1
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
2
|
Kovach AE, Wood BL. Updates on lymphoblastic leukemia/lymphoma classification and minimal/measurable residual disease analysis. Semin Diagn Pathol 2023; 40:457-471. [PMID: 37953192 DOI: 10.1053/j.semdp.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Lymphoblastic leukemia/lymphoma (ALL/LBL), especially certain subtypes, continues to confer morbidity and mortality despite significant therapeutic advances. The pathologic classification of ALL/LBL, especially that of B-ALL, has recently substantially expanded with the identification of several distinct and prognostically important genetic drivers. These discoveries are reflected in both current classification systems, the World Health Organization (WHO) 5th edition and the new International Consensus Classification (ICC). In this article, novel subtypes of B-ALL are reviewed, including DUX4, MEF2D and ZNF384-rearranged B-ALL; the rare pediatric entity B-ALL with TLF3::HLF, now added to the classifications, is discussed; updates to the category of B-ALL with BCR::ABL1-like features (Ph-like B-ALL) are summarized; and emerging genetic subtypes of T-ALL are presented. The second half of the article details current approaches to minimal/measurable residual disease (MRD) detection in B-ALL and T-ALL and presents anticipated challenges to current approaches in the burgeoning era of antigen-directed immunotherapy.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, United States; Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Merlini A, Pavese V, Manessi G, Rabino M, Tolomeo F, Aliberti S, D’Ambrosio L, Grignani G. Targeting cyclin-dependent kinases in sarcoma treatment: Current perspectives and future directions. Front Oncol 2023; 13:1095219. [PMID: 36741019 PMCID: PMC9893281 DOI: 10.3389/fonc.2023.1095219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Effective treatment of advanced/metastatic bone and soft tissue sarcomas still represents an unmet medical need. Recent advances in targeted therapies have highlighted the potential of cyclin-dependent kinases (CDK) inhibitors in several cancer types, including sarcomas. CDKs are master regulators of the cell cycle; their dysregulation is listed among the "hallmarks of cancer" and sarcomas are no exception to the rule. In this review, we report both the molecular basis, and the potential therapeutic implications for the use of CDK inhibitors in sarcoma treatment. What is more, we describe and discuss the possibility and biological rationale for combination therapies with conventional treatments, target therapy and immunotherapy, highlighting potential avenues for future research to integrate CDK inhibition in sarcoma treatment.
Collapse
Affiliation(s)
- Alessandra Merlini
- Candiolo Cancer Institute, IRCCS-FPO, Turin, Italy,Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Pavese
- Department of Oncology, University of Turin, Turin, Italy
| | - Giulia Manessi
- Department of Oncology, University of Turin, Turin, Italy
| | - Martina Rabino
- Department of Oncology, University of Turin, Turin, Italy
| | | | | | - Lorenzo D’Ambrosio
- Department of Oncology, University of Turin, Turin, Italy,Medical Oncology, Azienda Ospedaliera Universitaria San Luigi Gonzaga, Turin, Italy,*Correspondence: Lorenzo D’Ambrosio,
| | | |
Collapse
|
4
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Karpukhina A, Tiukacheva E, Dib C, Vassetzky YS. Control of DUX4 Expression in Facioscapulohumeral Muscular Dystrophy and Cancer. Trends Mol Med 2021; 27:588-601. [PMID: 33863674 DOI: 10.1016/j.molmed.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
DUX4, a gene encoding a transcription factor involved in early embryogenesis, is located within the D4Z4 subtelomeric repeat on chromosome 4q35. In most healthy somatic tissues, DUX4 is heavily repressed by multiple genetic and epigenetic mechanisms, and its aberrant expression is linked to facioscapulohumeral muscular dystrophy (FSHD) where it has been extensively studied. Recently, DUX4 expression has been implicated in oncogenesis, although this is much less explored. In this review, we discuss multiple levels of control of DUX4 expression, including enhancer-promoter interactions, DNA methylation, histone modifications, noncoding RNAs, and telomere positioning effect. We also connect disparate data on intrachromosomal contacts involving DUX4 and emphasize the feedback loops in DUX4 regulation. Finally, we bridge data on DUX4 in FSHD and cancer and discuss prospective approaches for future FSHD therapies and the potential outcomes of DUX4 inhibition in cancer.
Collapse
Affiliation(s)
- Anna Karpukhina
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France
| | - Carla Dib
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Stanford University School of Medicine, Stanford, CA 94305-510, USA
| | - Yegor S Vassetzky
- UMR 9018, CNRS, Université Paris Saclay, Institut Gustave Roussy, Villejuif F-94805, France; Koltzov Institute of Developmental Biology, Moscow 117334, Russia.
| |
Collapse
|
7
|
Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New Insights into CDK Regulators: Novel Opportunities for Cancer Therapy. Trends Cell Biol 2021; 31:331-344. [PMID: 33676803 DOI: 10.1016/j.tcb.2021.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
Cyclins and their catalytic partners, the cyclin-dependent kinases (CDKs), control the transition between different phases of the cell cycle. CDK/cyclin activity is regulated by CDK inhibitors (CKIs), currently comprising the CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family and the inhibitor of kinase (INK) family. Recent studies have identified a third group of CKIs, called ribosomal protein-inhibiting CDKs (RPICs). RPICs were discovered in the context of cellular senescence, a stable cell cycle arrest with tumor-suppressing abilities. RPICs accumulate in the nonribosomal fraction of senescent cells due to a decrease in rRNA biogenesis. Accordingly, RPICs are often downregulated in human cancers together with other ribosomal proteins, the tumor-suppressor functions of which are still under study. In this review, we discuss unique therapies that have been developed to target CDK activity in the context of cancer treatment or senescence-associated pathologies, providing novel tools for precision medicine.
Collapse
Affiliation(s)
- Marina Bury
- De Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | | | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
| | - Volker Blank
- Lady Davis Institute for Medical Research, Departments of Medicine and Physiology, McGill University, Montreal, QC, H3T 1E2, Canada.
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
8
|
Ratti S, Lonetti A, Follo MY, Paganelli F, Martelli AM, Chiarini F, Evangelisti C. B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients? Cancers (Basel) 2020; 12:cancers12123498. [PMID: 33255367 PMCID: PMC7760974 DOI: 10.3390/cancers12123498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary B-ALL is the more frequent childhood malignancy. Even though significant improvements in patients’ survival, some pediatric B-ALL have still poor prognosis and novel strategies are needed. Recently, new genetic abnormalities and altered signaling pathways have been described, defining novel B-ALL subtypes.Innovative targeted therapeutic drugs may potentially show a great impact on the treatment of B-ALL subtypes, offering an important chance to block multiple signaling pathways and potentially improving the clinical management of B-ALL younger patients, especially for the new identified subtypes that lack efficient chemotherapeutic protocols. In this review, we shed light on the up-to-date knowledge of the novel childhood B-ALL subtypes and the altered signaling pathways that could become new druggable targets. Abstract B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients’ outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Annalisa Lonetti
- Giorgio Prodi Cancer Research Center, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 11, 40138 Bologna, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| |
Collapse
|
9
|
Rehn JA, O’Connor MJ, White DL, Yeung DT. DUX Hunting-Clinical Features and Diagnostic Challenges Associated with DUX4-Rearranged Leukaemia. Cancers (Basel) 2020; 12:cancers12102815. [PMID: 33007870 PMCID: PMC7599557 DOI: 10.3390/cancers12102815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary DUX4-rearrangement (DUX4r) is a recently discovered recurrent genomic lesion reported in 4–7% of childhood B cell acute lymphoblastic leukaemia (B-ALL) cases. This subtype has favourable outcomes, especially in children and adolescents treated with intensive chemotherapy. The fusion most commonly links the hypervariable IGH gene to DUX4 a gene located within the D4Z4 macrosatellite repeat on chromosome 4. DUX4r is cryptic to most standard diagnostic techniques, and difficult to identify even with next generation sequencing assays. This review summarises the clinical features and molecular genetics of DUX4r B-ALL and proposes prospective new diagnostic methods. Abstract DUX4-rearrangement (DUX4r) is a recently discovered recurrent genomic lesion reported in 4–7% of childhood B cell acute lymphoblastic leukaemia (B-ALL) cases. This subtype has favourable outcomes, especially in children and adolescents treated with intensive chemotherapy. The fusion most commonly links the hypervariable IGH gene to DUX4 a gene located within the D4Z4 macrosatellite repeat on chromosome 4, with a homologous polymorphic repeat on chromosome 10. DUX4r is cryptic to most standard diagnostic techniques, and difficult to identify even with next generation sequencing assays. This review summarises the clinical features and molecular genetics of DUX4r B-ALL and proposes prospective new diagnostic methods.
Collapse
Affiliation(s)
- Jacqueline A. Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
| | - Matthew J. O’Connor
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Michael Rice Centre for Haematology and Oncology, Womens’s & Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Deborah L. White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Australian Genomics, The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC 3168, Australia
- Correspondence:
| | - David T. Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia; (J.A.R.); (D.T.Y.)
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Karpukhina A, Vassetzky Y. DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Klingler C, Ashley J, Shi K, Stiefvater A, Kyba M, Sinnreich M, Aihara H, Kinter J. DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB J 2020; 34:4573-4590. [PMID: 32020675 PMCID: PMC7079142 DOI: 10.1096/fj.201902696] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Aberrant expression of the transcription factor double homeobox protein 4 (DUX4) can lead to a number of diseases including facio‐scapulo‐humeral muscular dystrophy (FSHD), acute lymphoblastic leukemia, and sarcomas. Inhibition of DUX4 may represent a therapeutic strategy for these diseases. By applying Systematic Evolution of Ligands by EXponential Enrichment (SELEX), we identified aptamers against DUX4 with specific secondary structural elements conveying high affinity to DUX4 as assessed by fluorescence resonance energy transfer and fluorescence polarization techniques. Sequences analysis of these aptamers revealed the presence of two consensus DUX4 motifs in a reverse complementary fashion forming hairpins interspersed with bulge loops at distinct positions that enlarged the binding surface with the DUX4 protein, as determined by crystal structure analysis. We demonstrate that insertion of specific structural elements into transcription factor binding oligonucleotides can enhance specificity and affinity.
Collapse
Affiliation(s)
- Christian Klingler
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jon Ashley
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Adeline Stiefvater
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Sinnreich
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jochen Kinter
- Neuromuscular Research Group, Department of Neurology, University Hospital Basel, Basel, Switzerland.,Neuromuscular Research Group, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel JS, Vallette FM, Lelièvre SA, Cartron PF. Glyphosate Primes Mammary Cells for Tumorigenesis by Reprogramming the Epigenome in a TET3-Dependent Manner. Front Genet 2019; 10:885. [PMID: 31611907 PMCID: PMC6777643 DOI: 10.3389/fgene.2019.00885] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 01/11/2023] Open
Abstract
The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Christophe Olivier
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Service de toxicologie, Faculté de pharmacie de Nantes, Nantes, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States.,Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, réseau Epigénétique (RepiCGO), Nantes, France.,LabEX IGO, Université de Nantes, Nantes, France
| |
Collapse
|