innate lymphoid cells in patients with lupus nephritis. Arthritis Res Ther 2020; 22:63. [PMID: 32223753 PMCID: PMC7104540 DOI: 10.1186/s13075-020-2114-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Innate lymphoid cells (ILCs) play an essential role in maintaining homeostasis; however, they can also cause chronic inflammation and autoimmune disease. This study aimed to identify the role of ILCs in the pathogenesis of lupus nephritis (LN). Methods The percentage of ILCs within the peripheral blood mononuclear cell (PBMC) population and urine of patients with LN (n = 16), healthy controls (HC; n = 8), and disease controls (ANCA-associated vasculitis (AAV; n = 6), IgA nephropathy (IgAN; n = 9), and other glomerular diseases (n = 5)) was determined by flow cytometry analysis. In addition, ILCs were sorted and cultured with plasma from LN patients or HC to elucidate whether the reduced population of CD117+ ILCs observed in LN was due to changes in the ILC progenitor population. Results The percentage of total ILCs and CD117+ ILCs in LN was significantly lower than that in HC. The percentage of cytokine-secreting ILCs was also lower in LN; however, when the disease stabilized, cytokine production was restored to levels similar to those in HC. The increase in the number of exhausted ILCs (cells unable to secrete cytokines) correlated positively with disease activity. When CD117+ ILCs were cultured with LN plasma, the number of CD117+ ILCs fell, but that of other ILC subsets increased. Conclusions The percentage of CD117+ ILCs and the capacity of ILCs to secrete cytokines fell as LN severity increased, suggesting that an inflammatory environment of LN induces persistent differentiation and exhaustion of ILCs.
Collapse
Affiliation(s)
- Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Eun Young Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Dong Ki Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea. .,Kidney Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
12
|
|
13
|
Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, Wang S, Wu Y, Lu Y. Innate Lymphoid Cells: Regulators of Gut Barrier Function and Immune Homeostasis. J Immunol Res 2019; 2019:2525984. [PMID: 31930146 PMCID: PMC6942837 DOI: 10.1155/2019/2525984] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
Innate lymphoid cells (ILCs), identified in the early years of this century as a new class of leukocyte family unlike the B or T lymphocytes, play a unique role bridging the innate and adaptive immune responses in mucosal immunity. Their origin, differentiation, and activation process and functions have caught global interest. Recently, accumulating evidence supports that ILCs are vital regulators for gastrointestinal mucosal homeostasis through interactions with other structural and stromal cells in gut epithelial barriers. This review will explore the functions of ILCs and other cells in maintaining gut homeostasis and feature the crosstalk between ILCs with other cells and potential pharmacotherapy targeting ILCs applicable in intestinal innate immunity.
Collapse
Affiliation(s)
- Hui Fan
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Wang
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Sun
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Han
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijun Wang
- Shandong Co-Innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Shandong 250035, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Efficacy and Safety Evaluation of Chinese Material Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
14
|
Hosseini SH, Sharafkandi N, Seyfizadeh N, Hemmatzadeh M, Marofi F, Shomali N, Karimi M, Mohammadi H. Progression or suppression: Two sides of the innate lymphoid cells in cancer. J Cell Biochem 2019; 121:2739-2755. [PMID: 31680296 DOI: 10.1002/jcb.29503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
Innate lymphoid cells (ILCs) as key players in innate immunity have been shown to be significantly associated with inflammation, lymphoid neogenesis, tissue remodeling, mucosal immunity and lately have been considered a remarkable nominee for either tumor-promoting or tumor-inhibiting functions. This dual role of ILCs, which is driven by intrinsic and extrinsic factors like plasticity of ILCs and the tumor microenvironment, respectively, has aroused interest in ILCs subsets in past decade. So far, numerous studies in the cancer field have revealed ILCs to be key players in the initiation, progression and inhibition of tumors, therefore providing valuable insights into therapeutic approaches to utilize the immune system against cancer. Herein, the most recent achievements regarding ILCs subsets including new classifications, their transcription factors, markers, cytokine release and mechanisms that led to either progression or inhibition of many tumors have been evaluated. Additionally, the available data regarding ILCs in most prevalent cancers and new therapeutic approaches are summarized.
Collapse
Affiliation(s)
- S Haleh Hosseini
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Narges Seyfizadeh
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Wan J, Cai W, Wang H, Cheng J, Su Z, Wang S, Xu H. Role of type 2 innate lymphoid cell and its related cytokines in tumor immunity. J Cell Physiol 2019; 235:3249-3257. [PMID: 31625163 DOI: 10.1002/jcp.29287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Wan
- Department of Immunology Jiangsu University Zhenjiang China
| | - Wei Cai
- Department of Immunology Jiangsu University Zhenjiang China
| | - Huixuan Wang
- Department of Immunology Jiangsu University Zhenjiang China
| | - Jianjun Cheng
- Department of Immunology Jiangsu University Zhenjiang China
| | - Zhaoliang Su
- Department of Immunology Jiangsu University Zhenjiang China
- The Central Laboratory The Fourth Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Shengjun Wang
- Department of Immunology Jiangsu University Zhenjiang China
- Department of Laboratory Medicine, The Affiliated People's Hospital Jiangsu University Zhenjiang China
| | - Huaxi Xu
- Department of Immunology Jiangsu University Zhenjiang China
| |
Collapse
|
16
|
Xiong J, Wang H, He J, Wang Q. Functions of Group 2 Innate Lymphoid Cells in Tumor Microenvironment. Front Immunol 2019; 10:1615. [PMID: 31354745 PMCID: PMC6635601 DOI: 10.3389/fimmu.2019.01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILCs), defined as a heterogeneous population of lymphocytes, have received much attention over recent years. They can be categorized into three subsets according to the expression profiles of transcription factors and differing levels of cytokine production. These cells are widely distributed in human organs and tissues, especially in mucosal tissue. The ILCs are involved in various physiological and pathological processes, including inflammation, worm expulsion, autoimmune disease and tumor progression, many of which have been investigated and clarified in recent studies. In the tumor microenvironment, group 2 innate lymphoid cells (ILC2s) have been proved to be able to either promote or inhibit tumor progression by producing different cytokines, recruiting diverse types of immune cells, expressing immunosuppressive molecules and by regulating the expression of certain inflammatory factors. This review summarizes recent research progress on the immunomodulatory functions of ILC2s in the tumor microenvironment and puts forward some perspectives for future study.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haofei Wang
- Department of Pharmacology, China Medical University School of Pharmacy, Shenyang, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Branzk N, Gronke K, Diefenbach A. Innate lymphoid cells, mediators of tissue homeostasis, adaptation and disease tolerance. Immunol Rev 2019; 286:86-101. [PMID: 30294961 DOI: 10.1111/imr.12718] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILC) are a recently identified group of tissue-resident innate lymphocytes. Available data support the view that ILC or their progenitors are deposited and retained in tissues early during ontogeny. Thereby, ILC become an integral cellular component of tissues and organs. Here, we will review the intriguing relationships between ILC and basic developmental and homeostatic processes within tissues. Studying ILC has already led to the appreciation of the integral roles of immune cells in tissue homeostasis, morphogenesis, metabolism, regeneration, and growth. This area of immunology has not yet been studied in-depth but is likely to reveal important networks contributing to disease tolerance and may be harnessed for future therapeutic approaches.
Collapse
Affiliation(s)
- Nora Branzk
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Konrad Gronke
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| |
Collapse
|
18
|
Wagner M, Koyasu S. Cancer Immunoediting by Innate Lymphoid Cells. Trends Immunol 2019; 40:415-430. [PMID: 30992189 DOI: 10.1016/j.it.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
The immune system plays a dual role in cancer. It conveys protective immunity but also facilitates malignant progression, either by sculpting tumor immunogenicity or by creating a microenvironment that can stimulate tumor outgrowth or aid in a subsequent metastatic cascade. Innate lymphoid cells (ILCs) embody this functional heterogeneity, although the nature of their responses in cancer has only recently begun to be unveiled. We provide an overview of recent insights into the role of ILCs in cancer. We also discuss how ILCs fit into the conceptual framework of cancer immunoediting, which integrates the dual role of the immune system in carcinogenesis. A broader understanding of their relevance in cancer is essential towards the design of successful therapeutic strategies.
Collapse
Affiliation(s)
- Marek Wagner
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Innate lymphoid cells: A potential link between microbiota and immune responses against cancer. Semin Immunol 2019; 41:101271. [PMID: 30902413 DOI: 10.1016/j.smim.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023]
Abstract
The adaptive immune system plays a crucial role in anti-tumor surveillance. Enhancement of T cell responses through checkpoint blockade has become a major therapeutic avenue of intervention for several tumors. Because it shapes immune responses and regulates their amplitude and duration, the microbiota has a substantial impact on anti-tumor immunity. Innate lymphoid cells (ILCs) comprise a heterogeneous population of lymphocytes devoid of antigen-specific receptors that mirror T helper cells in their ability to secrete cytokines that activate immune responses. Ongoing studies suggest that ILCs contribute to anti-tumor responses. Moreover, since ILCs are present at barrier surfaces, they are stimulated by the microbiota and, reciprocally, influence the composition of the microbiota by regulating the surface barrier microenvironment. Thus, ILC-microbiota cross-talk may in part underpin the effects of the microbiota on anti-tumor responses. In this article, we review current evidence linking ILCs to cancer and discuss the potential impact of ILC-microbiota cross-talk in anti-tumor immune responses.
Collapse
|
20
|
Tugues S, Ducimetiere L, Friebel E, Becher B. Innate lymphoid cells as regulators of the tumor microenvironment. Semin Immunol 2019; 41:101270. [PMID: 30871769 DOI: 10.1016/j.smim.2019.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
As crucial players in innate immunity, Innate Lymphoid Cells (ILCs) have been distinctly associated with either tumor-promoting or tumor-inhibiting activities. This dichotomy arises from the high degree of heterogeneity and plasticity between the ILC family subsets. Also, the tissue microenvironment is crucial for the function of ILCs. Especially within the tumor niche, each of the ILC subsets participates in a complex network of interactions with other cells and molecules. Although extensive research has unraveled several aspects of the crosstalk ILCs establish with the tumor microenvironment (TME), numerous questions remain to be answered. Here, we will discuss a role for the different ILC subsets that goes beyond their direct effects on the tumor cells. Instead, we will highlight the ability of ILCs to communicate with the surrounding milieu and the impact this has on tumor progression.
Collapse
Affiliation(s)
- Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Laura Ducimetiere
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ekaterina Friebel
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
21
|
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24:1649-1659. [PMID: 29788271 DOI: 10.1093/ibd/izy177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gastrointestinal tract harbors the largest microbiota load in the human body, hence maintaining a delicate balance between immunity against invading pathogens and tolerance toward commensal. Such immune equilibrium, or intestinal homeostasis, is conducted by a tight regulation and cooperation of the different branches of the immune system, including the innate and the adaptive immune system. However, several factors affect this delicate equilibrium, ultimately leading to gastrointestinal disorders including inflammatory bowel disease. Therefore, here we decided to review the currently available information about innate immunity lymphocyte subsets playing a role in intestinal inflammation. RESULTS Intestinal innate lymphocytes are composed of intraepithelial lymphocytes (IELs) and lamina propria innate lymphoid cells (ILCs). While IELs can be divided into natural or induced, ILCs can be classified into type 1, 2, or 3, resembling, respectively, the properties of TH1, TH2, or TH17 adaptive lymphocytes. Noteworthy, the phenotype and function of both IELs and ILCs are disrupted under inflammatory conditions, where they help to exacerbate intestinal immune responses. CONCLUSIONS The modulation of both IELs and ILCs to control intestinal inflammatory responses represents a major challenge, as they provide tight regulation among the epithelium, the microbiota, and the adaptive immune system. An improved understanding of the innate immunity mechanisms involved in gastrointestinal inflammation would therefore aid in the diagnosis and further treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- A Montalban-Arques
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - M Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - D Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
22
|
Simoni Y, Newell EW. Dissecting human ILC heterogeneity: more than just three subsets. Immunology 2017; 153:297-303. [PMID: 29140572 DOI: 10.1111/imm.12862] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/09/2017] [Accepted: 10/22/2017] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been divided into three distinct groups based on functional capacities, cytokine profiles and transcription factor expression. Studies performed mainly in mice have demonstrated the importance of ILCs in chronic inflammation, infection, allergy and cancer. In this review, we discuss the heterogeneity of human ILC and focus primarily on the taxonomy of human ILC cell subsets and their phenotypical and functional diversity. We summarize recent findings concerning the diversity of ILCs between and within the major subsets [natural killer (NK), ILC1, intra-epithelial ILC1 (ieILC1), ILC2, ILC3, lymphoid tissues inducer (LTi) and ILC progenitor (ILCP)], as well as the abundance of each in human tissues. We also discuss the similarities observed between groups of cells in term of receptors expressed and cytokines produced, and how these relate to the pleiotropic properties of each subset.
Collapse
Affiliation(s)
- Yannick Simoni
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| | - Evan W Newell
- Agency for Science, Technology and Research (A*STAR), Singapore Immunology Network (SIgN), Singapore
| |
Collapse
|