1
|
Jia M, Yuan M, Zhu X, Lin D, Li X, Huang L, Chen H, Rui W. Evidence of honey-processed Astragalus polysaccharides improving intestinal immune function in spleen Qi deficiency mice integrated with microbiomics and metabolomics analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2158-2168. [PMID: 39462888 DOI: 10.1002/jsfa.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/08/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Radix Astragali, commonly known as Astragalus, is a traditional medicinal and edible plant valued for its Qi-tonifying properties. The dosage form of Radix Astragali processed with honey, known as honey-processed Astragalus (HPA), shows improved Qi-tonifying efficacy as compared to the raw product. Polysaccharides are the main bioactive ingredients in its aqueous extract. This study used a multiomics approach integrating microbiomics and metabolomics to elucidate the Qi-tonifying mechanisms of honey-processed Astragalus polysaccharides (HAPS). RESULTS HAPS-treated mice showed improved symptom scores, spleen and thymus indices, serum cytokines (tumor necrosis factor α, interleukin 1β) and intestinal mucosa secretory immunoglobulin A (SIgA) compared to the mice with spleen Qi deficiency. The analysis of gut microbiota indicated that HAPS regulated the relative abundance of Bacteroidetes, Bacteroides, Proteobacteria and Helicobacter, thereby improving intestinal flora dysbiosis in mice with spleen Qi deficiency. Eleven biomarkers in fecal metabolomics analysis were screened and identified, primarily associated with linoleic acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism and biosynthesis of unsaturated fatty acids. Furthermore, comprehensive analyses demonstrated that HAPS regulates palmitic acid and sphingolipid metabolism by modulating the abundance of Bacteroidetes, which in turn increased the levels of intestinal mucosal SIgA and restored intestinal mucosal immune function in mice with spleen Qi deficiency. CONCLUSION Our findings revealed that HAPS is an essential active ingredient of HPA, and its Qi-tonifying mechanism is closely related to the improvement of intestinal immune function. These findings lay the foundation for the application of HAPS as an immunomodulatory agent in health and dietary foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng Jia
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Meng Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xuqi Zhu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Danna Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xueying Li
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Li Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, PR China
- Guangdong Cosmetics Engineering and Technology Research Center, Guangzhou, PR China
| | - Wen Rui
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
2
|
Wang H, Zhao H, Tai B, Wang S, Ihsan A, Hao H, Cheng G, Tao Y, Wang X. Development and Evaluation of Non-Antibiotic Growth Promoters for Food Animals. Vet Sci 2024; 11:672. [PMID: 39729012 DOI: 10.3390/vetsci11120672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The widespread utilization of antibiotic growth promoters (AGPs) boosts the growth rate of food animals and enhances human living standards. Nevertheless, it is accompanied by escalating antibiotic resistance. Consequently, there is an urgent demand to develop novel alternatives to growth promoters. The objective of this study was to develop a non-antibiotic growth promoter (NAGP) for augmenting the growth rate of food animals. The growth-promoting effect of plant-derived NAGPs was assessed in mice and broiler chickens, and its growth-promoting mechanism was initially investigated. The results reveal that a combination of hawthorn (also known as shanzha) and astragalus (also known as huangqi) extracts (SQ) enhanced the growth rate of mice both in vivo and in vitro, attributed to their significant capacity to promote muscle growth and improve immunity (p < 0.05). The composite super energy extract M (CSEE-M), further optimized on the basis of SQ, significantly improved growth performance and feed conversion ratio, and elevated the activity of intestinal digestive enzymes (p < 0.05) in both mice and broilers and reshaped the gut microbiota of broilers. The addition of 0.5% CSEE-M to broiler drinking water significantly increased muscle content and improved carcass quality (p < 0.05). In conclusion, both SQ and CSEE-M hold great promise as NAGPs and serve as effective substitutes to AGPs. This research not only furnishes new solutions for the misuse of antibiotics but presents a fresh perspective for the development of growth promoters.
Collapse
Affiliation(s)
- Hanfei Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Hengji Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Bocheng Tai
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Simeng Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal 44000, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Veterinary Medicine Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Nie L, Huang Y, Cheng Z, Luo H, Zhan Y, Dou K, Ma C, Yu C, Luo C, Liu Z, Liu S, Zhu Y. An intranasal influenza virus vector vaccine protects against Helicobacter pylori in mice. J Virol 2024; 98:e0192323. [PMID: 38358289 PMCID: PMC10949480 DOI: 10.1128/jvi.01923-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuxin Zhan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kaiwen Dou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Du C, Zhang Z, Qiao W, Jia L, Zhang F, Chang M, Liu X, Guo L, Li Y. Expression and purification of epitope vaccine against four virulence proteins from Helicobacter pylori and construction of label-free electrochemical immunosensor. Biosens Bioelectron 2023; 242:115720. [PMID: 37804573 DOI: 10.1016/j.bios.2023.115720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The epitope vaccine against four virulence proteins (FVpE) from Helicobacter pylori (H. pylori) was expressed and purified. Western blot and Enzyme-linked Immunosorbent Assays (ELISA) were used to identify and investigate the immunoreactivity of FVpE protein. The immune-sensing platform based on titanium carbide/colloidal gold nanoparticles@carbon nanofiber/ionic liquid composites electrode was constructed for immobilizing FVpE. Electrochemical impedance spectroscopy (EIS) was used to study the electrochemical properties of the modified electrodes. The relevant influenced factors were optimized including pH value, antigen concentration, and incubating time. The prepared H. pylori label-free electrochemical immunosensor was used for antibody detection using differential pulse voltammetry (DPV). Under the optimal experimental conditions, the linear ranges of H. pylori antibodies, including anti-H. pylori, cytotoxin-associated gene A (CagA), vacuolating cytotoxin-associated gene A (VacA), and urease A (UreA), were all 0.1-5 ng mL-1, except urease B (UreB, 0.1-4.5 ng mL-1). The selectivity study showed that other antibodies had little influence on the detection of H. pylori antibodies. The immunosensor could be used to detect serum samples, and the recoveries were in the range of 68.5%-100.5%.
Collapse
Affiliation(s)
- Chao Du
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Zhen Zhang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, PR China
| | - Wenli Qiao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Leina Jia
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Furui Zhang
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Mengjun Chang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Xinsheng Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Yonghong Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, PR China.
| |
Collapse
|
5
|
Wang Q, Yao C, Li Y, Luo L, Xie F, Xiong Q, Feng P. Effect of polyphenol compounds on Helicobacter pylori eradication: a systematic review with meta-analysis. BMJ Open 2023; 13:e062932. [PMID: 36604137 PMCID: PMC9827256 DOI: 10.1136/bmjopen-2022-062932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Polyphenol compounds are classified as organic compounds with phenolic units exhibiting a variety of biological functions. This meta-analysis aims to assess the efficacy and safety of polyphenol compounds (curcumin, cranberry, garlic, liquorice and broccoli) in eradicating Helicobacter pylori. DESIGN Systematic review and meta-analysis. METHODS Literature searches were conducted on PubMed, Embase, The Cochrane Library, Web of Science, Medline, Chinese National Knowledge Infrastructure database, Chinese Scientific Journal Database and Wan Fang database from inception to January 2022. All randomised controlled trials comparing polyphenol compounds with the placebo or used as an adjunct treatment are included in this meta-analysis.The treatment effect for dichotomous outcomes was assessed using risk ratio (RR), while for continuous outcomes, mean differences both with 95% CIs, were used. Subgroup analyses were carried out for different treatment schemes and polyphenol compound species. RESULTS 12 trials were included in the meta-analysis. The total eradication rate of H.pylori in the polyphenol compounds group was higher than in the group without polyphenol compounds. Statistical significance was also observed (RR 1.19, 95% CI 1.03 to 1.38, p=0.02). The most frequent adverse effects of polyphenol compounds included diarrhoea, headache and vomiting. However, there were no differences regarding side effects between the two groups (RR 1.47, 95% CI 0.83 to 2.58, p=0.18). In subgroup analyses, the H.pylori eradication rate regimens with polyphenols therapy was superior to that of regimens without polyphenols therapy in the polyphenols versus placebo subgroup (RR 4.23, 95% CI 1.38 to 12.95, p=0.01), polyphenols plus triple therapy versus triple therapy subgroup (RR 1.11, 95% CI 1.01 to 1.22, p=0.03). CONCLUSION Polyphenol compounds can improve H.pylori eradication rates. Polyphenol compounds plus standard triple therapy can significantly improve the eradication. However, no evidence of a higher incidence of side effects could be found. PROSPERO REGISTRATION NUMBER CRD42022307477.
Collapse
Affiliation(s)
- Qiuxiang Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
- Department of traditional Chinese medicine, The Central Hospital of Guangyuan City, Guangyuan, Sichuan, China
| | - Chengjiao Yao
- Department of Geriatrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yilin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Lihong Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Fengjiao Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Qin Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| | - Peimin Feng
- Affiliated hospital of Chengdu university of traditional Chinese medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wang L, Cao ZM, Zhang LL, Dai XC, Liu ZJ, Zeng YX, Li XY, Wu QJ, Lv WL. Helicobacter Pylori and Autoimmune Diseases: Involving Multiple Systems. Front Immunol 2022; 13:833424. [PMID: 35222423 PMCID: PMC8866759 DOI: 10.3389/fimmu.2022.833424] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The modern Gastroenterology have witnessed an essential stride since Helicobacter pylori was first found in the stomach and then its pathogenic effect was discovered. According to the researches conducted during the nearly 40 years, it has been found that this bacterium is associated with a natural history of many upper gastrointestinal diseases. Epidemiological data show an increased incidence of autoimmune disorders with or after infection with specific microorganisms. The researches have revealed that H. pylori is a potential trigger of gastric autoimmunity, and it may be associated with other autoimmune diseases, both innate and acquired. This paper reviews the current support or opposition about H. pylori as the role of potential triggers of autoimmune diseases, including inflammatory bowel disease, autoimmune thyroiditis, type 1 diabetes mellitus, autoimmune liver diseases, rheumatoid arthritis, idiopathic thrombocytopenic purpura, systemic lupus erythematosus, as well as Sjogren’s syndrome, chronic urticaria and psoriasis, and tried to explain the possible mechanisms.
Collapse
Affiliation(s)
- Li Wang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Min Cao
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li-Li Zhang
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Can Dai
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhen-Ju Liu
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Xian Zeng
- Department of Proctology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin-Ye Li
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Liang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Li J, Zheng T, Shen D, Chen J, Pei X. Research progress in the Helicobacter pylori with viable non-culturable state. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1423-1429. [PMID: 35232914 PMCID: PMC10930577 DOI: 10.11817/j.issn.1672-7347.2021.210197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/14/2023]
Abstract
Helicobacter pylori (H. pylori) is one of the most common pathogens in human beings and it is responsible for diseases such as chronic gastritis, peptic ulcer, and even gastric cancer. Studies in recent years have found that H. Pylori could transform from the normal spiral-shaped bacillary form into the coccoid form and enter a viable but non-culturable (VBNC) state, which may pose a potential threat to public health. In this state,the morphological structure and physiological characteristics of H. Pylori have changed. It can maintain the metabolic activity but protein expression is decreased. And the H. Pylori in this state cannot grow in the culture medium. Conditions such as environmental factors, antibiotics, and inhibitors can induce H. Pylori to enter the VBNC state, but it is still not known whether H. pylori in the VBNC state can reactivate or not. Based on the cell membrane integrity and metabolic activity of H. pylori in the VBNC state, it can be detected by classical methods including direct microscopy of live bacteria and molecular biological methods such as reverse transcription-polymerase chain reaction. H. pylori in the VBNC state has been detected in water source and biological media. It has been also found that H. pylori can enter the VBNC state in artificially contaminated food, which poses challenges to public health and food safety. Therefore, it is of great significance to study the change pattern and detection methods of H. pylori in the VBNC state for the prevention and control of H. pylori in the VBNC state. It is valuable to further study the underlying mechanisms of H. pylori in the VBNC state.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Tianli Zheng
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Danyun Shen
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaofang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|