1
|
Zhuang W, Xu S, He Q, Su Q, Chen H, Chen J, Huang C, You Z. RBM19 promotes the progression of prostate cancer under docetaxel treatment via SNHG21/PIM1 axis. Cell Biol Toxicol 2024; 41:19. [PMID: 39730751 DOI: 10.1007/s10565-024-09985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected. RBM19 was up-regulated in PCa specimens and correlated with the prognosis and Gleason score of PCa patients. Functionally assays revealed that RBM19 promoted PCa progression under docetaxel treatment both in vivo and in vitro. Mechanistically, RBM19 could bind to LncRNA SNHG21, thereby increased SNHG21 expression through enhancing its stability. Furthermore, SNHG21 bind to PIM1 proteins and prevented it from ubiquitin-protease dependent degradation and ultimately enhancing mitochondrial homeostasis. Overall, our study indicates the RBM19/SNHG21/PIM1 axis may be the encouraging target for docetaxel-tolerance PCa treatment.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Siwei Xu
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, Fujian, China
| | - Congming Huang
- Department of Dentistry, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road Licheng District, 362000, Quanzhou, Fujian, China.
| | - Zhijiao You
- Department of Urology, Jinjiang Municipal Hospital, Luoshan Section, No. 16 Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
2
|
Wu G, Zhou F, Wang H, Liu K, Yu D, Fan L, Han Y, Ai X, Cao Y, Wang X, Wang S, He C, Wu J, Wu J, Wang Y, Wang Y, Jin B, Shentu J. Effectiveness, pharmacokinetics, and safety of triptorelin acetate microspheres in patients with locally advanced and metastatic prostate cancer. Ther Adv Med Oncol 2024; 16:17588359241307818. [PMID: 39734709 PMCID: PMC11672368 DOI: 10.1177/17588359241307818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Background A newly generic microspheres, sustained-release formulation of triptorelin acetate 3.75 mg has been developed. Objectives To evaluate the efficacy, pharmacokinetics, and safety of triptorelin 1-month formulation in Chinese patients with prostate cancer. Design An open-label, multicenter clinical trial with one arm testing a 1-month sustained-release triptorelin formulation in prostate cancer patients. Methods Patients with prostate cancer received three consecutive 28-day injections of triptorelin acetate. The primary endpoint was the proportion of successful patients over the total number of evaluable patients. Treatment success was defined as testosterone suppression below the clinical castration level (i.e., <0.5 ng/mL) at day 28 and maintenance of clinical castration until study completion (day 84). The frequency of patients with testosterone concentrations <0.2 ng/mL was also studied. Results The study included 125 patients. All 125 patients received at least one dose of the study drug and 122 completed the study. The successful patient proportion among the evaluable patients was 97.6% (122/125; 95% CI, 92.7-99.2). 95.1% (116/122) achieved testosterone concentrations <0.2 ng/mL. The pharmacokinetic profile of triptorelin during the first 3 months of treatment, evaluated in a subset of the study population (n = 11), showed sustained release of triptorelin from the formulation. Values for AUC0-τ calculated from day 0 to 28, and day 56 to 84 were 134.42 (28.76), and 154.72 (21.86) h*ng/mL, respectively. The most common treatment-related adverse events were increased alanine aminotransferase (18.4%), increased aspartate aminotransferase (16.0%), and hot flashes (9.6%). Prolonged QT interval on electrocardiogram, erectile dysfunction, and decreased libido each occurred in ⩽4% of the patients. The frequently reported local adverse reaction was pain at the injection site, experienced by 2.4% (3/125) of the patients. Conclusion 3.75-mg Triptorelin acetate microspheres for injection were effective in achieving and maintaining testosterone suppression and were well tolerated in patients with prostate cancer. Trial registration chictr.org.cn (ChiCTR2000033188).
Collapse
Affiliation(s)
- Guolan Wu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiping Wang
- Clinical Research Management Center, Livzon Pharmaceutical Group Inc., Zhuhai, Guangdong, China
| | - Kan Liu
- Department of Urology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lianlian Fan
- Phase 1 Clinical Trial Center, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Yangyun Han
- Deyang People’s Hospital, Deyang, Sichuan, China
| | - Xiaohong Ai
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Sheng Wang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Chaohong He
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ji Wu
- Department of Urology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Youlei Wang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqing Wang
- Clinical Research Management Center, Livzon Pharmaceutical Group Inc., Zhuhai, Guangdong, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianzhong Shentu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Ding T, Li X, Zhang L, Wei Z, Xiong C, Wang H, Hao X, Zeng X. Comparison of androgen receptor mutation detection between plasma extracellular vesicle DNA and cell-free DNA and its relationship to prostate cancer prognosis. Ann Med 2024; 56:2426770. [PMID: 39535155 PMCID: PMC11562022 DOI: 10.1080/07853890.2024.2426770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In liquid biopsy, mutation detection is primarily performed using cell-free DNA (cfDNA). However, the numerous advantages of extracellular vesicle (EV) DNA for mutation detection have gradually garnered the attention of researchers in recent years. This study aimed to compare the differences between EV DNA and cfDNA in mutation detection and explore the role of plasma androgen receptor (AR) mutations in the prognosis of prostate cancer (PCa). METHODS We compared the biological characteristics of plasma extracellular vesicle DNA (p-EV DNA) and cfDNA by capillary electrophoresis and concentration detection. Subsequently, we performed pan-oncogene-targeted sequencing in paired tissue and plasma samples from five patients with PCa to verify the feasibility of mutation detection using p-EV DNA and cfDNA. Further, we conducted AR mutation detection in expanded samples to compare the differences between EV DNA and cfDNA in mutation detection and to analyse their role in PCa. RESULTS p-EV DNA fragments were larger than plasma cell-free DNA (p-cfDNA) fragments; however, there was no significant difference in their concentrations in the plasma of patients with PCa. Feasibility analysis revealed that major mutations associated with PCa detected in tissue samples could be identified in both p-EV DNA and p-cfDNA. Advantage comparison found that, although cfDNA could detect more mutations, AR mutations in EV DNA were more strongly associated with a poor prognosis of PCa than cfDNA. CONCLUSION Mutation detection using either EV DNA or cfDNA is both feasible in PCa liquid biopsies, and EV DNA AR mutations have an advantage in prognostic assessment for PCa. This study lays the foundation for future research on EV DNA-related biomarkers.
Collapse
Affiliation(s)
- Ting Ding
- School of Medicine, Northwest University, Xi’an, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Xiao Li
- School of Medicine, Northwest University, Xi’an, China
| | - Longlong Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
| | - Zhen Wei
- School of Medicine, Northwest University, Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoke Hao
- School of Medicine, Northwest University, Xi’an, China
- Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| | - Xianfei Zeng
- School of Medicine, Northwest University, Xi’an, China
- Xi’an Area Medical Laboratory Center, Xi’an, China
| |
Collapse
|
4
|
Xiao Y, Zhong L, Liu J, Chen L, Wu Y, Li G. Progress and application of intelligent nanomedicine in urinary system tumors. J Pharm Anal 2024; 14:100964. [PMID: 39582528 PMCID: PMC11582553 DOI: 10.1016/j.jpha.2024.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 11/26/2024] Open
Abstract
Urinary system tumors include malignancies of the bladder, kidney, and prostate, and present considerable challenges in diagnosis and treatment. The conventional therapeutic approaches against urinary tumors are limited by the lack of targeted drug delivery and significant adverse effects, thereby necessitating novel solutions. Intelligent nanomedicine has emerged as a promising therapeutic alternative for cancer in recent years, and uses nanoscale materials to overcome the inherent biological barriers of tumors, and enhance diagnostic and therapeutic accuracy. In this review, we have explored the recent advances and applications of intelligent nanomedicine for the diagnosis, imaging, and treatment of urinary tumors. The principles of nanomedicine design pertaining to drug encapsulation, targeting and controlled release have been discussed, with emphasis on the strategies for overcoming renal clearance and tumor heterogeneity. Furthermore, the therapeutic applications of intelligent nanomedicine, its advantages over traditional chemotherapy, and the challenges currently facing clinical translation of nanomedicine, such as safety, regulation and scalability, have also been reviewed. Finally, we have assessed the potential of intelligent nanomedicine in the management of urinary system tumors, emphasizing emerging trends such as personalized nanomedicine and combination therapies. This comprehensive review underscores the substantial contributions of nanomedicine to the field of oncology and offers a promising outlook for more effective and precise treatment strategies for urinary system tumors.
Collapse
Affiliation(s)
- Yingming Xiao
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lei Zhong
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jinpeng Liu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Li Chen
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yi Wu
- Department of Urology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Ge Li
- Emergency Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| |
Collapse
|
5
|
Chen L, Fu Z, Dong Q, Zheng F, Wang Z, Li S, Zhan X, Dong W, Song Y, Xu S, Fu B, Xiong S. Machine Learning-based Nomograms for Predicting Clinical Stages of Initial Prostate Cancer: A Multicenter Retrospective Study. Urology 2024; 194:180-188. [PMID: 39153604 DOI: 10.1016/j.urology.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE To construct and externally validate machine learning-based nomograms for predicting progression stages of initial prostate cancer (PCa) using biomarkers and clinicopathologic features. METHODS Three hundred sixty-two inpatients diagnosed with PCa at the First Affiliated Hospital were randomly assigned to training and testing sets in a 3:7 ratio, while 136 PCa patients from People's Hospital formed the external validation set. Imaging and clinicopathologic information were collected. Optimal features distinguishing advanced prostate cancer (APC) and metastatic PCa (mPCa) were identified through logistic regression (LR). ML algorithms were employed to build and compare ML models. The best-performing algorithm established models for PCa progression stage. Models performance was evaluated using metrics, ROC curves, calibration, and decision curve analysis (DCA) in training, testing, and external validation sets. RESULTS Following LR analyses, PSA (P = .001), maximum tumor diameter (P = .026), Gleason score (P <.001), and RNF41 (P <.001) were optimal features for predicting APC, while ALP (P <.001), PSA (P <.001), and GS score (P = .024) were for mPCa. Among ML models, the LR models exhibited superior performance. Consequently, the LR algorithm was used for the APC-risk-nomogram and mPCa-risk-nomogram construction, with AUC values of 0.848, 0.814, 0.810, and 0.940, 0.913, 0.910, in the training, testing, and external validation sets, respectively. Calibration and DCA curves affirmed nomograms' consistency and net benefits for clinical decision-making. CONCLUSION In summary, ML-based APC-risk-nomogram and mPCa-risk-nomogram exhibit outstanding predictive performance for PCa progression stages. These nomograms can assist clinicians in finely categorizing newly diagnosed PCa patients, facilitating personalized treatment plans and prognosis assessment.
Collapse
Affiliation(s)
- Luyao Chen
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhehong Fu
- Department of Computer Science, Columbia University, New York, NY
| | - Qianxi Dong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fuchun Zheng
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng Wang
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sheng Li
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiangpeng Zhan
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wentao Dong
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yanping Song
- Department of Quality Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Songhui Xu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bin Fu
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Situ Xiong
- Jiangxi Provincial Key Laboratory of Urinary System Diseases, Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Lin A, Li J, He W. CircSLC4A7 in resistant-cells-derived exosomes promotes docetaxel resistance via the miR-1205/MAPT axis in prostate cancer. IUBMB Life 2024; 76:1342-1355. [PMID: 39266461 DOI: 10.1002/iub.2915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 09/14/2024]
Abstract
Prostate cancer (PCa) is a high-mortality cancer. Docetaxel (DCT) combined with second-generation anti-androgens is considered the golden standard therapy for PCa, whose application is limited for DCT resistance (DR). Therefore, exploring the mechanism of DR is of great importance. In this study, PCa cell lines of PC3 and DU145 were employed, and DR cells were constructed by treatment with graded DCT. CircSLC4A7, miR-1205, and microtubule-associated protein tau (MAPT) transfections were established. Cell counting kit-8 assay was performed to evaluate the cell activity and IC50 of DCT. After being treated with DCT, DR was assessed by colony formation assay, flow cytometry analysis, and terminal transferase-mediated UTP nick end-labeling assay. Real-time quantitative PCR and western blotting analysis evaluated the expression levels of genes. The dual-luciferase reporter gene assay verified the miR-1205 binding sites with circSLC4A7 and MAPT. An animal experiment was performed to assess the tumor growth influenced by circSLC4A7. After conducting DR cells and isolated exosomes, we found that not only co-culture with DR cells but also treatment with DR cells' exosomes would promote the DR of normal cells. Moreover, circSLC4A7 was highly expressed in DR cells and their exosomes. CircSLC4A7 overexpression enhanced DR, represented as raised IC50 of DCT, increased colony formation, and decreased cell apoptosis after DCT treatment, while circSLC4A7 knockdown had the opposite effect. MiR-1205 was confirmed as a circSLC4A7-sponged miRNA and miR-1205 inhibitor reversed the effect of sh-circSLC4A7. MAPT was further identified as a target of miR-1205 and had a similar effect with circSLC4A7. The effect of circSLC4A7 on DR was also confirmed by xenograft experiments. Collectively, circSLC4A7 in resistant-cells-derived exosomes promotes DCT resistance of PCa via miR-1205/MAPT axis, which may provide a new treatment strategy for DR of PCa.
Collapse
Affiliation(s)
- Anhua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjing He
- Department of Endocrinology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
7
|
Liu R, Zou Z, Zhang Z, He H, Xi M, Liang Y, Ye J, Dai Q, Wu Y, Tan H, Zhong W, Wang Z, Liang Y. Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC. Cancer Lett 2024; 605:217286. [PMID: 39413958 DOI: 10.1016/j.canlet.2024.217286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.
Collapse
Affiliation(s)
- Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China
| | - Zhengrong Zhang
- Department of Urology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Huichan He
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qishan Dai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijing Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiang Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Askari N, Mansouri SM. Fatty acid composition and anti-cancer activity of essential oil from Tenebrio molitor larvae in combination with zoledronic acid on prostate cancer. Heliyon 2024; 10:e40012. [PMID: 39583822 PMCID: PMC11582447 DOI: 10.1016/j.heliyon.2024.e40012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
The essential oil extracted from Tenebrio molitor larvae (EOTM) is a natural product containing trace elements with potential therapeutic properties. This study aimed to assess the anticancer effects of EOTM and its synergistic interactions with zoledronic acid, a bisphosphonate drug, on prostate cancer cell lines. The chemical composition of EOTM was analyzed using GC-MS revealing a high concentration of fatty acids. The cytotoxicity of EOTM, both as a standalone treatment and in combination with zoledronic acid, was evaluated on prostate cancer cell lines (LNCaP, PC3) and normal hSKM using MTT assays. Results demonstrated that EOTM exhibited selective toxicity, inhibiting the growth of cancer cells in a dose-dependent manner while sparing normal cells. Morphological assessments and gene expression analyses of BCL2 and BAX were conducted through microscopy, Western blotting, and real-time RT-qPCR. These analyses indicated that EOTM induced apoptosis in cancer cells, as evidenced by cellular shrinkage, membrane blebbing, and nuclear fragmentation. Western blot results showed that EOTM downregulated the anti-apoptotic protein BCL2 and upregulated the proapoptotic protein BAX, suggesting activation of apoptosis pathways. Additionally, the combination of EOTM with zoledronic acid amplified these effects. Hoechst 33258 staining further confirmed the purity of cells following treatment. In conclusion, EOTM exhibits strong anticancer properties by inducing apoptosis in prostate cancer cells and demonstrates synergistic potential when combined with zoledronic acid. These findings warrant further investigation of EOTM as a natural and effective cancer treatment option.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Seyed Mozaffar Mansouri
- Department of Biodiversity, Institute for Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
9
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
10
|
Dorri Giv M, Arabi H, Naseri S, Alipour Firouzabad L, Aghaei A, Askari E, Raeisi N, Saber Tanha A, Bakhshi Golestani Z, Dabbagh Kakhki AH, Dabbagh Kakhki VR. Evaluation of the prostate cancer and its metastases in the [ 68 Ga]Ga-PSMA PET/CT images: deep learning method vs. conventional PET/CT processing. Nucl Med Commun 2024; 45:974-983. [PMID: 39224922 DOI: 10.1097/mnm.0000000000001891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE This study demonstrates the feasibility and benefits of using a deep learning-based approach for attenuation correction in [ 68 Ga]Ga-PSMA PET scans. METHODS A dataset of 700 prostate cancer patients (mean age: 67.6 ± 5.9 years, range: 45-85 years) who underwent [ 68 Ga]Ga-PSMA PET/computed tomography was collected. A deep learning model was trained to perform attenuation correction on these images. Quantitative accuracy was assessed using clinical data from 92 patients, comparing the deep learning-based attenuation correction (DLAC) to computed tomography-based PET attenuation correction (PET-CTAC) using mean error, mean absolute error, and root mean square error based on standard uptake value. Clinical evaluation was conducted by three specialists who performed a blinded assessment of lesion detectability and overall image quality in a subset of 50 subjects, comparing DLAC and PET-CTAC images. RESULTS The DLAC model yielded mean error, mean absolute error, and root mean square error values of -0.007 ± 0.032, 0.08 ± 0.033, and 0.252 ± 125 standard uptake value, respectively. Regarding lesion detection and image quality, DLAC showed superior performance in 16 of the 50 cases, while in 56% of the cases, the images generated by DLAC and PET-CTAC were found to have closely comparable quality and lesion detectability. CONCLUSION This study highlights significant improvements in image quality and lesion detection capabilities through the integration of DLAC in [ 68 Ga]Ga-PSMA PET imaging. This innovative approach not only addresses challenges such as bladder radioactivity but also represents a promising method to minimize patient radiation exposure by integrating low-dose computed tomography and DLAC, ultimately improving diagnostic accuracy and patient outcomes.
Collapse
Affiliation(s)
- Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland,
| | - Shahrokh Naseri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Science, Mashhad,
| | - Leila Alipour Firouzabad
- Department of Radition Technology, Radiation Biology Research Center, Iran University of Medical Sciences, Tehran and
| | - Atena Aghaei
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | - Emran Askari
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | - Nasrin Raeisi
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | - Amin Saber Tanha
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | - Zahra Bakhshi Golestani
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| | | | - Vahid Reza Dabbagh Kakhki
- Nuclear Medicine Research Center, Department of Nuclear Medicine, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran,
| |
Collapse
|
11
|
Yu J, Zhou K, Wang J, Mao L. Preliminary Efficacy, Tolerability, and Safety Analysis of Darolutamide for Metastatic Castration-Resistant Prostate Cancer: A Single-Center, Open-Label Study. Urol Int 2024:1-8. [PMID: 39406197 DOI: 10.1159/000541929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Darolutamide is a structurally unique second-generation androgen receptor antagonist that has been approved for indications in patients with non-metastatic castration-resistant prostate cancer (nmCRPC) and metastatic hormone-sensitive prostate cancer (mHSPC). The aim was to assess the efficacy and safety of Darolutamide for mCRPC. METHODS In this single-center, open-label study, patients with previously untreated mCRPC were enrolled and received androgen deprivation therapy (goserelin acetate 3.6 mg every 28 days) and docetaxel (75 mg per square meter of body surface area every 21 days) with Denosumab (120 mg every 28 days) for bone metastases, Darolutamide (300 mg orally twice daily) in the experimental group, and the control group received the corresponding of placebo. Serum PSA changes were detected and recorded, and imaging changes and adverse events (AEs) were evaluated. The primary endpoints were safety, tolerability, and antitumor efficacy, and the second endpoint was radiographic progression-free survival (rPFS). RESULTS Thirty-seven patients with mCRPC were enrolled. The median time to PSA50 in the Darolutamide group was 1.5 months (95% CI: 0.2619-0.9545), significantly lower than that in the placebo group (3.0 months [95% CI: 1.048-3.818], p = 0.0259). The median time to PSA90 in the experimental group was 4 months (95% CI: 0.3094-1.437), 2 months shorter than that in the placebo group (6.0 months [95% CI: 0.6961-3.232]). With the median follow-up of 6 months, the median decrease in serum PSA was -81.8% (range -60.4 to -99.9%) in the Darolutamide group and -69.4% (range -50.3 to -89.6%) in the placebo group. Tumor-related pain and AEs were not increased, and the median rPFS was not reached. CONCLUSIONS The combination of Darolutamide and docetaxel was well tolerated with more clinically beneficial than docetaxel alone in previously untreated mCRPC. Darolutamide rapidly reduced PSA levels and prolonged rPFS and did not increase the incidence of AEs.
Collapse
Affiliation(s)
- JunJie Yu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,
| | - KaiChen Zhou
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - JunQi Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - LiJun Mao
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
12
|
Mellgard G, Saffran N, Chakrani Z, McCroskery S, Taylor N, Patel M, Liaw B, Galsky M, Oh W, Tsao CK, Patel V. Performance Status and End-of-Life Outcomes in Patients With Metastatic Castration-resistant Prostate Cancer Treated With Androgen Receptor Targeted Therapy. Am J Clin Oncol 2024; 47:459-464. [PMID: 39087466 DOI: 10.1097/coc.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Androgen receptor targeted therapies (ARTs) are widely preferred over taxane chemotherapy due to their good tolerability and similar efficacy. However, there is a paucity of data that support the use of ART therapy or describe end-of-life (EOL) outcomes in patients with metastatic castration-resistant prostate cancer (mCRPC) with reduced performance status (PS) (European Cooperative Oncology Group [ECOG] ≥2). METHODS We performed a retrospective, single-institution study of 142 patients with mCRPC who received ART therapy between 2010 and 2021. We assessed each record for baseline demographic and clinical information, ART treatment course, and survival and EOL outcomes. Our primary aim was to compare overall survival (OS) between the two groups (ECOG ≥2 vs 0 to 1), and our secondary aim was to describe EOL outcomes. Fisher exact tests and Wilcoxon signed-rank tests were used to compare baseline characteristics. Cox regression was used to compare OS for patients with ECOG ≥2 at the start of treatment with those who had an ECOG of 0 or 1. Descriptive analyses were performed to assess EOL outcomes between the groups. RESULTS Patients with mCRPC and decreased PS experienced shorter OS on ART compared with those with higher PS. Moreover, when examining EOL outcomes, a near majority of these patients died in the hospital, with a greater percentage among those with an ECOG ≥2. CONCLUSION These findings highlight the need for continual assessment of PS, improved shared decision-making in ART treatment, and additional research exploring the association between PS and EOL outcomes.
Collapse
Affiliation(s)
- George Mellgard
- Department of Medicine, NewYork Presbyterian, Columbia University Irving Medical Center
| | | | | | | | | | - Mann Patel
- Department of Medical Education, Rutgers New Jersey Medical School, Newark, NJ
| | - Bobby Liaw
- Department of Hematology and Medical Oncology
- Tisch Cancer Center, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Matthew Galsky
- Department of Hematology and Medical Oncology
- Department of Medical Education, Rutgers New Jersey Medical School, Newark, NJ
| | - William Oh
- Department of Hematology and Medical Oncology
- Department of Medical Education, Rutgers New Jersey Medical School, Newark, NJ
- Prostate Cancer Foundation, Santa Monica, CA
| | - Che-Kai Tsao
- Department of Hematology and Medical Oncology
- Department of Medical Education, Rutgers New Jersey Medical School, Newark, NJ
| | - Vaibhav Patel
- Department of Hematology and Medical Oncology
- Department of Medical Education, Rutgers New Jersey Medical School, Newark, NJ
- Arvinas Inc., New Haven, CT
| |
Collapse
|
13
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
14
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
15
|
Cheng X, Yang H, Chen Y, Zeng Z, Liu Y, Zhou X, Zhang C, Xie A, Wang G. METTL3-mediated m 6A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy. Cell Mol Biol Lett 2024; 29:109. [PMID: 39143552 PMCID: PMC11325714 DOI: 10.1186/s11658-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported. METHODS Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3. RESULTS CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide. CONCLUSIONS METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Yujun Chen
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Zhenhao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, Jiangxi, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - An Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
16
|
Fattahi MR, Dehghani M, Paknahad S, Rahiminia S, Zareie D, Hoseini B, Oroomi TR, Motedayyen H, Arefnezhad R. Clinical insights into nanomedicine and biosafety: advanced therapeutic approaches for common urological cancers. Front Oncol 2024; 14:1438297. [PMID: 39193389 PMCID: PMC11347329 DOI: 10.3389/fonc.2024.1438297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Urological cancers including those of the prostate, bladder, and kidney, are prevalent and often lethal malignancies besides other less common ones like testicular and penile cancers. Current treatments have major limitations like side effects, recurrence, resistance, high costs, and poor quality of life. Nanotechnology offers promising solutions through enhanced diagnostic accuracy, targeted drug delivery, controlled release, and multimodal imaging. This review reflects clinical challenges and nanomedical advances across major urological cancers. In prostate cancer, nanoparticles improve delineation and radiosensitization in radiation therapy, enable fluorescent guidance in surgery, and enhance chemotherapy penetration in metastatic disease. Nanoparticles also overcome bladder permeability barriers to increase the residence time of intravesical therapy and chemotherapy agents. In renal cancer, nanocarriers potentiate tyrosine kinase inhibitors and immunotherapy while gene vectors and zinc oxide nanoparticles demonstrate antiproliferative effects. Across modalities, urological applications of nanomedicine include polymeric, liposomal, and metal nanoparticles for targeted therapy, prodrug delivery, photodynamic therapy, and thermal ablation. Biosafety assessments reveal favorable profiles but clinical translation remains limited, necessitating further trials. In conclusion, nanotechnology holds significant potential for earlier detection, precise intervention, and tailored treatment of urological malignancies, warranting expanded research to transform patient outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shafa Rahiminia
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Deniz Zareie
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Hoseini
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Ross A, Brewer K, Hudgens S, Brown B, Fallick M, de Paauw-Holt S, Arondekar B, Clegg J, Hunsche E. Development of a Novel Patient-Reported Outcome Measure to Assess Symptoms and Impacts of Androgen Deprivation Therapy for Advanced Prostate Cancer. Adv Ther 2024; 41:3076-3088. [PMID: 38861216 PMCID: PMC11263404 DOI: 10.1007/s12325-024-02888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION This qualitative research study was conducted to develop a novel, comprehensive, patient-reported outcome measure (PRO), the "Symptoms and Impacts of Androgen Deprivation Therapy (ADT) for Prostate Cancer" (SIADT-PC), assessing hormonal therapy-related symptoms and their impacts on men with advanced prostate cancer. METHODS Concept elicitation (CE) interviews were conducted among adult men with prostate cancer to evaluate their experiences with ADT. Based on key symptom and impact concepts mentioned, an initial PRO measure was developed. The draft measure was further assessed in cognitive debriefing (CD) interviews with men with prostate cancer, in which participants reviewed items, response options, and recall periods. Initial item-based psychometric analyses were conducted using interview data. The draft questionnaire was revised on the basis of participant feedback, quantitative psychometric results, and consultation with clinical experts. RESULTS A total of 21 participants were interviewed (CE concept elicitation, n = 12; CD cognitive debriefing, n = 17; n = 8 completed both). Mean participant age (SD) was 59.7 (8.7) years and 76.2% were white. The de novo SIADT-PC measure consists of 27 items: 11 symptoms (e.g., fatigue, hot flashes, and erectile dysfunction), 2 long-term symptoms (e.g., weight gain), 10 impacts (e.g., impacts on physical activities and relationships), and 4 related to mode of administration (i.e., injection-site reactions). Items were assessed with a 5-point verbal rating scale, with answer choices that capture frequency or severity. CONCLUSIONS Once fully validated, this de novo measure may be used in clinical studies and clinical practice to assess hormone therapy-related symptoms and impacts, enabling physicians to identify timely and appropriate interventions.
Collapse
Affiliation(s)
- Ashley Ross
- Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Simon de Paauw-Holt
- Sumitomo Pharma Switzerland GmbH, Aeschengraben 27, 4051, Basel, Switzerland
| | | | | | - Elke Hunsche
- Sumitomo Pharma Switzerland GmbH, Aeschengraben 27, 4051, Basel, Switzerland.
| |
Collapse
|
18
|
Li X, Cui P, Zhao X, Liu Z, Qi Y, Liu B. Development and Validation of a Clinic Machine Learning Classifier for the Prediction of Risk Stratifications of Prostate Cancer Bone Metastasis Progression to Castration Resistance. Int J Gen Med 2024; 17:2821-2831. [PMID: 38919704 PMCID: PMC11198022 DOI: 10.2147/ijgm.s465031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Objective To explore the predictive factors and predictive model construction for the progression of prostate cancer bone metastasis to castration resistance. Methods Clinical data of 286 patients diagnosed with prostate cancer with bone metastasis, initially treated with endocrine therapy, and progressing to metastatic castration resistant prostate cancer (mCRPC) were collected. By comparing the differences in various factors between different groups with fast and slow occurrence of castration-resistant prostate cancer (CRPC). Kaplan-Meier survival analysis and COX multivariate risk proportional regression model were used to compare the differences in the time to progression to CRPC in different groups. The COX multivariate risk proportional regression model was used to evaluate the impact of candidate factors on the time to progression to CRPC and establish a predictive model. The accuracy of the model was then tested using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Results The median time for 286 mCRPC patients to progress to CRPC was 17 (9.5-28.0) months. Multivariate analysis showed that the lowest value of PSA (PSA nadir), the time when PSA dropped to its lowest value (timePSA), and the number of BM, and LDH were independent risk factors for rapid progression to CRPC. Based on the four independent risk factors mentioned above, a prediction model was established, with the optimal prediction model being a random forest with area under curve (AUC) of 0.946[95% CI: 0.901-0.991] and 0.927[95% CI: 0.864-0.990] in the training and validation cohort, respectively. Conclusion After endocrine therapy, the PSA nadir, timePSA, the number of BM, and LDH are the main risk factors for rapid progression to mCRPC in patients with prostate cancer bone metastases. Establishing a CRPC prediction model is helpful for early clinical intervention decision-making.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Peng Cui
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - XingXing Zhao
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Zhao Liu
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - YanXiang Qi
- Department of Urology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| | - Bo Liu
- Department of Gynaecological Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia, People’s Republic of China
| |
Collapse
|
19
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
20
|
Schatz CA, Zitzmann-Kolbe S, Moen I, Klotz M, Nair S, Stargard S, Bjerke RM, Wickstrøm Biseth K, Feng YZ, Indrevoll B, Cruciani V, Karlsson J, Haendler B, Nielsen CH, Alfsen MZ, Hammer S, Hennekes H, Cuthbertson A, Hagemann UB, Larsen Å. Preclinical Efficacy of a PSMA-Targeted Actinium-225 Conjugate (225Ac-Macropa-Pelgifatamab): A Targeted Alpha Therapy for Prostate Cancer. Clin Cancer Res 2024; 30:2531-2544. [PMID: 38593212 DOI: 10.1158/1078-0432.ccr-23-3746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).
Collapse
|
21
|
Yang G, Cao Y, Yang X, Cui T, Tan NZV, Lim YK, Fu Y, Cao X, Bhandari A, Enikeev M, Efetov S, Balaban V, He M. Advancements in nanomedicine: Precision delivery strategies for male pelvic malignancies - Spotlight on prostate and colorectal cancer. Exp Mol Pathol 2024; 137:104904. [PMID: 38788248 DOI: 10.1016/j.yexmp.2024.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Pelvic malignancies consistently pose significant global health challenges, adversely affecting the well-being of the male population. It is anticipated that clinicians will continue to confront these cancers in their practice. Nanomedicine offers promising strategies that revolutionize the treatment of male pelvic malignancies by providing precise delivery methods that aim to improve the efficacy of therapeutic outcomes while minimizing side effects. Nanoparticles are designed to encapsulate therapeutic agents and selectively target cancer cells. They can also be loaded with theragnostic agents, enabling multifunctional capabilities. OBJECTIVE This review aims to summarize the latest nanomedicine research into clinical applications, focusing on nanotechnology-based treatment strategies for male pelvic malignancies, encompassing chemotherapy, radiotherapy, immunotherapy, and other cutting-edge therapies. The review is structured to assist physicians, particularly those with limited knowledge of biochemistry and bioengineering, in comprehending the functionalities and applications of nanomaterials. METHODS Multiple databases, including PubMed, the National Library of Medicine, and Embase, were utilized to locate and review recently published articles on advancements in nano-drug delivery for prostate and colorectal cancers. CONCLUSION Nanomedicine possesses considerable potential in improving therapeutic outcomes and reducing adverse effects for male pelvic malignancies. Through precision delivery methods, this emerging field presents innovative treatment modalities to address these challenging diseases. Nevertheless, the majority of current studies are in the preclinical phase, with a lack of sufficient evidence to fully understand the precise mechanisms of action, absence of comprehensive pharmacotoxicity profiles, and uncertainty surrounding long-term consequences.
Collapse
Affiliation(s)
- Guodong Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Te Cui
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Yuen Kai Lim
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xinren Cao
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aanchal Bhandari
- HBT Medical College and Dr. R N Cooper Municipal General Hospital, Mumbai, India
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir Balaban
- Clinic of Coloproctology and Minimally Invasive Surgery, Sechenov University, Moscow, Russia
| | - Mingze He
- Institute for Urology and Reproductive Health, Sechenov University, Moscow, Russia.
| |
Collapse
|
22
|
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F, Xu Q. Role of N 6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 2024; 51:88. [PMID: 38757383 PMCID: PMC11110010 DOI: 10.3892/or.2024.8747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
23
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
24
|
Yang Z, Wu P, Xiong X, Sun Y, Cen S, Gu D, Gao X. Letter to the editor on "Streptococcus a group injection for the treatment of lymphatic leakage after single-port robotic-assisted radical Prostatectomy: A case report". Asian J Surg 2024:S1015-9584(24)00741-3. [PMID: 38821824 DOI: 10.1016/j.asjsur.2024.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Affiliation(s)
- Zixiang Yang
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Peng Wu
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Xinhao Xiong
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Yi Sun
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Shengren Cen
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Di Gu
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Xingcheng Gao
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.
| |
Collapse
|
25
|
Wang Y, Yuan H, Fang R, Lu J, Duo J, Li G, Wang WJ. A new gold(I) phosphine complex induces apoptosis in prostate cancer cells by increasing reactive oxygen species. Mol Cell Biochem 2024:10.1007/s11010-024-05035-8. [PMID: 38782835 DOI: 10.1007/s11010-024-05035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis. It is frequently overexpressed in various cancer cells, including prostate cancer, making it a promising target for the development of anti-cancer drugs. In this study, we screened a series of newly designed complexes of gold(I) phosphine. Specifically, Compound 5 exhibited the highest cytotoxicity against prostate cancer cells and demonstrated stronger antitumor effects than commonly used drugs, such as cisplatin and auranofin. Importantly, our mechanistic study revealed that Compound 5 effectively inhibits the TrxR system in vitro. Additionally, Compound 5 promoted intracellular accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction and irreversible apoptosis in prostate cancer cells. Our in vivo xenograft study further demonstrated that Compound 5 has excellent antitumor activity against prostate cancer cells, but does not cause severe side effects. These findings provide a promising lead Compound for the development of novel antitumor agents targeting prostate cancer and offer a valuable tool for investigating biological pathways involving TrxR and ROS modulation.
Collapse
Affiliation(s)
- Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Haokun Yuan
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiqin Fang
- The School of Life Science, University of Electronic Science and Technology of China, Chengdu, China
| | - Junzhu Lu
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaqi Duo
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ge Li
- The School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Jia Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
26
|
Gupta N, Gupta D, Vaska KG, Prinja S. Cost-Effectiveness Analysis of Systemic Therapy for Intensification of Treatment in Metastatic Hormone-Sensitive Prostate Cancer in India. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:415-426. [PMID: 38198103 DOI: 10.1007/s40258-023-00866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND OBJECTIVE Androgen-deprivation therapy is the mainstay of treatment for patients with newly diagnosed metastatic hormone-sensitive prostate cancer (mHSPC). However, the intensification of treatment with either docetaxel or novel anti-androgens (abiraterone-acetate plus prednisone [AAP], enzalutamide, and apalutamide) is being recommended based on the improved clinical outcomes and quality of life among patients. This study aimed to determine the most cost-effective drug for treatment intensification for patients with mHSPC in India. METHODS A Markov model was developed with four health states: progression-free survival, progressive disease, best supportive care, and death. Lifetime costs and consequences were estimated for four treatment sequences: AAP-first, enzalutamide-first, apalutamide-first, and docetaxel-first. Incremental cost per quality-adjusted life-year (QALY) gained with a given treatment option was compared against the next best alternative and assessed for cost effectiveness using a willingness to pay threshold of 1 × per capita gross domestic product in India. RESULTS We estimated that the total lifetime cost per patient was ₹1,367,454 (US$17,487), ₹2,168,885 (US$27,735), ₹7,678,501 (US$98,190), and ₹1,358,746 (US$17,375) in the AAP-first, enzalutamide-first, apalutamide-first, and docetaxel-first treatment sequence, respectively. The mean quality-adjusted life-years lived per patient were 4.78, 5.03, 3.22, and 2.61, respectively. The AAP-first sequence incurs an incremental cost of ₹4014 (US$51) per quality-adjusted life-year gained as compared with the docetaxel-first sequence, with a 87% probability of being cost effective at the willingness-to-pay threshold of 1 × per-capita gross domestic product of India. The use of AAP-first also incurs an incremental net monetary benefit of ₹396,491 (US$5070) as compared with the docetaxel-first treatment sequence. Nearly a 48% reduction in the price of enzalutamide is required to make it a cost-effective treatment sequence as compared with AAP-first in India. CONCLUSIONS We concur with the inclusion of standard-dose AAP in India's publicly financed health insurance scheme for the intensification of treatment in mHSPC as it is the only cost-effective sequence among the various novel anti-androgens when compared with the docetaxel-first treatment sequence. Furthermore, a systematic reduction in the price of enzalutamide would further help to improve clinical outcomes among patients with mHSPC.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Radiation Oncology, Government Medical College and Hospital, Chandigarh, India
| | - Dharna Gupta
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Near Gol Market, Sector 14, Chandigarh, 160014, India
| | - Kiran Gopal Vaska
- National Health Authority, Ayushman Bharat PM-JAY, Government of India, New Delhi, India
| | - Shankar Prinja
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research (PGIMER), Madhya Marg, Near Gol Market, Sector 14, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Guo S, Miao M, Wu Y, Pan D, Wu Q, Kang Z, Zeng J, Zhong G, Liu C, Wang J. DHODH inhibition represents a therapeutic strategy and improves abiraterone treatment in castration-resistant prostate cancer. Oncogene 2024; 43:1399-1410. [PMID: 38480915 DOI: 10.1038/s41388-024-03005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 05/05/2024]
Abstract
Castration-resistant prostate cancer (CRPC) is an aggressive disease with poor prognosis, and there is an urgent need for more effective therapeutic targets to address this challenge. Here, we showed that dihydroorotate dehydrogenase (DHODH), an enzyme crucial in the pyrimidine biosynthesis pathway, is a promising therapeutic target for CRPC. The transcript levels of DHODH were significantly elevated in prostate tumors and were negatively correlated with the prognosis of patients with prostate cancer. DHODH inhibition effectively suppressed CRPC progression by blocking cell cycle progression and inducing apoptosis. Notably, treatment with DHODH inhibitor BAY2402234 activated androgen biosynthesis signaling in CRPC cells. However, the combination treatment with BAY2402234 and abiraterone decreased intratumoral testosterone levels and induced apoptosis, which inhibited the growth of CWR22Rv1 xenograft tumors and patient-derived xenograft organoids. Taken together, these results establish DHODH as a key player in CRPC and as a potential therapeutic target for advanced prostate cancer.
Collapse
Affiliation(s)
- Shaoqiang Guo
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miaomiao Miao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yufeng Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dongyue Pan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qinyan Wu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhanfang Kang
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Guoping Zhong
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA, USA.
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, USA.
| | - Junjian Wang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Huttunen J, Aaltonen N, Helminen L, Rilla K, Paakinaho V. EP300/CREBBP acetyltransferase inhibition limits steroid receptor and FOXA1 signaling in prostate cancer cells. Cell Mol Life Sci 2024; 81:160. [PMID: 38564048 PMCID: PMC10987371 DOI: 10.1007/s00018-024-05209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.
Collapse
Affiliation(s)
- Jasmin Huttunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Niina Aaltonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
29
|
Ding L, Wang Y, Tang Z, Ni C, Zhang Q, Zhai Q, Liang C, Li J. Exploration of vitamin D metabolic activity-related biological effects and corresponding therapeutic targets in prostate cancer. Nutr Metab (Lond) 2024; 21:17. [PMID: 38566155 PMCID: PMC10988890 DOI: 10.1186/s12986-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Previous studies have unequivocally demonstrated that the vitamin D (VD) metabolism pathway significantly influences prognosis and sensitivity to hormone therapy in prostate cancer (PCa). However, the precise underlying mechanism remains unclear. METHODS We performed molecular profiling of 1045 PCa patients, leveraging genes linked to VD synthesis and VD receptors. We then identified highly variable gene modules with substantial associations with patient stratification. Subsequently, we intersected these modules with differentially expressed genes between PCa and adjacent paracancerous tissues. Following a meticulous process involving single-factor regression and LASSO regression to eliminate extraneous variables and construct a prognostic model. Within the high-risk subgroup defined by the calculated risk score, we analyzed their differences in cell infiltration, immune status, mutation landscape, and drug sensitivity. Finally, we selected Apolipoprotein E (APOE), which featured prominently in this model for further experimental exploration to evaluate its potential as a therapeutic target. RESULTS The prognostic model established in this study had commendable predictive efficacy. We observed diminished infiltration of various T-cell subtypes and reduced expression of co-stimulatory signals from antigen-presenting cells. Mutation analysis revealed that the high-risk cohort harbored a higher frequency of mutations in the TP53 and FOXA genes. Notably, drug sensitivity analysis suggested the heightened responsiveness of high-risk patients to molecular inhibitors targeting the Bcl-2 and MAPK pathways. Finally, our investigation also confirmed that APOE upregulates the proliferative and invasive capacity of PCa cells and concurrently enhances resistance to androgen receptor antagonist therapy. CONCLUSION This comprehensive study elucidated the potential mechanisms through which this metabolic pathway orchestrates the biological behavior of PCa and findings hold promise in advancing the development of combination therapies in PCa.
Collapse
Affiliation(s)
- Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Yong Wang
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, 214023, Suqian, China
| | - Zhentao Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chenbo Ni
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Qidi Zhai
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210009, Nanjing,, China.
| |
Collapse
|
30
|
Moon D, Hauck JS, Jiang X, Quang H, Xu L, Zhang F, Gao X, Wild R, Everitt JI, Macias E, He Y, Huang J. Targeting glutamine dependence with DRP-104 inhibits proliferation and tumor growth of castration-resistant prostate cancer. Prostate 2024; 84:349-357. [PMID: 38084059 PMCID: PMC10872917 DOI: 10.1002/pros.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Prostate cancer (PCa) continues to be one of the leading causes of cancer deaths in men. While androgen deprivation therapy is initially effective, castration-resistant PCa (CRPC) often recurs and has limited treatment options. Our previous study identified glutamine metabolism to be critical for CRPC growth. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) blocks both carbon and nitrogen pathways but has dose-limiting toxicity. The prodrug DRP-104 is expected to be preferentially converted to DON in tumor cells to inhibit glutamine utilization with minimal toxicity. However, CRPC cells' susceptibility to DRP-104 remains unclear. METHODS Human PCa cell lines (LNCaP, LAPC4, C4-2/MDVR, PC-3, 22RV1, NCI-H660) were treated with DRP-104, and effects on proliferation and cell death were assessed. Unbiased metabolic profiling and isotope tracing evaluated the effects of DRP-104 on glutamine pathways. Efficacy of DRP-104 in vivo was evaluated in a mouse xenograft model of neuroendocrine PCa, NCI-H660. RESULTS DRP-104 inhibited proliferation and induced apoptosis in CRPC cell lines. Metabolite profiling showed decreases in the tricarboxylic acid cycle and nucleotide synthesis metabolites. Glutamine isotope tracing confirmed the blockade of both carbon pathway and nitrogen pathways. DRP-104 treated CRPC cells were rescued by the addition of nucleosides. DRP-104 inhibited neuroendocrine PCa xenograft growth without detectable toxicity. CONCLUSIONS The prodrug DRP-104 blocks glutamine carbon and nitrogen utilization, thereby inhibiting CRPC growth and inducing apoptosis. Targeting glutamine metabolism pathways with DRP-104 represents a promising therapeutic strategy for CRPC.
Collapse
Affiliation(s)
- David Moon
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly Quang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lingfan Xu
- Urology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xia Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, California, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Everardo Macias
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Yiping He
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
31
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
32
|
Guo X, Xia H, Zhang F, Hao G. Real-world progression in the survival of de novo Metastatic prostate cancer over the past decade. Urol Oncol 2024; 42:68.e1-68.e9. [PMID: 38097476 DOI: 10.1016/j.urolonc.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 03/10/2024]
Abstract
BACKGROUND The impact of evolving treatment strategies for metastatic prostate cancer (mPCa) on real-world survival is not well understood. We analyzed changes in mPCa survival over the past decade and discussed the potential driving factors behind these changes. METHODS Our study involved 43,228 mPCa patients (2004-2020) from the SEER database, divided into 4 diagnostic periods. We used a multivariate Cox proportional hazards model to evaluate diagnostic periods' influence on overall mortality (OM) and prostate cancer-specific mortality (PSM), and calculated relative median survival improvements between adjacent periods. Subgroup analyses based on age and distant metastasis sites were conducted. RESULTS Patients diagnosed in 2016 to 2020 experienced significantly reduced mortality risk compared to those in 2004 to 2007 (HR 0.64 for OM, HR 0.62 for CSM, both P < 0.001). The study period witnessed an absolute improvement in median overall survival (OS) and prostate cancer-specific survival (PCSS), 17 months (54.8%) and 25 months (67.6%) respectively. The most rapid relative survival improvement occurred post-2016, with a 29.7% increase in median OS and a 37.8% increase in PCSS compared to 2012 to 2015. There was a significant reduction in mortality risk throughout the study period in both age groups (age <75 and ≥75), but absolute survival gains were smaller in the older group (24 months [68.6%] vs. 8 months [32%] for OS, 36 months [90.0%] vs. 11 months [33.3%] for PCSS), with lower relative survival improvements after 2016 (37.2% vs. 17.9% for OS, 49% vs. 22.2% for PCSS). All metastasis site subgroups (except M1a) exhibited a significant reduction in mortality risk (all P < 0.001). Absolute survival improvements were 58 months (134.9%) for M1a, 16 months (50.0%) for M1b, and 17 months (54.8%) for M1c. CONCLUSION The survival of mPCa have significantly improved over the past decade, although the progress is slower in elderly patients. Investigating the underlying reasons for survival differences among various patient profiles can further refine mPCa treatment strategies.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haoran Xia
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fengbo Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Meng XY, Wang KJ, Ye SZ, Chen JF, Chen ZY, Zhang ZY, Yin WQ, Jia XL, Li Y, Yu R, Ma Q. Sinularin stabilizes FOXO3 protein to trigger prostate cancer cell intrinsic apoptosis. Biochem Pharmacol 2024; 220:116011. [PMID: 38154548 DOI: 10.1016/j.bcp.2023.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Ke-Jie Wang
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zhao-Yu Chen
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Zuo-Yan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Wei-Qi Yin
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Xiao-Long Jia
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou 310009, Zhejiang, China.
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, #818 Fenghua Road, Ningbo 315211, Zhejiang, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo 315010, Zhejiang, China; Yi-Huan Genitourinary Cancer Group, Ningbo 315010, Zhejiang, China.
| |
Collapse
|
35
|
Wang S, He F, Tian C, Sun A. From PROTAC to TPD: Advances and Opportunities in Targeted Protein Degradation. Pharmaceuticals (Basel) 2024; 17:100. [PMID: 38256933 PMCID: PMC10818447 DOI: 10.3390/ph17010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
PROTAC is a rapidly developing engineering technology for targeted protein degradation using the ubiquitin-proteasome system, which has promising applications for inflammatory diseases, neurodegenerative diseases, and malignant tumors. This paper gives a brief overview of the development and design principles of PROTAC, with a special focus on PROTAC-based explorations in recent years aimed at achieving controlled protein degradation and improving the bioavailability of PROTAC, as well as TPD technologies that use other pathways such as autophagy and lysosomes to achieve targeted protein degradation.
Collapse
Affiliation(s)
- Siqi Wang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China; (S.W.); (F.H.)
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China; (S.W.); (F.H.)
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Chunyan Tian
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China; (S.W.); (F.H.)
| | - Aihua Sun
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China; (S.W.); (F.H.)
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
36
|
Gan S, Qu F, Zhang X, Pan X, Xu D, Cui X, Hou J. LRP5 competes for SPOP binding to enhance tumorigenesis mediated by Daxx and PD-L1 in prostate cancer. Exp Cell Res 2024; 434:113857. [PMID: 38008278 DOI: 10.1016/j.yexcr.2023.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Genetic factors coordinate with environmental factors to drive the pathogenesis of prostate adenocarcinoma (PRAD). SPOP is one of the most mutated genes and LRP5 mediates lipid metabolism that is abnormally altered in PRAD. Here, we investigated the potential cross-talk between SPOP and LRP5 in PRAD. We find a negative correlation between SPOP and LRP5 proteins in PRAD. SPOP knockdown increased LRP5 protein while SPOP overexpression resulted in LRP5 reduction that was fully rescued by proteasome inhibitors. LRP5 intracellular tail has SPOP binding site and the direct interaction between LRP5 and SPOP was confirmed by Co-IP and GST-pulldown. Moreover, LRP5 competed with Daxx for SPOP-mediated degradation, establishing a dynamic balance among SPOP, LRP5 and Daxx. Overexpression of LRP5 tail could shift this balance to enhance Daxx-mediated transcriptional inhibition, and inhibit T cell activity in a co-culture system. Further, we generated human and mouse prostate cancer cell lines expressing SPOP variants (F133V, A227V, R368H). SPOP-F133V and SPOP-A227V have specific effects in up-regulating the protein levels of PD-1 and PD-L1. Consistently, SPOP-F133V and SPOP-A227V show robust inhibitory effects on T cells compared to WT SPOP in co-culture. This is further supported by the mouse syngeneic model showing that SPOP-F133V and SPOP-A227V enhance tumorigenesis of prostate cancer in in-vivo condition. Taken together, our study provides evidence that SPOP-LRP5 crosstalk plays an essential role, and the genetic variants of SPOP differentially modulate the expression and activity of immune checkpoints in prostate cancer.
Collapse
Affiliation(s)
- Sishun Gan
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Medical Center of Soochow University, PR China; Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Fajun Qu
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Xiangmin Zhang
- Department of Urology, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, PR China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, PR China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, No.1665 Kongjiang Road, Shanghai, 200092, PR China.
| | - Jianquan Hou
- Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Medical Center of Soochow University, PR China.
| |
Collapse
|
37
|
Chaudhary M, Kumar S, Kaur P, Sahu SK, Mittal A. Comprehensive Review on Recent Strategies for Management of Prostate Cancer: Therapeutic Targets and SAR. Mini Rev Med Chem 2024; 24:721-747. [PMID: 37694781 DOI: 10.2174/1389557523666230911141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Prostate cancer is a disease that is affecting a large population worldwide. Androgen deprivation therapy (ADT) has become a foundation for the treatment of advanced prostate cancer, as used in most clinical settings from neo-adjuvant to metastatic stage. In spite of the success of ADT in managing the disease in the majority of men, hormonal manipulation fails eventually. New molecules are developed for patients with various hormone-refractory diseases. Advancements in molecular oncology have increased understanding of numerous cellular mechanisms which control cell death in the prostate and these insights can lead to the development of more efficacious and tolerable therapies for carcinoma of the prostate. This review is focused on numerous therapies that might be a boon for prostate therapy like signaling inhibitors, vaccines, and inhibitors of androgen receptors. Along with these, various bioactive molecules and their derivatives are highlighted, which act as potential antiprostate cancer agents. This article also emphasized the recent advances in the field of medicinal chemistry of prostate cancer agents.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, Punjab, 147301, India
| |
Collapse
|
38
|
Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189033. [PMID: 38040267 DOI: 10.1016/j.bbcan.2023.189033] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.
Collapse
Affiliation(s)
- Shenglong Li
- Second ward of Bone and Soft Tissue Tumor Surgery,Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
39
|
Khan S, Baligar P, Tandon C, Nayyar J, Tandon S. Molecular heterogeneity in prostate cancer and the role of targeted therapy. Life Sci 2024; 336:122270. [PMID: 37979833 DOI: 10.1016/j.lfs.2023.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Data collected from large-scale studies has shown that the incidence of prostate cancer globally is on the rise, which could be attributed to an overall increase in lifespan. So, the question is how has modern science with all its new technologies and clinical breakthroughs mitigated or managed this disease? The answer is not a simple one as prostate cancer exhibits various subtypes, each with its unique characteristics or signatures which creates challenges in treatment. To understand the complexity of prostate cancer these signatures must be deciphered. Molecular studies of prostate cancer samples have identified certain genetic and epigenetic alterations, which are instrumental in tumorigenesis. Some of these candidates include the androgen receptor (AR), various oncogenes, tumor suppressor genes, and the tumor microenvironment, which serve as major drivers that lead to cancer progression. These aberrant genes and their products can give an insight into prostate cancer development and progression by acting as potent markers to guide future therapeutic approaches. Thus, understanding the complexity of prostate cancer is crucial for targeting specific markers and tailoring treatments accordingly.
Collapse
Affiliation(s)
- Sabiha Khan
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine, Amity University Uttar Pradesh, India
| | - Chanderdeep Tandon
- Amity School of Biological Sciences, Amity University Punjab, Mohali, India
| | - Jasamrit Nayyar
- Department of Chemistry, Goswami Ganesh Dutt Sanatan Dharam College, Chandigarh, India
| | - Simran Tandon
- Amity School of Health Sciences, Amity University Punjab, Mohali, India.
| |
Collapse
|
40
|
Ebrahimi H, Castro DV, Feng MI, Prajapati SR, Lee KO, Chan EH, Paul T, Sehgal I, Patel J, Li X, Zengin ZB, Meza L, Mercier BD, Hsu J, Govindarajan A, Chawla N, Dizman N, Bergerot CD, Rock A, Liu S, Tripathi A, Dorff T, Pal SK, Chehrazi-Raffle A. Examining Exclusion Criteria in Advanced Prostate Cancer Clinical Trials: An Assessment of recommendations From the American Society Of Clinical Oncology and Friends of Cancer Research. Clin Genitourin Cancer 2023; 21:e467-e473. [PMID: 37301665 DOI: 10.1016/j.clgc.2023.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Eligibility criteria illustrate the characteristics of the study population and promote the safety of participants. However, overreliance on restrictive eligibility criteria may limit the generalizability of outcomes. As a result, the American Society of Clinical Oncology (ASCO) and Friends of Cancer Research (Friends) issued statements to curtail these challenges. In this study, we aimed to assess restrictiveness in eligibility criteria across advanced prostate cancer clinical trials. MATERIALS AND METHODS We identified all phase I, II, and III advanced prostate cancer clinical trials between June 30, 2012, and June 30, 2022, through Clinicaltrials.gov. We evaluated whether a clinical trial excluded, conditionally included, or did not report 4 common criteria: brain metastases, prior or concurrent malignancies, HIV infection, and hepatitis B virus (HBV)/hepatitis C virus (HCV) infection. Performance status (PS) criteria were recorded based on the Eastern Cooperative Oncology Group (ECOG) scale. RESULTS Out of 699 clinical trials within our search strategy, 265 (37.9%) trials possessed all the required data and were included in our analysis. The most common excluded condition of our interest was brain metastases (60.8%), followed by HIV positivity (46.4%), HBV/HCV positivity (46.0%), and concurrent malignancies (15.5%). Additionally, 50.9% of clinical trials only included patients with ECOG PS 0 to 1. HIV and HBV/HCV infection were exclusion criteria of 22 (80.8%) and 19 (73.1%) immunotherapy trials, respectively. CONCLUSION Patients with brain metastases, prior or concurrent malignancies, HIV infection, HBV/HCV infection, or low-functioning PS were overly restricted from participating in advanced prostate clinical trials. Advocating for broader criteria may ameliorate generalizability.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Daniela V Castro
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Matthew I Feng
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sweta R Prajapati
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Kyle O Lee
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Elyse H Chan
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Trishita Paul
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ishaan Sehgal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jalen Patel
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Xiaochan Li
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Zeynep B Zengin
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Benjamin D Mercier
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - JoAnn Hsu
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ameish Govindarajan
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Neal Chawla
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Nazli Dizman
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA; Department of Internal Medicine, Yale University School of Medicine, Yale New Haven Hospital, New Haven, CT
| | - Cristiane D Bergerot
- Centro de Câncer de Brasília (CETTRO), Instituto Unity de Ensino e Pesquisa, Brasília, Brazil
| | - Adam Rock
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sandy Liu
- Department of Medical Oncology, City of Hope Orange County Medical Center, Irvine, CA
| | - Abhishek Tripathi
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Tanya Dorff
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alexander Chehrazi-Raffle
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
41
|
Huang Y, Zhang L, Liu T, Liang E. LMNB1 targets FOXD1 to promote progression of prostate cancer. Exp Ther Med 2023; 26:513. [PMID: 37840569 PMCID: PMC10570766 DOI: 10.3892/etm.2023.12212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 10/17/2023] Open
Abstract
Forkhead box D1 (FOXD1) expression is upregulated in various types of human cancer. To the best of our knowledge, the roles of FOXD1 in prostate cancer (PC) remain largely unknown. The Cancer Genome Atlas dataset was used for the bioinformatics analysis of FOXD1 in PC. FOXD1 expression levels in normal immortalized human prostate epithelial cells (RWPE-1) and prostate cancer cells were detected by reverse transcription-quantitative PCR. PC cell viability was detected using Cell Counting Kit-8 assay. Transwell assays were performed to assess the migration and invasion of PC cells. Luciferase reporter gene assay was used to validate the association between FOXD1 and lamin (LMN)B1. LMNB1 is an important part of the cytoskeleton, which serves an important role in the process of tumor occurrence and development, regulating apoptosis and DNA repair. FOXD1 expression was upregulated in PC tissues, with its high expression being associated with clinical stage and survival in PC. Knockdown of FOXD1 inhibited viability, migration and invasion of PC cells. FOXD1 positively regulated LMNB1 expression. The effect of FOXD1 knockdown on PC cells was reversed by LMNB1 overexpression. In conclusion, FOXD1, positively regulated by LMNB1, served as an oncogene in PC and may be a potential biomarker and treatment target for PC.
Collapse
Affiliation(s)
- Yuanshe Huang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Lai Zhang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - Tianlei Liu
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| | - E Liang
- Agriculture College, Innovation Center for Efficient Agricultural of Guizhou Mountain Characteristics, Anshun University, Anshun, Guizhou 561000, P.R. China
| |
Collapse
|
42
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
43
|
Bian Q, Li B, Zhang L, Sun Y, Zhao Z, Ding Y, Yu H. Molecular pathogenesis, mechanism and therapy of Cav1 in prostate cancer. Discov Oncol 2023; 14:196. [PMID: 37910338 PMCID: PMC10620365 DOI: 10.1007/s12672-023-00813-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiang Bian
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Bei Li
- Department of Radiological Image, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Luting Zhang
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Yinuo Sun
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China
| | - Zhankui Zhao
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China
| | - Yi Ding
- Department of Pathophysiology, Weifang Medicine University, Weifang, 261053, Shandong, People's Republic of China.
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, 272067, Shandong, People's Republic of China.
- The Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272100, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
45
|
Rehman K, Iqbal Z, Zhiqin D, Ayub H, Saba N, Khan MA, Yujie L, Duan L. Analysis of genetic biomarkers, polymorphisms in ADME-related genes and their impact on pharmacotherapy for prostate cancer. Cancer Cell Int 2023; 23:247. [PMID: 37858151 PMCID: PMC10585889 DOI: 10.1186/s12935-023-03084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Prostate cancer (PCa) is a non-cutaneous malignancy in males with wide variation in incidence rates across the globe. It is the second most reported cause of cancer death. Its etiology may have been linked to genetic polymorphisms, which are not only dominating cause of malignancy casualties but also exerts significant effects on pharmacotherapy outcomes. Although many therapeutic options are available, but suitable candidates identified by useful biomarkers can exhibit maximum therapeutic efficacy. The single-nucleotide polymorphisms (SNPs) reported in androgen receptor signaling genes influence the effectiveness of androgen receptor pathway inhibitors and androgen deprivation therapy. Furthermore, SNPs located in genes involved in transport, drug metabolism, and efflux pumps also influence the efficacy of pharmacotherapy. Hence, SNPs biomarkers provide the basis for individualized pharmacotherapy. The pharmacotherapeutic options for PCa include hormonal therapy, chemotherapy (Docetaxel, Mitoxantrone, Cabazitaxel, and Estramustine, etc.), and radiotherapy. Here, we overview the impact of SNPs reported in various genes on the pharmacotherapy for PCa and evaluate current genetic biomarkers with an emphasis on early diagnosis and individualized treatment strategy in PCa.
Collapse
Affiliation(s)
- Khurram Rehman
- Faculty of Pharmacy, Gomal University, D.I.Khan, Pakistan
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Deng Zhiqin
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Hina Ayub
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | - Naseem Saba
- Department of Gynae, Gomal Medical College, D.I.Khan, Pakistan
| | | | - Liang Yujie
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518035, Guangdong, China.
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Second People's Hospital, ShenzhenShenzhen, 518035, Guangdong, China.
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
46
|
Gebrael G, Fortuna GG, Sayegh N, Swami U, Agarwal N. Advances in the treatment of metastatic prostate cancer. Trends Cancer 2023; 9:840-854. [PMID: 37442702 PMCID: PMC10527423 DOI: 10.1016/j.trecan.2023.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The field of metastatic prostate cancer (mPCa) has seen unprecedented therapeutic advances in the past decade. In the past 2 years, recent approvals include the triplet therapy regimens of androgen deprivation therapy (ADT), docetaxel, and an androgen receptor (AR) pathway inhibitor (ARPI) in the castration-sensitive setting and lutetium-177 vipivotide tetraxetan (177Lu-PSMA-617) and the combination of poly(ADP) ribose polymerase (PARP) inhibitors (PARPis) and ARPIs in the castration-resistant setting. With many agents currently undergoing investigation in registration trials, the therapeutic armamentarium will expand rapidly, making treatment selection and sequencing challenging. Herein, we review the landmark clinical trials ongoing or reported in the past 2 years, discuss the optimal approach to treatment selection, and provide insight into future directions.
Collapse
Affiliation(s)
- Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Fancher AT, Hua Y, Close DA, Xu W, McDermott LA, Strock CJ, Santiago U, Camacho CJ, Johnston PA. Characterization of allosteric modulators that disrupt androgen receptor co-activator protein-protein interactions to alter transactivation-Drug leads for metastatic castration resistant prostate cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:325-343. [PMID: 37549772 DOI: 10.1016/j.slasd.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Nucleus Global, 2 Ravinia Drive, Suite 605, Atlanta, GA 30346, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wei Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lee A McDermott
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; PsychoGenics Inc, 215 College Road, Paramus, NJ 07652, USA
| | | | - Ulises Santiago
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, School of Medicine, at the University of Pittsburgh, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
48
|
Ning W, Chang P, Zheng J, He F. The second docetaxel rechallenge for metastatic castration-resistant prostate cancer: a case report. Front Oncol 2023; 13:1185530. [PMID: 37829337 PMCID: PMC10565221 DOI: 10.3389/fonc.2023.1185530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Background Docetaxel combined with prednisone plus androgen deprivation therapy (ADT) is the preferred treatment option for metastatic hormone-sensitive prostate cancer (mHSPC) or metastatic castration-resistant prostate cancer (mCRPC). With the development of next-generation hormonal agents (NHAs) and poly (ADP-ribose) polymerase (PARP) inhibitors, more aggressive first-line or later-line treatment strategies have been added to the treatment of mHSPC and mCRPC. However, docetaxel rechallenge (DR) has special clinical significance in patients with "docetaxel-sensitive" prostate cancer. There are no reports on the efficacy and safety of the second DR in mCRPC patients. Case presentation We report one patient diagnosed with mCRPC who showed progression-free survival (PFS) and overall survival (OS) benefits and safety and good lower urinary tract function after the second DR. Conclusion The second DR as a potential alternative later-line treatment strategy should be considered for patients with mCRPC who worry about the high economic burden of multigene molecular testing and PARP inhibitors as well as repeated prostate needle biopsy.
Collapse
Affiliation(s)
- Wei Ning
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Pengkang Chang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fan He
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Urology Department, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Thakur N, Quazi S, Naik B, Jha SK, Singh P. New insights into molecular signaling pathways and current advancements in prostate cancer diagnostics & therapeutics. Front Oncol 2023; 13:1193736. [PMID: 37664036 PMCID: PMC10469924 DOI: 10.3389/fonc.2023.1193736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Prostate adenocarcinoma accounts for more than 20% of deaths among males due to cancer. It is the fifth-leading cancer diagnosed in males across the globe. The mortality rate is quite high due to prostate cancer. Despite the fact that advancements in diagnostics and therapeutics have been made, there is a lack of effective drugs. Metabolic pathways are altered due to the triggering of androgen receptor (AR) signaling pathways, and elevated levels of dihydrotestosterone are produced due to defects in AR signaling that accelerate the growth of prostate cancer cells. Further, PI3K/AKT/mTOR pathways interact with AR signaling pathway and act as precursors to promote prostate cancer. Prostate cancer therapy has been classified into luminal A, luminal B, and basal subtypes. Therapeutic drugs inhibiting dihydrotestosterone and PI3K have shown to give promising results to combat prostate cancer. Many second-generation Androgen receptor signaling antagonists are given either as single agent or with the combination of other drugs. In order to develop a cure for metastasized prostate cancer cells, Androgen deprivation therapy (ADT) is applied by using surgical or chemical methods. In many cases, Prostatectomy or local radiotherapy are used to control metastasized prostate cancer. However, it has been observed that after 1.5 years to 2 years of Prostatectomy or castration, there is reoccurrence of prostate cancer and high incidence of castration resistant prostate cancer is seen in population undergone ADT. It has been observed that Androgen derivation therapy combined with drugs like abiraterone acetate or docetaxel improve overall survival rate in metastatic hormone sensitive prostate cancer (mHSPC) patients. Scientific investigations have revealed that drugs inhibiting poly ADP Ribose polymerase (PARP) are showing promising results in clinical trials in the prostate cancer population with mCRPC and DNA repair abnormalities. Recently, RISUG adv (reversible inhibition of sperm under guidance) has shown significant results against prostate cancer cell lines and MTT assay has validated substantial effects of this drug against PC3 cell lines. Current review paper highlights the advancements in prostate cancer therapeutics and new drug molecules against prostate cancer. It will provide detailed insights on the signaling pathways which need to be targeted to combat metastasized prostate cancer and castration resistant prostate cancer.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Sameer Quazi
- Department of Chemistry, Akshara First Grade College, Bengaluru, India
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Solution Chemistry of Advanced Materials and Technologies (SCAMT) Institute, ITMO University, St. Petersburg, Russia
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
50
|
Miya TV, Marima R, Damane BP, Ledet EM, Dlamini Z. Dissecting Microbiome-Derived SCFAs in Prostate Cancer: Analyzing Gut Microbiota, Racial Disparities, and Epigenetic Mechanisms. Cancers (Basel) 2023; 15:4086. [PMID: 37627114 PMCID: PMC10452611 DOI: 10.3390/cancers15164086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PCa) continues to be the most diagnosed cancer and the second primary cause of fatalities in men globally. There is an abundance of scientific evidence suggesting that the human microbiome, together with its metabolites, plays a crucial role in carcinogenesis and has a significant impact on the efficacy of anticancer interventions in solid and hematological cancers. These anticancer interventions include chemotherapy, immune checkpoint inhibitors, and targeted therapies. Furthermore, the microbiome can influence systemic and local immune responses using numerous metabolites such as short-chain fatty acids (SCFAs). Despite the lack of scientific data in terms of the role of SCFAs in PCa pathogenesis, recent studies show that SCFAs have a profound impact on PCa progression. Several studies have reported racial/ethnic disparities in terms of bacterial content in the gut microbiome and SCFA composition. These studies explored microbiome and SCFA racial/ethnic disparities in cancers such as colorectal, colon, cervical, breast, and endometrial cancer. Notably, there are currently no published studies exploring microbiome/SCFA composition racial disparities and their role in PCa carcinogenesis. This review discusses the potential role of the microbiome in PCa development and progression. The involvement of microbiome-derived SCFAs in facilitating PCa carcinogenesis and their effect on PCa therapeutic response, particularly immunotherapy, are discussed. Racial/ethnic differences in microbiome composition and SCFA content in various cancers are also discussed. Lastly, the effects of SCFAs on PCa progression via epigenetic modifications is also discussed.
Collapse
Affiliation(s)
- Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0007, South Africa
| | - Elisa Marie Ledet
- Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|